
Working With Derby
Version 10.2

Derby Document build:
December 11, 2006, 7:06:09 AM (PST)

Contents
Copyright...3
Introduction and prerequisites..4

Activity overview... 5
Activity 1: Run SQL using the Embedded driver...7

Creating the database and running SQL...7
Activity 2: Run SQL using the Client driver... 10
Activity 3: Run a JDBC program using the Embedded driver..13

The WwdEmbedded program...14
Activity 4: Create and run a JDBC program using the Client driver and Network
Server.. 18
What next with Derby... 22

Copyright

i

Apache Software FoundationWorking With DerbyApache Derby
Copyright

2

Copyright

Copyright 2006 The Apache Software Foundation or its licensors, as applicable.

Licensed to the Apache Software Foundation (ASF) under one or more contributor
license agreements. See the NOTICE file distributed with this work for additional
information regarding copyright ownership. The ASF licenses this file to you under the
Apache License, Version 2.0 (the "License"); you may not use this file except in
compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the
License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS
OF ANY KIND, either express or implied. See the License for the specific language
governing permissions and limitations under the License.

Copyright

3

Introduction and prerequisites
Welcome to Derby! To help you get up and running with Derby as quickly as possible,
this self-study guide highlights some of the more important features of Derby through a
series of activities designed to demonstrate the use of Derby in embedded and
client-server configurations. After performing these activities, you will find Derby to be an
easy to use and fully functional RDBMS. This section provides a brief description of
Derby, followed by information on the skills and software required to perform the activities
presented in this document, and ends with a brief description of what is presented by
each of the Working With Derby activities.

Derby is a full featured, open source relational database engine. It is written and
implemented completely in Java, and provides users with a small footprint
standards-based database engine that can be tightly embedded into any Java based
solution. Derby ensures data integrity and provides sophisticated transaction support. In
its default configuration there is no separate database server to be installed or
maintained by the end user. For more information on Derby visit the Derby website at:
http://db.apache.org/derby.

Performing the Working With Derby activities requires no prior knowledge of Java, JDBC
or SQL. Each Activity Sequence section provides the complete command syntax needed
to execute each operation on a Windows machine or in a UNIX/Linux Korn shell. This
document demonstrates, but does not teach, the Java, JDBC and SQL presented, so
readers wishing a deeper understanding of these topics will need additional reference
materials.

Performing the Working With Derby activities does require that Java and Derby software
be installed on the computer, and the ability to enter computer operating system
commands. Specifically:

• A Java development kit version 1.3 or higher
• The binary (bin) installation of Apache Derby version 10.2
• A basic knowledge of the computer command line interface

• how to start a command shell or window
• how to navigate the filesystem hierarchy

If unsure about the Java or Derby environments installed, perform the following steps
before attempting the subsequent activities:

1. Verify that the JAVA_HOME environment variable is set and points to a Java
development kit version 1.3 or higher.

Open a command window and run the command java -version using the
appropriate syntax for your system:

On Windows platforms:

"%JAVA_HOME%\bin\java" -version

On UNIX Korn Shell platforms:

"$JAVA_HOME/bin/java" -version

The output from the command will look something like this:

java version "1.4.2_04"
Java(TM) 2 Runtime Environment, Standard Edition (build

Copyright

4

http://db.apache.org/derby

1.4.2_04-b05)
Java HotSpot(TM) Client VM (build 1.4.2_04-b05, mixed mode)

The output you see may be different from what is shown here, because the java
-version command outputs vendor-specific information. If the command produced
an error or the version listed is not 1.3 or higher, please install a Java development
kit before continuing.

2. Verify that the DERBY_HOME environment variable is set and points to the
filesystem path to the root directory of the Derby 10.2 installation:

Open a command window and run the appropriate command for your system:

On Windows platforms:

echo %DERBY_HOME%

On UNIX Korn Shell platforms:

echo $DERBY_HOME

The output from the command will look something like this:

Windows: C:\derby
Unix/Linux: /opt/derby

If Derby is not installed or cannot be found, please install a copy now. The most
recent version of Derby can be downloaded from:
http://db.apache.org/derby/derby_downloads.html. From the Download page use
the link to the 'Latest Official Release', then locate the bin distribution (e.g.
db-derby-<version>-bin.zip and db-derby-<version>-bin.tar.gz). Download the
appropriate file for your platform, '-bin.zip' for Windows or '-bin.tar.gz' for Unix/Linux,
and unzip/untar this file. After decompressing the downloaded file, move the
directory created to the filesystem path chosen to be the root directory of the Derby
installation (e.g. move db-derby-<version>-bin C:\derby).

Anyone having problems with any aspect of these activities can gain assistance via
e-mail by writing to derby-user@db.apache.org. The questions and feedback received
will be used to make this document even more useful.

Activity overview
What you can expect to learn in each activity.

Activity 1: Use the Derby ij tool to load the Derby embedded driver and start the
Derby database engine. Create the database firstdb and the table FIRSTTABLE. Use
a few basic SQL commands to insert and select data. The Derby message log
derby.log and the database directories and files are introduced.

Activity 2: Use Derby within a Client-Server configuration. Start the Derby Network
Server which will embed the Derby engine. In a separate process use the Derby ij
tool to load the Derby client driver and connect to the Server. Create a database
called seconddb and the table SECONDTABLE. Use a few basic SQL commands to
insert and select data.

Activity 3: Load the Derby database engine from a simple Java JDBC program. Use
the embedded driver to create the database jdbcDemoDB and the WISH_LIST table.

Copyright

5

http://db.apache.org/derby/derby_downloads.html

Populate the table with text entered from the keyboard then view a list of the records
in the table. Walk through the code to understand the basic structure of a JDBC
program that accesses a Derby database. The CLASSPATH variable and connection
URL attribute ;shutdown=true are introduced.

Activity 4: Modify the Java JDBC program to load the client driver and connect to the
Derby Network Server. Compile the altered program and test that it operates as it did
in the previous activity.

Copyright

6

Activity 1: Run SQL using the Embedded driver
In this section the Derby database engine is loaded by the Derby IJ tool. The Derby
embedded driver is used to create and connect to the database firstdb. A few basic SQL
commands are demonstrated.

In preparation for performing this activity the environment variable DERBY_HOME needs
to be set and an empty working directory (DERBYDBS) created. The DERBY_HOME
variable defines the filesystem path to the root directory of the Derby installation. The
DERBYDBS directory is where the files created during the activities are stored.

The example commands defining DERBY_HOME use the fictitious filesystem paths
C:\derby for Windows examples and /opt/derby for UNIX examples. Be sure to
adjust these commands so DERBY_HOME indicates the location of the Derby installation
on the system being used. The following activity sequence shows

1. Setting the DERBY_HOME environment variable.
2. Creating the DERBYDBS work directory
3. Changing the directory (cd) to the work directory
4. Copying the SQL scripts that create the tables and data for toursdb from the Derby

demo\programs\toursdb subdirectory into the DERBYDBS directory.

Open a command window and perform the following activity sequence:
On Windows platforms:

set DERBY_HOME=C:\derby

md DERBYDBS

cd DERBYDBS

copy %DERBY_HOME%\demo\programs\toursdb*.sql .

On UNIX Korn Shell platforms:

export DERBY_HOME=/opt/derby

mkdir DERBYDBS

cd DERBYDBS

cp $DERBY_HOME/demo/programs/toursdb/*.sql .

> Important: A command prompt will be displayed after each command is executed. If an
error is displayed please double check the spelling and reenter the command.

Creating the database and running SQL
1. Run the Derby ij tool.

On Windows platforms:

java -jar %DERBY_HOME%\lib\derbyrun.jar ij

ij version 10.2

On UNIX Korn Shell platforms:

java -jar $DERBY_HOME/lib/derbyrun.jar ij

ij version 10.2

Copyright

7

2. Create the database and open a connection to it using the embedded driver.

CONNECT 'jdbc:derby:firstdb;create=true';

3. Create a table with two columns using standard SQL.

CREATE TABLE FIRSTTABLE
(ID INT PRIMARY KEY,
NAME VARCHAR(12));

0 rows inserted/updated/deleted

4. Insert three records.

INSERT INTO FIRSTTABLE VALUES
(10,'TEN'),(20,'TWENTY'),(30,'THIRTY');

3 rows inserted/updated/deleted

5. Perform a simple select of all records in the table.

SELECT * FROM FIRSTTABLE;

ID |NAME

10 |TEN
20 |TWENTY
30 |THIRTY

3 rows selected

6. Preform a qualified select of the record with column ID=20.

SELECT * FROM FIRSTTABLE
WHERE ID=20;

ID |NAME

20 |TWENTY

1 row selected

7. Load the SQL script ToursDB_schema.sql to create the tables and other schema
objects (this step is optional).

run 'ToursDB_schema.sql';

ij> CREATE TABLE AIRLINES
(AIRLINE CHAR(2) NOT NULL ,

AIRLINE_FULL VARCHAR(24),
BASIC_RATE DOUBLE PRECISION,

. . .
0 rows inserted/updated/deleted

. . .

===> Other output messages not shown <=====

a. Populate the tables with data by running the script loadTables.sql

Copyright

8

run 'loadTables.sql';

ij> run 'loadCOUNTRIES.sql';
ij> insert into COUNTRIES values ('Afghanistan','AF','Asia');
1 row inserted/updated/deleted
ij> insert into COUNTRIES values ('Albania','AL','Europe');
1 row inserted/updated/deleted

. . .
===> Other output messages not shown <=====

8. Exit the ij tool.

exit;

9. Browse the key files created by the activity.

• The derby.log message and error log file. Under normal circumstances it
will contain a set of startup messages and a shutdown message.

--
2006-09-21 23:33:37.564 GMT:
Booting Derby version The Apache Software Foundation

- Apache Derby - 10.2.1.6 - (452058):
instance c013800d-0109-7f82-e11f-000000119a68
on database directory C:\DERBYDBS\FIRSTDB

Database Class Loader started - derby.database.classpath=''

2006-09-21 23:44:13.178 GMT:
Shutting down instance c013800d-0109-7f82-e11f-000000119a68
--

• The firstdb database directory. Within the directory are the subdirectories
seg0 (containing the data files) and log (containing the transaction log files).

Description of connection command: connect
'jdbc:derby:firstdb;create=true';

connect - the ij command to establish a connection to a database
The Derby connection URL enclosed in single quotes:

• jdbc:derby: - JDBC protocol specification for the Derby driver.
• firstdb - the name of the database, this can be any string. Because no

filepath is specified the database will be created in the default working directory
(DERBYDBS).

• ;create=true - The Derby URL attribute used to create databases. Derby
does not have an SQL create database command.

; (semicolon) - the ij command terminator.

Copyright

9

Activity 2: Run SQL using the Client driver
This activity uses Derby within a Client-Server configuration by using the Network Server.
The ij tool is the client application that connects to the Derby Network Server. A
database called seconddb is created and some basic SQL commands are executed.

This activity assumes that you know how to open a command shell, change directory
(cd) to the DERBYDBS directory and set the DERBY_HOME environment variable.

Two command windows (labelled Shell-1 and Shell-2) are used in this activity.
Shell-1 is used to start the Derby Network Server and display Network Server
messages. Shell-2 is used to establish a client connection to the Network Server using
ij and then perform some basic SQL operations.

1. Open a command window that we'll call Shell-1. Change directory (cd) to the
DERBYDBS directory and set the DERBY_HOME environment variable.

2. Start the Network Server.

On Windows platforms:

java -jar %DERBY_HOME%\lib\derbynet.jar start

Apache Derby Network Server - 10.2.1.6 - (452058) started and
ready to accept connections on port 1527 at 2006-09-22
00:08:30.049 GMT

On UNIX Korn Shell platforms:

java -jar $DERBY_HOME/lib/derbynet.jar start

Apache Derby Network Server - 10.2.1.6 - (452058) started and
ready to accept connections on port 1527 at 2006-09-22
00:08:30.049 GMT

A Network Server startup message is displayed in the Shell-1 command window.

3. Open another command window that we'll call Shell-2. Change directory (cd) to
the DERBYDBS directory and set the DERBY_HOME environment variable.

4. Start ij.

On Windows platforms:

java -jar %DERBY_HOME%\lib\derbyrun.jar ij

ij version 10.2

On UNIX Korn Shell platforms:

java -jar $DERBY_HOME/lib/derbyrun.jar ij

ij version 10.2

All subsequent commands are entered from the network client, and are therefore
entered in the Shell-2 command window.

5. Create and open a connection to the database using the client driver.

CONNECT 'jdbc:derby://localhost:1527/seconddb;create=true';

Copyright

10

Remember: A client connection URL contains a hostname and a port number:
//localhost:1527/.

6. Create a table with two columns (ID and NAME) using SQL.

CREATE TABLE SECONDTABLE
(ID INT PRIMARY KEY,
NAME VARCHAR(14));

0 rows inserted/updated/deleted

7. Insert three records into the table.

INSERT INTO SECONDTABLE VALUES
(100,'ONE HUNDRED'),(200,'TWO HUNDRED'),(300,'THREE HUNDRED');

3 rows inserted/updated/deleted

8. Select all of the records in the table.

SELECT * FROM SECONDTABLE;

ID |NAME

100 |ONE HUNDRED
200 |TWO HUNDRED
300 |THREE HUNDRED

3 rows selected

9. Select a subset of records from the table by qualifying the command.

ij> SELECT * FROM SECONDTABLE WHERE ID=200;

ID |NAME

200 |TWO HUNDRED

1 row selected

10. Exit ij.

exit;

11. Shut down the Derby Network Server.

On Windows platforms:

java -jar %DERBY_HOME%\lib\derbynet.jar shutdown

Apache Derby Network Server - 10.2.1.6 - (452058) shutdown
at 2006-09-22 00:16:44.223 GMT

On UNIX Korn Shell platforms:

java -jar $DERBY_HOME/lib/derbynet.jar shutdown

Apache Derby Network Server - 10.2.1.6 - (452058) shutdown
at 2006-09-22 00:16:44.223 GMT

Copyright

11

The server shutdown confirmation appears in both command windows.

Activity notes

The client connection URL contains network information (a hostname and portnumber)
not found in the URL for an embedded connection. This information tells the client driver
the "location" of the Network Server. The client driver sends requests to and receives
responses from the Network Server.

In this activity the Derby database engine is embedded in the Network Server and returns
data to the ij client (a client/server configuration). In contrast, establishing a connection
using an embedded URL (one without //localhost:1527/) would have caused the
Derby engine to be embedded in the ij application (an embedded configuration).

Network Server start up and shutdown messages are written to the derby.log log file
along with the standard database engine messages. For example:

Apache Derby Network Server - 10.2.1.6 - (452058) started and ready to
accept connections on port 1527 at 2006-09-22 00:08:30.049 GMT

...(database engine messages not shown)...
Apache Derby Network Server - 10.2.1.6 - (452058) shutdown
at 2006-09-22 00:16:44.223 GMT

Though not demonstrated here, multiple client programs can connect to Network Server
and access the database simultaneously in this configuration.

Copyright

12

Activity 3: Run a JDBC program using the Embedded driver
This activity loads the Derby database engine using a simple Java JDBC program. JDBC
is the Java Database Connectivity API and is also the native API for Derby. The program
uses the embedded driver to create (if needed) and then connect to the jdbcDemoDB
database. You can then populate a table within the database with text. The program
demonstrates some basic JDBC processing along with related error handling.

This activity assumes that you have opened a command window, navigated to the
DERBYDBS directory, and set the DERBY_HOME environment variable.

The CLASSPATH environment variable is used by Java to locate the binary files (jarfiles
and classfiles) needed to run Derby and other Java applications. Before performing this
activity, you need to set the CLASSPATH and compile the WwdEmbedded.java Java
program.

1. Copy the program files into the DERBYDBS directory and set the CLASSPATH:

On Windows platforms:

copy %DERBY_HOME%\demo\programs\workingwithderby* .

set CLASSPATH=%DERBY_HOME%\lib\derby.jar;.

On UNIX Korn Shell platforms:

cp $DERBY_HOME/demo/programs/workingwithderby/* .

export CLASSPATH=$DERBY_HOME/lib/derby.jar:.

> Important: Include the dot (.) at the end of each command so that your current
working directory is included in the CLASSPATH and the files are copied to the
correct location.

2. Compile the WwdEmbedded.java program:

javac WwdEmbedded.java

> Important: Only a command prompt will be displayed if the compilation is
successful. The binary file WwdEmbedded.class will be created. If an error is
displayed please verify that the Java development kit is properly installed.

3. Run the program:

The WwdEmbedded.java program populates a table with wish list items. It is a
simple Java program that prompts the User for text input (up to 32 characters),
stores the text entered in a database table and then lists the items stored in the
table. The program will continue to ask for wish list items until the word exit is
entered or a problem is encountered. Some basic information on program progress
is displayed at the beginning and the end of the program.

java WwdEmbedded

org.apache.derby.jdbc.EmbeddedDriver loaded.
Connected to database jdbcDemoDB
. . . . creating table WISH_LIST

Enter wish-list item (enter exit to end):
a peppermint stick

On 2006-09-21 15:11:50.412 I wished for a peppermint stick

Copyright

13

__

Enter wish-list item (enter exit to end):
an all expenses paid vacation

__
On 2006-09-21 15:11:50.412 I wished for a peppermint stick
On 2006-09-21 15:12:47.024 I wished for an all expenses paid
vacation

__

Enter wish-list item (enter exit to end):
exit

Closed connection
Database shut down normally
Working With Derby JDBC program ending.

The WwdEmbedded program
This section describes the WwdEmbedded.java program, highlighting details specific to
accessing a Derby database from a JDBC program.

Most of the code related to the database activities performed is included in this document
but you may find it helpful to open the program file and follow along in a text viewer or
editor. The SECTION NAMES referred to in this text can be found in the comments within
the program code and serve as cross-reference points between this document and the
Java program. The program utilizes routines from the WwdUtils class. The utility class
code is not described here but is available for review in the file WwdUtils.java

Initialize the program
INITIALIZATION SECTION: The initial lines of code identify the Java libraries used in the
program, then set up the Java class WwdEmbedded and the main method signature.
Refer to a standard Java programming guide for information on these program
constructs.

import java.sql.*;
public class WwdEmbedded
{

public static void main(String[] args)
{

Define key variables and Objects
DEFINE VARIABLES SECTION: The initial lines of the main method define the variables
and Objects used in the program. This example uses variables to store the information
needed to connect to the Derby database. Using variables for this information makes it
easy to adapt the program to other configurations and other databases.

• driver - stores the name of the Derby embedded driver.
• dbName - stores the name of the database.
• connectionURL - stores the Derby connection URL that will be used to access the

database.
• createString - stores the SQL CREATE statement for the WISH_LIST table .

String driver = "org.apache.derby.jdbc.EmbeddedDriver";
String dbName="jdbcDemoDB";
String connectionURL = "jdbc:derby:" + dbName + ";create=true";
String createString = "CREATE TABLE WISH_LIST "

+ "(WISH_ID INT NOT NULL GENERATED ALWAYS AS IDENTITY "
...
+ " WISH_ITEM VARCHAR(32) NOT NULL) " ;

Start the Derby engine
LOAD DRIVER SECTION: Loading the Derby embedded JDBC driver starts the Derby
database engine. The try and catch block (the Java error handling construct) catches

Copyright

14

the exceptions that may occur. A problem here is generally due to an incorrect
CLASSPATH setting.

String driver = "org.apache.derby.jdbc.EmbeddedDriver";
...
try{

Class.forName(driver);
} catch(java.lang.ClassNotFoundException e) {
...
}

Boot the database
BOOT DATABASE SECTION: The DriverManager class loads the database using the
Derby connection URL stored in the variable connectionURL. This URL includes the
parameter ;create=true so the database will be created if it does not already exist. The
primary try and catch block begins here. This construct handles errors for the
database access code .

String connectionURL = "jdbc:derby:" + dbName + ";create=true";
...
try {

conn = DriverManager.getConnection(connectionURL);
... <most of the program code is contained here>
} catch (Throwable e) {
...
}

Set up to execute SQL
INITIAL SQL SECTION: Program objects needed to perform subsequent SQL operations
are initialized here and a check is made to see if the required data table exists.

The statement object s is initialized. If the utility method WwdUtils.wwdChk4Table
does not find the WISH_LIST table it is created by executing the SQL stored in the
variable createString via this statement object.

s = conn.createStatement();
if (! WwdUtils.wwdChk4Table(conn))
{

System.out.println (" creating table WISH_LIST");
s.execute(createString);

}

The insert statement used to add data to the table is bound to the prepared statement
object psInsert. The prepared statement uses the ? parameter to represent the data
that will be inserted by the user. The actual value that is inserted is set later in the code
prior to executing the SQL. This is the most efficient way to execute SQL statements that
will be used multiple times.

psInsert = conn.prepareStatement
("insert into WISH_LIST(WISH_ITEM) values (?)");

Interact with the Database
ADD / DISPLAY RECORD SECTION: This section uses the utility method
WwdUtils.getWishItem to gather information from the User. It then utilizes the objects
set up previously to insert the data into the WISH_LIST table and then display all records.
A standard do loop causes the program to repeat this series of steps until exit is
entered. The data related activities performed in this section are:
The setString method sets the substitution parameter of the psInsert object to the
value entered by the User. Then executeUpdate is called to perform the database
insert.

Copyright

15

psInsert.setString(1,answer);
psInsert.executeUpdate();

The statement object s is used to select all the records in the WISH_LIST table and store
them in the ResultSet myWishes.

myWishes = s.executeQuery("select ENTRY_DATE, WISH_ITEM
from WISH_LIST order by ENTRY_DATE");

The while loop reads each record in turn by calling the next method. The
getTimestamp and getString methods return specific fields in the record in the
proper format. The fields are displayed using rudimentary formatting.

while (myWishes.next())
{

System.out.println("On " + myWishes.getTimestamp(1) +
" I wished for " + myWishes.getString(2));

}

Close the ResultSet to release the memory being used.

myWishes.close();

Shutdown the Database
DATABASE SHUTDOWN SECTION: When an application starts the Derby engine it
should shutdown all databases prior to exiting. The attribute ;shutdown=true in the
Derby connection URL performs the shutdown. The shutdown process cleans up records
in the transaction log to ensure a faster startup the next time the database is booted.

This section verifies that the embedded driver is being used then issues the shutdown
command and catches the shutdown exception to confirm the database shutdown
cleanly. The shutdown status is displayed before the program exits.

if (driver.equals("org.apache.derby.jdbc.EmbeddedDriver")) {
boolean gotSQLExc = false;
try {

DriverManager.getConnection("jdbc:derby:;shutdown=true");
} catch (SQLException se) {

if (se.getSQLState().equals("XJ015")) {
gotSQLExc = true;

}
}
if (!gotSQLExc) {

System.out.println("Database did not shut down normally");
} else {

System.out.println("Database shut down normally");
}

}

> Important: The XJ015 error is the only exception thrown by Derby that signifies an
operation succeeded. All other exceptions indicate an operation failed.

The errorPrint and SQLExceptionPrint methods
DERBY EXCEPTION REPORTING CLASSES: The two methods at the end of the file,
errorPrint and SQLExceptionPrint, are generic exception reporting routines that
can be used with any JDBC program. This type of exception handling is required
because often multiple exceptions (SQLException) are chained together then thrown. A
while loop is used to report on each error in the chain. These classes are used by
calling the errorPrint method from the catch block of the code that accesses the
database.

Copyright

16

// Beginning of the primary catch block: uses errorPrint method
} catch (Throwable e) {

/* Catch all exceptions and pass them to
** the exception reporting method */
System.out.println(" . . . exception thrown:");
errorPrint(e);

}

The errorPrint routine prints a stack trace for all exceptions except a
SQLException. All SQLExceptions are passed to the SQLExceptionPrint method.

static void errorPrint(Throwable e) {
if (e instanceof SQLException)

SQLExceptionPrint((SQLException)e);
else {

System.out.println("A non SQL error occured.");
e.printStackTrace();

}
} // END errorPrint

The SQLExceptionPrint method iterates through each of the exceptions on the stack.
For each error the codes, message then stacktrace are printed.

// Iterates through a stack of SQLExceptions
static void SQLExceptionPrint(SQLException sqle) {

while (sqle != null) {
System.out.println("\n---SQLException Caught---\n");
System.out.println("SQLState: " + (sqle).getSQLState());
System.out.println("Severity: " + (sqle).getErrorCode());
System.out.println("Message: " + (sqle).getMessage());
sqle.printStackTrace();
sqle = sqle.getNextException();

}
} // END SQLExceptionPrint

If you wish to see the output produced by this method enter a wish list item with more
than 32 characters like: I wish to see a Java program fail.

Copyright

17

Activity 4: Create and run a JDBC program using the Client
driver and Network Server

This section demonstrates the ease with which a program that embeds Derby can be
modified for a client/server implementation using the Derby Network Server. A Derby
client program, WwdClient.java, is created by changing a few lines of the
WwdEmbedded.java program. The client program can be run in multiple command
shells allowing simultaneous update from two or more sources.

This activity assumes you have performed the preceding activities and so have a working
directory called DERBYDBS, are familiar with setting the DERBY_HOME and
CLASSPATH environment variables and have copies of the program files from the
$DERBY_HOME/demo/programs/workingwithderby/ directory. A basic knowledge of the
WwdEmbedded.java program and experience starting and connecting to Network
Server is helpful. You will need to use a text editor to create the WwdClient.java
program.

Two command windows (Server-Shell and Client-Shell) are used in this activity.
The Server-Shell is used to start the Derby Network Server and display Network
Server messages. The Client-Shell is used to edit, compile and run the newly
created WwdClient.java program. The CLASSPATH environment variable is set in
Client-Shell to support the client JDBC program.

1. Create the WwdClient program.
a. Open a command window that we'll call the Client-Shell.
b. Change directory (cd) to the DERBYDBS directory.
c. Make a copy of the WwdEmbedded.java program called WwdClient.java.

On Windows platforms:

copy WwdEmbedded.java WwdClient.java

On UNIX Korn Shell platforms:

cp WwdEmbedded.java WwdClient.java

d. Open the WwdClient.java file in your favorite text editor and update the
class name to reflect the new filename:

Original declaration
public class WwdEmbedded

New declaration
public class WwdClient

e. Edit the DEFINE VARIABLES SECTION of the program so the driver variable
contains the name of the Derby Client Driver class and the connectionURL
variable contains the hostname and a port number of the Network Server.

Original definitions
String driver = "org.apache.derby.jdbc.EmbeddedDriver";
String dbName="jdbcDemoDB";
String connectionURL = "jdbc:derby:" + dbName +

";create=true";

New definitions
String driver = "org.apache.derby.jdbc.ClientDriver";
...
String connectionURL = "jdbc:derby://localhost:1527/" +

Copyright

18

dbName + ";create=true";

f. Compile the application.

javac WwdClient.java

> Important: Only a command prompt will be displayed if the compilation is
successful. The binary file WwdClient.class will be created. If a syntax
error is displayed, modify the line indicated so it is identical to the example.

That's all there is to it.

2. Set up the client/server environment.

Before you run the WwdClient program, the Network Server needs to be started.

a. Open a command window that we'll call the Server-Shell.
b. Change directory (cd) to the DERBYDBS directory.
c. Set the DERBY_HOME environment variable.
d. Start the Network Server:

On Windows platforms:

java -jar %DERBY_HOME%\lib\derbynet.jar start

Apache Derby Network Server - 10.2.1.6 - (452058) started and
ready to accept connections on port 1527 at 2006-09-22
00:56:33.091 GMT

On UNIX Korn Shell platforms:

java -jar $DERBY_HOME/lib/derbynet.jar start

Apache Derby Network Server - 10.2.1.6 - (452058) started and
ready to accept connections on port 1527 at 2006-09-22
00:56:33.091 GMT

3. Run the client program.
a. Return to the Client-Shell window.
b. If it is not already defined, set the DERBY_HOME environment variable.
c. Set the CLASSPATH environment variable to include the location of the file

derbyclient.jar:

On Windows platforms:

set CLASSPATH=%DERBY_HOME%\lib\derbyclient.jar;.

On UNIX Korn Shell platforms:

export CLASSPATH=$DERBY_HOME/lib/derbyclient.jar:.

> Important: Include the dot (.) at the end of the command so that your
current working directory is included in the CLASSPATH.

d. Run the program:

Copyright

19

java WwdClient

org.apache.derby.jdbc.ClientDriver loaded.
Connected to database jdbcDemoDB

Enter wish-list item (enter exit to end):
a sunny day

On 2006-09-21 15:11:50.412 I wished for a peppermint stick
On 2006-09-21 15:12:47.024 I wished for an all expenses paid
vacation
On 2006-09-22 10:08:21.167 I wished for a sunny day

__

Enter wish-list item (enter exit to end):
a new car

__
On 2006-09-21 15:11:50.412 I wished for a peppermint stick
On 2006-09-21 15:12:47.024 I wished for an all expenses paid
vacation
On 2006-09-22 10:08:21.167 I wished for a sunny day
On 2006-09-22 10:08:33.665 I wished for a new car

__

Enter wish-list item (enter exit to end):
exit

Closed connection
Working With Derby JDBC program ending.

4. Shut down the Network Server.

On Windows platforms:

java -jar %DERBY_HOME%\lib\derbynet.jar shutdown

Apache Derby Network Server - 10.2.1.6 - (452058) shutdown
at 2006-09-22 19:13:51.445 GMT

On UNIX Korn Shell platforms:

java -jar $DERBY_HOME/lib/derbynet.jar shutdown

Apache Derby Network Server - 10.2.1.6 - (452058) shutdown
at 2006-09-22 19:13:51.445 GMT

The server shutdown confirmation appears in both command windows.

Activity notes

In a client/server environment, the client program is often used from other computers on
the network. Whenever a system accepts connections from other computers, there is a
chance of abuse. To maintain security, the Derby Network Server defaults to accepting
connections only from clients running on the local machine (localhost). Before this or
any other Derby client program can access Network Server from another machine,
additional steps should be taken to secure the Network Server environment. Once
secured, the Network Server can be safely configured to accept connections from other
machines. Refer to the Network Server security and Running the Network Server under
the security manager sections of the Derby Server and Administration Guide for
important information on securing the Network Server and enabling network connections.

With Network Server started, you can run the client program simultaneously in multiple
windows. To demonstrate this, open two command windows and perform the substeps of
the Run the client program step in each window. Both clients will operate without a
problem. In contrast, it would not be possible for a program that uses the embedded
driver (e.g. WwdEmbedded) to access the database until the database or the Network

Copyright

20

Server is shut down.

You may have noticed that the client program does not shut down the database. This is
because the database is a shared resource in a client/server environment and, in most
cases, should only be shut down when the Server is shut down. If multiple clients are
accessing the database and one shuts down the database, the remaining clients will
encounter a failure the next time they attempt an SQL command.

Derby's two architectures have caused confusion for some new Derby users. They
mistakenly think that embedded is a single user configuration. This is not true. The
embedded driver supports multiple simultaneous connections, performs locking, and
provides performance, integrity and recoverability. Any application using the embedded
driver can open multiple Derby connections and then provide a means for multiple users
to interact with the database on each connection. The Derby Network Server is an
example of such an application.

Copyright

21

What next with Derby
Congratulations on completing the activities in this workbook. You now have experience
with using Derby in both the embedded and Client-Server architectures. With this basic
knowledge you are ready to begin using Derby to address your own specific needs. We
recommend visiting the Apache Derby website as your next step in learning about this
lightweight and powerful tool.

Use this link: WorkingWithDerby Resources page
browser URL:

http://wiki.apache.org/db-derby/WorkingWithDerby

Activities Summary

We hope you have found these activities useful in understanding the steps needed to
create and access Derby databases. Though simple to setup and use you will find that
Derby has the features and reliability of much larger database systems. The examples
presented here do not begin to scratch the surface of what can be done. Please take a
few moments to become familiar with the many online resources available to Derby users
and developers by browsing the Derby website at Apache. Whether you are performing a
general evaluation of Derby or have a specific need to address, the above link is a good
stepping stone to finding additional information of interest. The Derby Quick Start page is
a good reference page organized by area of interest. You will find many content rich
areas such as the Derby Wiki and the Derby Users mailing list available to you. If you are
interested in how others are using Derby see the Uses of Derby page on the WIKI. This
page contains informational links to development projects and products that use Derby.
When you implement a system using Derby please add it to this list.

Copyright

22

http://wiki.apache.org/db-derby/WorkingWithDerby
http://db.apache.org/derby/quick_start.html

	Copyright
	Introduction and prerequisites
	Activity overview

	Activity 1: Run SQL using the Embedded driver
	Creating the database and running SQL

	Activity 2: Run SQL using the Client driver
	Activity 3: Run a JDBC program using the Embedded driver
	The WwdEmbedded program

	Activity 4: Create and run a JDBC program using the Client driver and
Network Server
	What next with Derby

