
JDO3.1 Query Structure
Items in square brackets are optional

select [unique] [<result>] [into <result-class-name>]
[from <candidate-class-name> [exclude subclasses]]
[where <filter>]
[variables <variable -list>]
[parameters <parameter-list>]
[imports <import-list>]
[group by <grouping-clause>]
[order by <ordering-clause>]
[range <from-range> ,<to-range>]

Query Examples
The following examples use this sample class.

public class Person
{
 private int age;
 private String firstName;
 private String lastName;
 private Address address;
 private Set<Person> children;
}

Example : Get objects with first name “John”.
Query q = pm.newQuery (“select from “ +
“com.example.Person where firstName == ’John’”);
List<Person> people = (List<Person>)q.execute();
...
q.closeAll(); // Close resources

Parameters
Parameters can be specified in query strings by placing a
colon in front of the identifier (i.e. :param). Parameters
can help memory utilization and performance.
Simple parameters:
Find all people named “John”.
Query q = pm.newQuery(“select from “
+ “com.example.Person where firstName == :param”);
List<Person> people = (List<Person>)
q.execute (“John”);

Using persistent instances as parameters:
Find all people over 21 with a given address.
Address a = (Address)
pm.getObjectById(Address.class, id);
Query q = pm.newQuery(“select from “
+ “com.example.Person where address == :param1 “
+ “&& age > :param2”);
List<Person> people = (List<Person>)
q.execute (a, new Integer (21));

Variables
Variables allow queries on multi-value relationships or
on unrelated classes.
Querying on a related instance:
Find all parents of a Person named “John”.
Query q = pm.newQuery(“select from “
+ “com.example.Person where children.contains(p)”
+ “&& p.firstName == :name”);
List<Person> parents = (List<Person>)
q.execute(“John”);

Ordering Results
Order query results by age, oldest first.
select from com.example.Person
order by age desc

Order by name, A first, then by age, oldest first.
select from com.example.Person
order by firstName asc, age desc

Keywords
Keywords must appear in either all upper-case or all
lower-case characters.
as, asc, ascending, avg, by, count, desc, descending, distinct,
exclude, from, group, having, imports, into, max, min, order,
parameters, range, select, subclasses, sum, to, unique, variables,
where

Optimizations
These represent a few of the available methods to speed up
JDO queries.

Limiting and paging query results:
The query can be configured to only return a subset of the
results so that unused elements will not be instantiated. The
start point is included, while the element at the limit is not.
select from com.example.Person range 10, 20

Ignore PersistenceManager cache:
Setting this parameter to true can speed up queries because
changes made during the transaction do not need to be
included in the results.
query.setIgnoreCache(true);

Indicate unique result:
Specifies that only one result is expected and to return only
the single instance instead of a List.
Query q = pm.newQuery (“select unique “
+ “from com.example.Person where firstName ==
:name”);
Person john = (Person) q.execute(“John”);

Aggregates, Projections, and Grouping
Grouping allows aggregates and projections to be grouped
by a given field and optionally limited using”having”.
Available aggregates are min, max, sum, avg, and count.
Simple grouping:
Query q = pm.newQuery(“select avg(age) “
+ “from com.example.Person group by firstName”);

Limiting grouping with “having” expression:
Group by firstName where the firstName starts with “J”.
Query q = pm.newQuery(“select count(this) “
+ “from com.example.Person group by firstName “
+ “having firstName.startsWith(:string)”);
q.execute(“J”);

Where Clause Methods
The following methods may be used in a where clause.
For example, “where Math.abs (balance) > 500”.
Collection contains(Object), isEmpty(), size()
Map containsKey(Object), isEmpty(), size()

containsValue(Object), get(Object)

List get(int)

String startsWith(String), endsWith(String),
indexOf(String), indexOf(String, int),
substring(int), substring(int, int),
toLowerCase(), toUpperCase(),
matches(String)

JDOHelper getObjectId(Object)

Math abs(Number), sqrt(Number)

The methods follow their counterparts in standard Java, so refer to
the JDK javadocs for details.
Example : All people with ‘ick’ in their name – Patrick, Rick, etc.
select from com.example.Person
where firstName.matches(‘.*ick.*(?i)’)

Where Clause Operators
== equal (also for Strings)
!= not equals
> greater than
< less than
>= greater than or equal
<= less than or equal
&& conditional AND
& bitwise logical AND
|| conditional OR
| bitwise logical OR
- subtract, or invert
+ add, or concatenate strings
* multiply
/ divide
% modulo
! logical complement
~ bitwise complement
instanceof Instance of a class

Result Classes and Aliases
You can have query results placed directly into a custom
class. This example uses the custom class Name below.
public class Name {
public String first;
public String last;
}
Query q = pm.newQuery (“SELECT firstName AS
first,”
+ “lastName AS last INTO com.example.Name “
+ “FROM com.example.Person where age > :param”);
List<Name> names = (List<Name>)q.execute(30);

Named Queries
Named queries are defined in XML or annotations and consist of a
name, query language, unmodifiable attribute, and the query itself.
<class name=“Person”>
 <query name=“adultsByFirstName”
unmodifiable=“false”>
select where age > 18 group by firstName
 </query>
</class>
List<Person> adults = (List<Person>)
pm.newNamedQuery (Person.class,
“adultsByFirstName”).execute ();

In-Memory Queries
JDOQL queries can be evaluated against an in-memory
collection of persistent or transactional types.
Query q = pm.newQuery (“select from “
+ “com.example.Person where firstName == ’John’”);
q.setCandidates (allPeople);
filteredPeople = (List<Person>) q.execute();

JDOQL Subqueries
Find the oldest people in the company.
Query q = pm.newQuery (“select from “
+ “com.example.Person where age == “
+ “(select max(p.age) from Person p)”);

Find those whose last name is part of a street address.
Query q = pm.newQuery(“select from “
+ “com.example.Person where (select “
+ “a.streetAddress from Address a).contains
(lastName)”);

SQL Queries
Queries can use SQL when accessing a relational database.
Find people whose first name is “John”.
Query q = pm.newQuery(Query.SQL, “SELECT * “
+”FROM PERSON WHERE FIRSTNAME = ?”);
q.setClass (Person.class);
List<Person> people = (List<Person>)
q.execute(“John”);

