
Derby Server and Administration Guide
Version 10.17

Derby Document build:
October 22, 2023, 2:24:15 PM (PDT)

Version 10.17 Derby Server and Administration Guide

i

Contents
Copyright..4

License... 5

About this guide..9
Purpose of this guide..9
Audience... 9
How this guide is organized...9

Part One: Derby Server Guide...11
Derby in a multi-user environment.. 11

Derby in a server framework...11
About this guide and the Network Server documentation................................... 14

Using the Network Server with preexisting Derby applications..........................14
The Network Server and Java Virtual Machines (JVMs).....................................14
Installing required jar files and adding them to the classpath/modulepath.......... 14
Starting the Network Server..15
Shutting down the Network Server... 18
Obtaining system information..19
Accessing the Network Server by using the network client driver.......................20
Accessing the Network Server by using a DataSource object............................ 26
XA and the Network Server.. 28
Using the Derby tools with the Network Server.. 29
Differences between running Derby in embedded mode and using the Network
Server.. 29
Setting port numbers...30

Managing the Derby Network Server...31
Overview of Derby Network Server management...31
Setting Network Server properties.. 32
Verifying startup...37

Using Java Management Extensions (JMX) technology......................................38
Introduction to the Derby MBeans.. 38
Enabling and disabling JMX..40
Using JConsole to access the Derby MBeans..42
Using custom Java code to access the Derby MBeans......................................43
Troubleshooting JMX connection issues...46

Managing the Derby Network Server remotely by using the servlet
interface.. 47

Start-up page...47
Running page.. 48
Trace session page...48
Trace directory page... 48
Set Network Server parameters..48

Derby Network Server advanced topics..48
Configuring the Network Server to handle connections...................................... 49
Controlling logging by using the log file.. 49
Controlling tracing by using the trace facility.. 50

Derby Network Server sample programs.. 50
The NsSample sample program... 50
Network Server sample programs for embedded and client connections........... 53

Part Two: Derby Administration Guide...56
Maintaining database integrity... 56
Checking database consistency.. 56

Version 10.17 Derby Server and Administration Guide

ii

The SYSCS_CHECK_TABLE function..56
Sample SYSCS_CHECK_TABLE error messages... 57
Sample SYSCS_CHECK_TABLE queries.. 57

Backing up and restoring databases...58
Backing up a database... 58
Restoring a database from a backup copy... 62
Creating a database from a backup copy...63
Roll-forward recovery.. 63

Importing and exporting data...65
Methods for running the import and export procedures...................................... 66
Bulk import and export requirements and considerations................................... 66
Bulk import and export of large objects.. 67
File format for input and output...68
Importing data using the built-in procedures...69
Exporting data using the built-in procedures...73
Examples of bulk import and export... 75
Running import and export procedures from JDBC.. 76
How the import and export procedures process NULL values............................77
CODESET values for import and export procedures.. 77

Replicating databases... 77
Starting and running replication.. 78
Stopping replication... 79
Forcing a failover...79
Replication failure handling... 80

Logging on a separate device..81
Using the logDevice=logDirectoryPath attribute..81
Example of creating a log in a non-default location..81
Example of moving a log manually...82
Issues for logging in a non-default location.. 82

Obtaining locking information..82
Monitoring deadlocks...82

Reclaiming unused space...83

Trademarks.. 85

Derby Server and Administration Guide

3

Apache Software FoundationDerby Server and Administration GuideApache Derby

Derby Server and Administration Guide

4

Copyright

Copyright 2004-2023 The Apache Software Foundation

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this
file except in compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0.

Related information

License

http://www.apache.org/licenses/LICENSE-2.0

Derby Server and Administration Guide

5

License

The Apache License, Version 2.0

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use,
 reproduction, and distribution as defined by Sections 1 through
 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized
 by the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under
 common control with that entity. For the purposes of this
 definition, "control" means (i) the power, direct or indirect,
 to cause the direction or management of such entity, whether by
 contract or otherwise, or (ii) ownership of fifty percent (50%)
 or more of the outstanding shares, or (iii) beneficial ownership
 of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making
 modifications, including but not limited to software source code,
 documentation source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or
 Object form, that is based on (or derived from) the Work and
 for which the editorial revisions, annotations, elaborations,
 or other modifications represent, as a whole, an original work
 of authorship. For the purposes of this License, Derivative
 Works shall not include works that remain separable from, or
 merely link (or bind by name) to the interfaces of, the Work
 and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or
 additions to that Work or Derivative Works thereof, that is
 intentionally submitted to Licensor for inclusion in the Work
 by the copyright owner or by an individual or Legal Entity
 authorized to submit on behalf of the copyright owner. For the
 purposes of this definition,
 "submitted" means any form of electronic, verbal, or written
 communication sent to the Licensor or its representatives,
 including but not limited to communication on electronic mailing
 lists, source code control systems, and issue tracking systems

Derby Server and Administration Guide

6

 that are managed by, or on behalf of, the Licensor for the
 purpose of discussing and improving the Work, but excluding
 communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a
 Contribution."

 "Contributor" shall mean Licensor and any individual or Legal
 Entity on behalf of whom a Contribution has been received by
 Licensor and subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions
 of this License, each Contributor hereby grants to You a
 perpetual, worldwide, non-exclusive, no-charge, royalty-free,
 irrevocable copyright license to reproduce, prepare Derivative
 Works of, publicly display, publicly perform, sublicense, and
 distribute the Work and such Derivative Works in Source or
 Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have
 made, use, offer to sell, sell, import, and otherwise transfer
 the Work, where such license applies only to those patent claims
 licensable by such Contributor that are necessarily infringed by
 their Contribution(s) alone or by combination of their
 Contribution(s) with the Work to which such Contribution(s) was
 submitted. If You institute patent litigation against any entity
 (including a cross-claim or counterclaim in a lawsuit) alleging
 that the Work or a Contribution incorporated within the Work
 constitutes direct or contributory patent infringement, then any
 patent licenses granted to You under this License for that Work
 shall terminate as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute
 must include a readable copy of the attribution notices
 contained within such NOTICE file, excluding those notices
 that do not pertain to any part of the Derivative Works, in
 at least one of the following places: within a NOTICE text
 file distributed as part of the Derivative Works; within the
 Source form or documentation, if provided along with the
 Derivative Works; or, within a display generated by the
 Derivative Works, if and wherever such third-party notices
 normally appear. The contents of the NOTICE file are for
 informational purposes only and do not modify the License.
 You may add Your own attribution notices within Derivative
 Works that You distribute, alongside or as an addendum to
 the NOTICE text from the Work, provided that such additional
 attribution notices cannot be construed as modifying the
 License.

 You may add Your own copyright statement to Your modifications

Derby Server and Administration Guide

7

 and may provide additional or different license terms and
 conditions for use, reproduction, or distribution of Your
 modifications, or for any such Derivative Works as a whole,
 provided Your use, reproduction, and distribution of the Work
 otherwise complies with the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state
 otherwise, any Contribution intentionally submitted for
 inclusion in the Work by You to the Licensor shall be under the
 terms and conditions of this License, without any additional
 terms or conditions. Notwithstanding the above, nothing herein
 shall supersede or modify the terms of any separate license
 agreement you may have executed with Licensor regarding such
 Contributions.

 6. Trademarks. This License does not grant permission to use the
 trade names, trademarks, service marks, or product names of the
 Licensor, except as required for reasonable and customary use
 in describing the origin of the Work and reproducing the content
 of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or
 conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or
 FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for
 determining the appropriateness of using or redistributing the
 Work and assume any risks associated with Your exercise of
 permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and
 grossly negligent acts) or agreed to in writing, shall any
 Contributor be liable to You for damages, including any direct,
 indirect, special, incidental, or consequential damages of any
 character arising as a result of this License or out of the use
 or inability to use the Work (including but not limited to
 damages for loss of goodwill, work stoppage, computer failure or
 malfunction, or any and all other commercial damages or losses),
 even if such Contributor has been advised of the possibility of
 such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by
 reason of your accepting any such warranty or additional
 liability.

 END OF TERMS AND CONDITIONS

 APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following
 boilerplate notice, with the fields enclosed by brackets "[]"
 replaced with your own identifying information. (Don't include
 the brackets!) The text should be enclosed in the appropriate
 comment syntax for the file format. We also recommend that a
 file or class name and description of purpose be included on the
 same "printed page" as the copyright notice for easier
 identification within third-party archives.

Derby Server and Administration Guide

8

 Copyright [yyyy] [name of copyright owner]

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied. See the License for the specific language governing
 permissions and limitations under the License.

Derby Server and Administration Guide

9

About this guide

For general information about the Derby documentation, such as a complete list of books,
conventions, and further reading, see Getting Started with Derby.

For more information about Derby, visit the Derby website at http://db.apache.org/derby.
The website provides pointers to the Derby Wiki and other resources, such as the
derby-users mailing list, where you can ask questions about issues not covered in the
documentation.

Purpose of this guide
This guide explains how to use Derby in a multiple-client environment. It also provides
information that a server administrator might need to keep Derby running with a high
level of performance and reliability in a server framework or in a multiple-client application
server environment.

When running in embedded mode, Derby databases typically do not need any
administration.

To connect multiple clients with Derby, you can embed Derby in a server framework
that you choose, or you can use the Derby Network Server. This guide describes these
options.

Audience
This guide has two parts, each for a different audience.

The first part of this guide is intended for developers of client/server and multiple-client
applications. The second part of this guide is intended for administrators.

How this guide is organized
This guide describes how to run and manage the Derby network server.

Part One: Derby Server Guide

• Derby in a multi-user environment

Describes the different options for embedding Derby in a server framework and
explains the Network Server option.

• Using the Network Server with preexisting Derby applications

Describes how to change existing Derby applications to work with the Network
Server.

• Managing the Derby Network Server

Describes how to use shell scripts, the command line, and the Network Server API
to manage the Network Server.

• Using Java Management Extensions (JMX) technology

Describes how to use the Derby MBeans and other JMX features.
• Managing the Derby Network Server remotely by using the servlet interface

Describes how to use the servlet interface to manage the Network Server. (The
servlet interface should be used for testing purposes only, not in production.)

• Derby Network Server advanced topics

http://db.apache.org/derby/

Derby Server and Administration Guide

10

Describes advanced topics for Derby Network Server users.
• Derby Network Server sample programs

Describes several Derby Network Server sample programs for Network Server
users.

Part Two: Derby Administration Guide

• Maintaining database integrity

Describes how to prevent Derby database corruption.
• Checking database consistency

Describes how to check the consistency of Derby databases.
• Backing up and restoring databases

Describes how to back up and restore a database.
• Importing and exporting data

Describes how to import and export large amounts of data between files and
database tables.

• Replicating databases

Describes how to replicate databases.
• Logging on a separate device

Describes how to put a database's log on a separate device, which can improve the
performance of large databases.

• Obtaining locking information

Describes how to get detailed information about locking status.
• Reclaiming unused space

Describes how to identify and reclaim unused space in tables and related indexes.

Derby Server and Administration Guide

11

Part One: Derby Server Guide

This part of the guide explains the Derby Network Server and other server frameworks.

Derby in a multi-user environment
This section describes how to use Derby in a multi-user (or "server") environment.

Derby in a server framework

In a sense, Derby is always an embedded product. You can embed it in an application in
which users access the database from a single Java Virtual Machine (JVM), or you can
embed it in a server framework (an application that allows users from different JVMs to
connect to Derby simultaneously).

When Derby is embedded in an application, the local JDBC driver calls the local Derby
database.

When Derby is embedded in a server framework, the server framework's connectivity
software provides data to multiple client JDBC applications over a network or the Internet.

For local or remote multi-user connectivity (multiple users who access Derby from
different JVMs), use the Derby Network Server. If you require features that are not
included in the Network Server, you can embed the basic Derby product in another
server framework.

Connectivity configurations

There are several ways to embed Derby in a server framework.

Use the Network Server
This is the easiest way to provide connectivity to multiple users who are accessing
Derby databases from different JVMs. The Derby Network Server provides this kind
of connectivity to Derby databases within a single system or over a network.

Purchase another server framework
You can use Derby within many server frameworks, such as IBM WebSphere
Application Server.

Write your own framework
Derby's flexibility allows other configurations as well. For example, rather than
embedding Derby in a server that communicates with a client that uses JDBC, you
can embed Derby within a servlet in a web server that communicates with a browser
using HTTP.

Multiple-client features available in Derby

Derby contains some features that are useful for developing multi-user applications.

Row-level locking:

To support multi-user access, Derby uses row-level locking.

However, you can configure Derby to use table-level locking in environments that
have few concurrent transactions (for example, a read-only database). Table-level
locking is preferable if there are few or no writes to the server, while row-level locking is
essential for good performance if many clients write to the server concurrently. The Derby
optimizer tunes lock choice for queries automatically.

Derby Server and Administration Guide

12

Multiple concurrency levels:

Derby supports the SERIALIZABLE (RR), REPEATABLE (RS), READ COMMITTED
(CS), and READ UNCOMMITTED (UR) isolation levels.

CS
CS (the default isolation level) provides the best balance between concurrency and
consistency in multiple-client environments.

RS
RS provides less consistency than RR but allows more concurrency.

RR
RR provides greatest consistency.

UR
UR provides maximum concurrency, if uncommitted values are allowed in the query.
It is typically used if approximate results are acceptable.

See "Types and Scope of Locks in Derby Systems" in the Derby Developer's Guide for
more information.

Multi-connection and multi-threading:

Derby allows multiple simultaneous connections to a database, even in embedded mode.

Derby is also fully multi-threaded, and you can have multiple threads active at the same
time. However, JDBC semantics impose some limitations on multi-threading. See the
Derby Developer's Guide for more information.

Administrative tools:

Derby provides some tools and features to assist database administrators, including the
following.

• Consistency checker
• Online backup
• Procedures for importing and exporting data
• Database replication
• The ability to put a database's log on a separate device
• Locking information monitoring
• Reclaiming unused space

These tools and features are discussed in Part Two of this guide. See the sections in that
part for more information.

The Derby Network Server

The Derby Network Server provides multi-user connectivity to Derby databases within a
single system or over a network.

The Network Server uses the standard Distributed Relational Database Architecture
(DRDA) protocol to receive and reply to queries from clients. Databases are accessed
through the Derby Network Server by using the Derby Network Client driver.

The Network Server is a solution for multiple JVMs that connect to the database, unlike
the embedded scenario where only one JVM runs as part of the system. When Derby is
embedded in a single-JVM application, the embedded JDBC driver calls the local Derby
database. When Derby is embedded in a server framework, the server framework's
connectivity software provides data to multiple client JDBC applications over a network or
the Internet.

To run the Derby Network Server, you need to install the following files:
• On the server side, install derby.jar and derbynet.jar.
• On the client side, install derbyclient.jar.

Derby Server and Administration Guide

13

There are several ways to manage the Derby Network Server, including:

• Through the command line
• By using .bat and .ksh scripts
• With your own Java program (written using the Network Server API)
• By setting Network Server properties

Using the Network Server with preexisting Derby applications explains how to change
existing Java applications that currently run against Derby in embedded mode to run
against the Derby Network Server.

Managing the Derby Network Server explains how to manage the Network Server by
using the command line, including starting and stopping it.

Derby Network Server advanced topics contains advanced topics for Derby Network
Server users.

Because of the differences in JDBC drivers that are used, you might encounter
differences in functionality when running Derby in the Network Server framework as
opposed to running it embedded in a user application. Refer to Using the Network
Server with preexisting Derby applications for a complete list of the differences between
embedded and Network Server configurations.

Embedded servers

Because Derby is written in the Java programming language, you have great flexibility in
how you choose to configure your deployment.

For example, you can run Derby, the JDBC server framework, and another application in
the same JVM as a single process.

How to start an embedded server from an application

In one thread, the embedding application starts the local JDBC driver for its own access.

Connection conn = DriverManager.getConnection(
 "jdbc:derby:sample");

In another thread, the same application starts the server framework to allow remote
access. Starting the server framework from within the application allows both the server
and the application to run in the same JVM.

Embedded server example

You can start the Network Server in another thread automatically when Derby starts by
setting the derby.drda.startNetworkServer property, or you can start it by using a
program.

See Setting Network Server properties for details on this property.

The following example shows how to start the Network Server by using a program:

import org.apache.derby.drda.NetworkServerControl;
import java.net.InetAddress;
NetworkServerControl server = new NetworkServerControl
 (InetAddress.getByName("localhost"),1527);
server.start(null);

The program that starts the Network Server can access the database by using either
the embedded driver or the Network Client driver. The server framework's attempt to
boot the local JDBC driver is ignored because it has already been booted within the
application's JVM. The server framework simply accesses the instance of Derby that is
already booted. There is no conflict between the application and the server framework.

The remote client can then connect through the Derby client driver:

Derby Server and Administration Guide

14

String nsURL="jdbc:derby://localhost:1527/sample";
java.util.Properties props = new java.util.Properties();
props.setProperty("user","usr");
props.setProperty("password","pwd");

Connection conn = DriverManager.getConnection(nsURL, props);

/*interact with Derby*/
Statement s = conn.createStatement();

ResultSet rs = s.executeQuery(
"SELECT * FROM HotelBookings");

About this guide and the Network Server documentation

This guide assumes that you are familiar with Derby features and tuning.

Before reading this guide, you should first learn about basic Derby functionality by
reading the Derby Developer's Guide. Also, because multi-user environments typically
have performance and tuning issues, you should read Tuning Derby.

Using the Network Server with preexisting Derby applications
You must modify Java applications that currently run against Derby in embedded mode
so that they work with the Derby Network Server.

The topics in this section discuss these changes.

The Network Server and Java Virtual Machines (JVMs)

The Derby Network Server is compatible with Java Platform, Standard Edition (Java SE)
19 and above.

Installing required jar files and adding them to the classpath/modulepath

To use the Network Server and network client driver, add the following jar file to your
server classpath/modulepath.

• derbyrun.jar

Adding this file to your classpath/modulepath has the effect of including all of the Derby
classes. These classes are in the following jar files, which you can also add to your
classpath/modulepath separately:

• derbyshared.jar

This jar file contains code which is common to all Derby configurations.
• derbynet.jar

This jar file contains the Network Server code. It must be in your
classpath/modulepath to start the Network Server.

• derby.jar

This jar file contains the Derby database engine code. It must be in the
classpath/modulepath in order for the Network Server to access Derby databases.
derby.jar is included in the Class-Path attribute of derbynet.jar's manifest
file. If you have derbynet.jar in the classpath/modulepath and derby.jar is in
the same directory as derbynet.jar, it is not necessary to include derby.jar
explicitly.

• derbyclient.jar

Derby Server and Administration Guide

15

This jar file contains the Derby Network Client JDBC driver that is necessary for
communication with the Network Server. It must be in the classpath/modulepath
of the application on the client side in order to access Derby databases over a
network.

• derbytools.jar

This jar file contains the standard Derby tools, such as ij, sysinfo, and dblook.
This jar file also contains the Derby DataSources.

• derbyoptionaltools.jar

This jar file contains additional Derby tools, such as the Lucene plug-in. The
derbyoptionaltools.jar file is not needed in your classpath/modulepath to run
the Network Server, but it is automatically included by derbyrun.jar.

All of the jar files are in the $DERBY_HOME/lib directory.

Derby provides script files for setting the classpath/modulepath to work with the Network
Server. The scripts are located in the $DERBY_HOME/bin directory.

• setNetworkClientCP.bat (Windows)
• setNetworkClientCP (UNIX)
• setNetworkServerCP.bat (Windows)
• setNetworkServerCP (UNIX)

See Managing the Derby Network Server and Getting Started with Derby for more
information on setting the classpath/modulepath.

Starting the Network Server

To start the Network Server, you can invoke a script, a jar file, or a class.

> Important: Always shut down the Network Server properly after use, because failure
to do so might result in unpredictable side effects, such as blocked ports on the server.

You are strongly urged to enable user authentication and user authorization when
you run a Network Server. For details on how to configure user authentication and
authorization, see "Configuring user authentication" and "Configuring user authorization"
in the Derby Security Guide.

If you start the Derby Network Server from the command line as described here, access
to databases and to other Derby files is by default restricted to the operating system
account that started the Network Server. It is possible to override this default behavior.
For more information, see "Restricting file permissions" in the Derby Security Guide.

You can start the Network Server in any of the following ways:

• If you are relatively new to the Java programming language, follow the
instructions in "Setting up your environment" in Getting Started with Derby
to set the DERBY_HOME and JAVA_HOME environment variables and to add
DERBY_HOME/bin to your path. Then use the startNetworkServer.bat script
to start the Network Server on Windows machines and the startNetworkServer
script to start the Network Server on UNIX systems. These scripts are located in
$DERBY_HOME/bin, where $DERBY_HOME is the directory where you installed
Derby.

You can run NetworkServerControl commands only from the host that started the
Network Server. The following table shows the sequence of commands.

Table 1. Commands to run the startNetworkServer command

Derby Server and Administration Guide

16

Operating
System Command

Windows set DERBY_HOME=C:\derby
set JAVA_HOME=C:\Program Files\Java\jdk1.6.0_24
set PATH=%DERBY_HOME%\bin;%PATH%
startNetworkServer

UNIX (Korn Shell) export DERBY_HOME=/opt/derby
export JAVA_HOME=/usr/j2se
export PATH="$DERBY_HOME/bin:$PATH"
startNetworkServer

• If you are a regular Java user but are new to Derby, set the DERBY_HOME
environment variable, then use a java command to invoke the derbyrun.jar or
derbynet.jar file, as shown in the following table.

Table 2. Commands to invoke the Derby jar files

Operating
System Command

Windows set DERBY_HOME=C:\derby
java -jar %DERBY_HOME%\lib\derbyrun.jar server
 start
or
java -jar %DERBY_HOME%\lib\derbynet.jar start

UNIX (Korn Shell) export DERBY_HOME=/opt/derby
java -jar $DERBY_HOME/lib/derbyrun.jar server
 start
or
java -jar $DERBY_HOME/lib/derbynet.jar start

To see the command syntax, invoke derbyrun.jar server or derbynet.jar
with no arguments.

• If you are familiar with both the Java programming language and Derby, you have
already set DERBY_HOME. Set your classpath/modulepath to include the Derby jar
files. Then use a java command to invoke the NetworkServerControl class
directly, as shown in the following tables.

Table 3. Commands to invoke the NetworkServerControl class via the
classpath

Operating
System Command

Windows %DERBY_HOME%\bin\setNetworkServerCP
java org.apache.derby.drda.NetworkServerControl
 start

UNIX (Korn Shell) $DERBY_HOME/bin/setNetworkServerCP
java org.apache.derby.drda.NetworkServerControl
 start

Table 4. Commands to invoke the NetworkServerControl class via the
modulepath

Operating
System Command

Windows %DERBY_HOME%\bin\setNetworkServerCP
java -p %MODULEPATH% ^

Derby Server and Administration Guide

17

Operating
System Command

 -m
 org.apache.derby.server/
org.apache.derby.drda.NetworkServerControl start

UNIX (Korn Shell) $DERBY_HOME/bin/setNetworkServerCP
java -p $MODULEPATH \
 -m
 org.apache.derby.server/
org.apache.derby.drda.NetworkServerControl start

The default system directory is the directory in which Derby was started. (See the Derby
Developer's Guide for more information about the default system directory.)

You can specify a different host or port number when you start the Network Server by
specifying an option to the command.

• Specify a port number other than the default (1527) by using the -p portnumber
option, as shown in the following example:

java org.apache.derby.drda.NetworkServerControl start -p 1368
• Specify a specific interface (host name or IP address) to listen on other than the

default (localhost) by using the -h option, as shown in the following example:

$DERBY_HOME/bin/startNetworkServer -h myhost -p 1368

where myhost is the host name or IP address.

Remember: Before using the -h option, you should enable user authentication.

By default, the Network Server will listen to requests only on the loopback address, which
means that it will only accept connections from the local host.

Starting the Network Server from a Java application

Always shut down the Network Server properly after use, because failure to do so might
result in unpredictable side effects, such as blocked ports on the server.

There are two ways to start the Network Server from a Java application.

• You can include the following line in the derby.properties file:

derby.drda.startNetworkServer=true

This starts the server on the default port, 1527, listening on localhost (all
interfaces).

To specify a different port or a specific interface in the derby.properties file,
include the following lines, respectively:

derby.drda.portNumber=1110
derby.drda.host=myhost

You can also specify the startNetworkServer and portNumber properties by
using a Java command:

java -Dderby.drda.startNetworkServer=true \
-Dderby.drda.portNumber=1110 \
-Dderby.drda.host=myhost yourApp

• You can use the NetworkServerControl API to start the Network Server from a
separate thread within a Java application:

NetworkServerControl server = new NetworkServerControl();
server.start (null);

Derby Server and Administration Guide

18

Starting the Network Server on IPv6/IPv4 dual stack Windows machines

Add the following JVM properties to the command when you start the server on an
IPv6/IPv4 dual stack Windows machine.

-Djava.net.preferIPv4Stack=false
-Djava.net.preferIPv6Addresses=true

Shutting down the Network Server

To shut down the Network Server, you can invoke a script, a jar file, or a class.

The scripts to shut down the Network Server are located in the $DERBY_HOME/bin
directory.

> Important: If user authentication is enabled, you must specify a valid Derby user
name and password; if the user authentication check fails, you'll see an authentication
error and the running server remains intact. Note that Derby does not yet restrict the
shutdown privilege to specific users: the server can be shut down by any user on the
server machine who presents valid credentials.

• To shut down the Network Server by using the scripts provided for Windows
systems, use:

stopNetworkServer.bat [-h hostname] [-p portnumber] [-user username]
 [-password password]

• To shut down the Network Server by using the scripts provided for UNIX systems,
use:

stopNetworkServer [-h hostname] [-p portnumber] [-user username]
 [-password password]

Shutting down by using the command line

From the command line, you can shut down the Network Server by invoking a jar file or a
class.

You must provide user credential arguments to shut down a server running with user
authentication.

• To shut down the Network Server by invoking a jar file from the $DERBY_HOME/lib
directory, use:

java -jar derbyrun.jar server shutdown [-h <hostname>] [-p
 <portnumber>] [-user <username>] [-password <password>]

or

java -jar derbynet.jar shutdown [-h <hostname>] [-p <portnumber>]
 [-user <username>] [-password <password>]

• To shut down the Network Server by invoking a class, use:

java org.apache.derby.drda.NetworkServerControl shutdown [-h
 <hostname>] [-p <portnumber>] [-user <username>] [-password
 <password>]

Shutting down by using the API

You can use the NetworkServerControl API to shut down the Network Server from within
a Java application.

The name of the method that you use to shut down the Network Server is shutdown().

For example, the following command shuts down the Network Server running on the
current machine using the default port number (1527):

NetworkServerControl server = new NetworkServerControl();

Derby Server and Administration Guide

19

server.shutdown();

To shut down a server running with user authentication, you need to use a
NetworkServerControl instance created with user credentials:

NetworkServerControl server = new NetworkServerControl(username,
 password);
server.shutdown();

Obtaining system information

You can obtain information about the Network Server, such as version and current
property values, Java information, and Derby database server information, by using the
sysinfo utility.

The sysinfo utility is available from scripts, the command line, and the
NetworkServerControl API.

The following scripts are located in the $DERBY_HOME/bin directory. Before running
these scripts, make sure that the Derby Network Server is started.

• Run the following script to obtain information about the Network Server on a
Windows system:

NetworkServerControl.bat sysinfo [-h hostname][-p portnumber]
• Run the following script to obtain information about the Network Server on a UNIX

system:

NetworkServerControl sysinfo [-h hostname] [-p portnumber]

For more information on the sysinfo utility, see the Derby Tools and Utilities Guide.

You can also use Java Management Extensions (JMX) technology to obtain system
information. For details, see Using Java Management Extensions (JMX) technology.

Obtaining system information by using the command line

To run sysinfo from the command line, use a command like one of the following while
the Network Server is running.

java -jar $DERBY_HOME/lib/derbyrun.jar server sysinfo
 [-h hostname][-p portnumber]

java org.apache.derby.drda.NetworkServerControl sysinfo
 [-h hostname][-p portnumber]

Administrative commands such as sysinfo can only execute on the host where the
server was started, even if the server was started with the -h option.

Obtaining system information by using the API

The getSysinfo method produces the same information as the sysinfo command.

The signature for this method is

String getSysinfo();

For example:

NetworkServerControl serverControl = new NetworkServerControl();
String myinfo = serverControl.getSysinfo();

The getSysinfo method returns information about the Network Server that is running
on the current machine on the default port number (1527).

Derby Server and Administration Guide

20

Obtaining Network Server runtime information:

Use the runtimeinfo command or the getRuntimeInfo method to get memory
usage and current session information about the Network Server, including user,
database, and prepared statement information.

• To run runtimeinfo from the command line:

java org.apache.derby.drda.NetworkServerControl runtimeinfo
 [-h <hostname>][<-p portnumber>]

• The getRuntimeInfo method returns the same information as the runtimeinfo
command. The signature for the getRuntimeInfo method is

String getRuntimeInfo()

For example:

NetworkServerControl serverControl = new NetworkServerControl();
String myinfo = serverControl.getRuntimeInfo();

Obtaining Network Server properties by using the getCurrentProperties
method:

The getCurrentProperties method is a Java method that you can use to obtain
information about the Network Server.

It returns a Properties object with the value of all the Network Server properties as
they are currently set.

The signature of this method is:

Properties getCurrentProperties()

For example:

NetworkServerControl server = new NetworkServerControl();
Properties p = server.getCurrentProperties();
p.list(System.out);
System.out.println(p.getProperty("derby.drda.host"));

As shown in the previous example, you can look up the current properties and then work
with individual properties if needed by using various APIs on the Properties class. You
can also print out all the properties by using the Properties.list method.

Accessing the Network Server by using the network client driver

When connecting to the Network Server, your application needs to load a driver and
connection URL that are specific to the Network Server. In addition, you must specify a
user name and password if you are using authentication.

See "Configuring user authentication" in the Derby Security Guide for information about
configuring Network Server authentication.

The driver that you need to access the Network Server is:

org.apache.derby.jdbc.ClientDriver

The syntax of the URL that is required to access the Network Server is:

jdbc:derby://server[:port]/
databaseName[;URL-attribute=value [;...]]

where the URL-attribute is either a Derby embedded or network client attribute.
Neither the database name nor the name of a directory in the database path can contain

Derby Server and Administration Guide

21

a colon (:), although the colon after the drive name in a Windows path is allowed. The
path separator in the connection URL is a forward slash (/).

For complete information about the connection URL, see the Derby Reference Manual
and the Derby Developer's Guide.

When you access the Network Server using a connection URL, the network client driver
is loaded automatically.

To access an in-memory database using the Network Server, the syntax is:

jdbc:derby://server[:port]/memory:
databaseName[;URL-attribute=value [;...]]

For more information, see "Using in-memory databases" in the Derby Developer's Guide.

For both driver and DataSource access, the database name (including path), user,
password, and other attribute values must consist of characters that can be converted
to UTF-8. The total byte length of the database name plus attributes when converted to
UTF-8 must not exceed 1024 bytes; keep in mind that in UTF-8, a character may occupy
from 1 to 4 bytes. You may be able to work around this restriction for long paths or paths
that include multibyte characters by setting the derby.system.home system property
when starting the Network Server and accessing the database with a relative path that is
shorter and does not include multibyte characters.

The following table shows standard JDBC DataSource properties.

Table 5. Standard JDBC DataSource properties

Property Type Description
URL

Attribute Notes

databaseName String The name of
the database.
This property is
required.

None This property is
also available using
EmbeddedDataSource.

dataSourceName String The data source
name.

None This property is
also available using
EmbeddedDataSource.

description String A description of
the data source.

None This property is
also available using
EmbeddedDataSource.

user String The user's
account name.

user Default is APP.
This property is
also available using
EmbeddedDataSource.

password String The user's
database
password.

password This property is
also available using
EmbeddedDataSource.

serverName String The host name
or TCP/IP
address where
the server is
listening for
requests.

None Default is localhost.

Derby Server and Administration Guide

22

Property Type Description
URL

Attribute Notes

portNumber IntegerThe port number
where the server
is listening for
requests.

None Default is 1527.

The following table shows client-specific JDBC DataSource properties.

Table 6. Client-specific DataSource properties

Property Type Description URL Attribute Notes

traceFile String The filename for
tracing output.
Setting this
property turns
on tracing. See
Network client
tracing.

traceFile None

traceDirectory String The directory
for the tracing
output. Each
connection will
send output
to a separate
file. Setting this
property turns
on tracing. See
Network client
tracing.

traceDirectory None

traceLevel IntegerThe level of
client tracing
if traceFile or traceDirectory
is set.

traceLevel The default is
TRACE_ALL.

traceFileAppend BooleanValue is true
if tracing output
should append to
the existing trace
file.

traceFileAppend The default is
false.

securityMechanismIntegerThe security
mechanism. See
"Configuring
Network Client
authentication
without
SSL/TLS" in the
Derby Security
Guide.

securityMechanismThe default is USER_ONLY_SECURITY.

retrieveMessageTextBooleanRetrieve
message
text from the
server. A stored

retrieveMessageTextThe default is
true.

Derby Server and Administration Guide

23

Property Type Description URL Attribute Notes

procedure is
called to retrieve
the message
text with each
SQLException
and might start a
new unit of work.
Set this property
to false if you
do not want the
performance
impact or when
starting new
units of work.

ssl String The SSL mode
for the client
connection. See
"Configuring
SSL/TLS" in the
Derby Security
Guide.

ssl The default is
off.

The following table shows server-specific JDBC DataSource properties.

Table 7. Server-specific DataSource properties

Property Type Description
URL

Attribute Notes

connectionAttributesString Set to the
list of Derby
embedded
connection
attributes
separated by
semicolons.

Various This property is
also available using
EmbeddedDataSource.
See the Derby
Reference Manual for
more information about
the various connection
attributes.

createDatabase String If set to create,
create the
database
specified
with the
databaseName
property.

create This property is
also available using
EmbeddedDataSource.
See the Derby
Reference Manual
for more information.
Similar to setting connectionAttribute
to create=true. Only
create is allowed;
other values equate
to null. The result of
conflicting settings of
createDatabase,
shutdownDatabase,
and connectionAttributes
is undefined.

Derby Server and Administration Guide

24

Property Type Description
URL

Attribute Notes

shutdownDatabaseString If set to
shutdown,
shut down
the database
specified
with the
databaseName
property.

shutdown This property is
also available using
EmbeddedDataSource.
See the Derby
Reference Manual
for more information.
Similar to setting connectionAttribute
to shutdown=true.
Only shutdown
is allowed; other
values equate to
null. The result of
conflicting settings of
createDatabase,
shutdownDatabase,
and connectionAttributes
is undefined. If
authentication and
SQL authorization are
both enabled, database
shutdown is restricted to
the database owner.

Note: The setAttributesAsPassword property, which is available for the embedded
DataSource, is not available for the client DataSource.
Network client tracing

The Derby Network client provides a tracing facility to collect JDBC trace information and
view protocol flows.

There are various ways to obtain trace output. However, the easiest way to obtain trace
output is to use the traceFile=path attribute on the URL in ij. The following example
shows all tracing going to the file trace.out from an ij session.

ij>connect 'jdbc:derby://localhost:1527/mydb;
create=true;traceFile=trace.out;user=user1;password=secret4me';

To append trace information to the specified file, use the traceFileAppend=true URL
attribute in addition to traceFile=path.

For more information, see "traceFile=path attribute" and "traceFileAppend=true attribute"
in the Derby Reference Manual.

Implementing ClientDataSource tracing
You can use one of three methods to collect tracing data while obtaining connections
from the ClientDataSource:

• Use the setLogWriter(java.io.PrintWriter) method of
ClientDataSource and set the PrintWriter to a non-null value.

• Use the setTraceFile(String filename) method of ClientDataSource.
• Use the setTraceDirectory(String dirname) method of
ClientDataSource to trace each connection flow in its own file for programs that
have multiple connections.

Derby provides two ClientDataSource implementations. You can use the
org.apache.derby.jdbc.ClientDataSource class on all supported Java SE
versions except Java SE 8 Compact Profile 2. On Java SE 8 Compact Profile 2, you must

Derby Server and Administration Guide

25

use the org.apache.derby.jdbc.BasicClientDataSource40 class. For more
information, see "JDBC support for Java SE 8 Compact Profiles" in the Derby Reference
Manual.

Implementing DriverManager tracing
Use one of the following two options to enable and collect tracing information while
obtaining connections using the DriverManager:

• Use the setLogWriter(java.io.PrintWriter) method of DriverManager
and set the PrintWriter to a non null-value.

• Use the traceFile=path or traceDirectory=path URL attributes
to set these properties prior to creating the connection with the
DriverManager.getConnection() method. For more information, see
"traceFile=path attribute" and "traceDirectory=path attribute" in the Derby Reference
Manual.

Changing the default trace level

The default trace level is ClientDataSource.TRACE_ALL. You can choose the
tracing level by calling the setTraceLevel(int level) method or by setting the
traceLevel=value URL attribute:

String url = "jdbc:derby://samplehost.example.com:1528/mydb" +
 ";traceFile=/u/user1/trace.out" +
 ";traceLevel=" +
 org.apache.derby.jdbc.ClientDataSource.TRACE_PROTOCOL_FLOWS;
DriverManager.getConnection(url,"user1","secret4me");

The following table shows the tracing levels you can set.

Table 8. Available tracing levels and values

Trace Level Value

org.apache.derby.jdbc.ClientDataSource.TRACE_NONE 0x0

org.apache.derby.jdbc.ClientDataSource.TRACE_CONNECTION_CALLS 0x1

org.apache.derby.jdbc.ClientDataSource.TRACE_STATEMENT_CALLS 0x2

org.apache.derby.jdbc.ClientDataSource.TRACE_RESULT_SET_CALLS 0x4

org.apache.derby.jdbc.ClientDataSource.TRACE
_DRIVER_CONFIGURATION

0x10

org.apache.derby.jdbc.ClientDataSource.TRACE_CONNECTS 0x20

org.apache.derby.jdbc.ClientDataSource.TRACE_PROTOCOL_FLOWS 0x40

org.apache.derby.jdbc.ClientDataSource.TRACE
_RESULT_SET_META_DATA

0x80

org.apache.derby.jdbc.ClientDataSource.TRACE
_PARAMETER_META_DATA

0x100

org.apache.derby.jdbc.ClientDataSource.TRACE_DIAGNOSTICS 0x200

org.apache.derby.jdbc.ClientDataSource.TRACE_XA_CALLS 0x800

org.apache.derby.jdbc.ClientDataSource.TRACE_ALL 0xFFFFFFFF

To specify more than one trace level, use one of the following techniques:

• Use bitwise OR operators (|) with two or more trace values. For example, to trace
PROTOCOL flows and connection calls, specify this value for traceLevel:

Derby Server and Administration Guide

26

TRACE_PROTOCOL_FLOWS | TRACE_CONNECTION_CALLS
• Use a bitwise complement operator (~) with a trace value to specify all except a

certain trace. For example, to trace everything except PROTOCOL flows, specify
this value for traceLevel:

~TRACE_PROTOCOL_FLOWS

For more information, see "traceLevel=value attribute" in the Derby Reference Manual.

Network client driver examples

The following examples specify the user and password URL attributes.

To enable user authentication, you must either use NATIVE authentication or explicitly
set the property derby.connection.requireAuthentication to true. Otherwise,
Derby does not require a user name and password. For details on how to enable user
authentication, see "Configuring user authentication" in the Derby Security Guide.

For a multi-user product, you would typically specify authentication for the system in
the derby.properties file for your server, since it is in a trusted environment. The
following property setting specifies NATIVE authentication:

derby.authentication.provider=NATIVE:myCredentialsDB:LOCAL

> Important: It is strongly recommended that production systems rely on NATIVE
authentication, an external directory service such as LDAP, or a user-defined class for
authentication. It is also strongly recommended that production systems protect network
connections with SSL/TLS.

Example 1

The following example connects to the default server name localhost on the default port,
1527, and to the database sample.

jdbc:derby://localhost:1527/sample;user=judy;password=no12see

Example 2

The following example specifies both Derby and Network Client driver attributes:

jdbc:derby://localhost:1527/sample;create=true;user=judy;password=no12see

Example 3

This example connects to the default server name localhost on the default port, 1527,
and includes the path in the database name portion of the URL.

jdbc:derby://localhost:1527/c:/my-db-dir/my-db-name;user=judy;
password=no12see

For a programming example that shows how to connect to the server using NATIVE
authentication, see "NATIVE authentication and SQL authorization example" in the Derby
Developer's Guide.

Accessing the Network Server by using a DataSource object

The Network Server supports a set of Derby Network Client driver DataSource classes.

You can use the org.apache.derby.jdbc.ClientDataSource and
org.apache.derby.jdbc.ClientConnectionPoolDataSource classes on all
supported Java SE versions.

Using statement caching

Derby Server and Administration Guide

27

Derby supports JDBC statement caching, which can improve the performance of
applications that use PreparedStatement or CallableStatement objects.
Statement caching avoids the performance penalty incurred by going over the network
from the client to the server to prepare a statement that has already been prepared on
the same connection.

To use statement caching, you must use an
org.apache.derby.jdbc.ClientConnectionPoolDataSource or
org.apache.derby.jdbc.BasicClientConnectionPoolDataSource40 object.
After you instantiate this object, perform these steps:

1. Specify the desired size of your statement cache by calling the
setMaxStatements method on the DataSource object, specifying an argument
greater than zero.

2. Call the getPooledConnection method on the DataSource object to obtain a
javax.sql.PooledConnection object (a physical connection).

3. Call the javax.sql.PooledConnection.getConnection method to obtain a
java.sql.Connection object (a logical connection).

After you obtain a connection, use either prepared statements or callable statements to
interact with the database. Close each statement to return it to the cache after you finish
using it. The statements you create are held in the cache on the client side and reused
when needed.

See Statement caching example for a code example.

Use of the JDBC statement cache makes each physical connection use more memory.
The amount depends on how many statements the connection is allowed to cache and
how many statements are actually cached.

If you enable JDBC statement caching, error handling changes slightly. Some errors that
previously appeared when the prepareStatement method was executed may now
appear during statement execution. For example, suppose you query a table using a
prepared statement that is then cached. If the table is deleted, the prepared statement
that queries the table is not invalidated. If the query is prepared again on the same
connection, the cached object is fetched from the cache, and the prepareStatement
call seems to have succeeded, although the statement has not actually been prepared.
When the prepared statement is executed, the error is detected on the server side, and
the client is notified.

DataSource access examples

These examples use org.apache.derby.jdbc.ClientDataSource and
org.apache.derby.jdbc.ClientConnectionPoolDataSource to access the
Network Server.

The following example uses org.apache.derby.jdbc.ClientDataSource to
access the Network Server:

org.apache.derby.jdbc.ClientDataSource ds =
 new org.apache.derby.jdbc.ClientDataSource();
ds.setDatabaseName("mydb");
ds.setCreateDatabase("create");
ds.setUser("user");
ds.setPassword("mypass");

// The host on which Network Server is running
ds.setServerName("localhost");

// The port on which Network Server is listening
ds.setPortNumber(1527);

Connection conn = ds.getConnection();

Derby Server and Administration Guide

28

Statement caching example

The following example uses
org.apache.derby.jdbc.ClientConnectionPoolDataSource to access the
Network Server and use JDBC statement caching:

org.apache.derby.jdbc.ClientConnectionPoolDataSource cpds =
 new ClientConnectionPoolDataSource();

// Set the number of statements the cache is allowed to cache.
// Any number greater than zero will enable the cache.
cpds.setMaxStatements(20);

// Set other DataSource properties
cpds.setDatabaseName("mydb");
cpds.setCreateDatabase("create");
cpds.setUser("user");
cpds.setPassword("mypass");
cpds.setServerName("localhost");
cpds.setPortNumber(1527);

// This physical connection will have JDBC statement caching enabled.
javax.sql.PooledConnection pc = cpds.getPooledConnection();

// Create a logical connection.
java.sql.Connection con = pc.getConnection();

// Interact with the database.
java.sql.PreparedStatement ps = con.prepareStatement(
 "select * from myTable where id = ?");
...
ps.close(); // Inserts or returns statement to the cache
...
con.close();

// The next logical connection can gain from using the cache.
con = pc.getConnection();

// This prepare causes a statement to be fetched from the local cache.
PreparedStatement ps = con.prepareStatement(
 "select * from myTable where id = ?");
...

// To dispose of the cache, close the connection.
pc.close();

XA and the Network Server

Both the Derby embedded driver and the Network Server provide XA support. The
Network Server provides DRDA level 7 support. DRDA clients that support XAMGR, such
as the Derby network client, can send XA requests to the Network Server.

Using XA with the network client driver

You can access XA support for the Network Server by using the network client driver's
XA DataSource interface.

You can use the org.apache.derby.jdbc.ClientXADataSource class on all
supported Java SE versions.

The following example illustrates how to obtain an XA connection with the network client
driver:

import org.apache.derby.jdbc.ClientXADataSource;
import javax.sql.XAConnection;
...

Derby Server and Administration Guide

29

XAConnection xaConnection = null;
Connection conn = null;

ClientXADataSource ds = new ClientXADataSource();

ds.setDatabaseName ("sample");
ds.setCreateDatabase("create");

ds.setServerName("localhost");
ds.setPortNumber(1527);

xaConnection = ds.getXAConnection("auser", "shhhh");

conn = xaConnection.getConnection();

Using the Derby tools with the Network Server

The Derby tools ij and dblook work in embedded mode and client/server mode.

Using the Derby ij tool with the Network Server

To use the ij tool with the network client driver, follow these steps.

1. Start ij in one of the following ways. For details, see "Starting ij" in the Derby Tools
and Utilities Guide.

a. Use a script.

Run the ij.bat script on Windows systems and the ij script on UNIX
systems. These scripts are located in the $DERBY_HOME/bin directory.

b. Run the ij tool using the $DERBY_HOME/lib/derbyrun.jar file.

java -jar derbyrun.jar ij
c. Run the ij tool by specifying the class name.

java org.apache.derby.tools.ij
2. Connect by specifying the URL:

ij> CONNECT 'jdbc:derby://localhost:1527/sample'
 USER 'judy' PASSWORD 'no12see';

See Network client driver examples for additional URL examples.
Using the Derby dblook tool with the Network Server

To use the dblook tool with the network client driver, follow these steps.

1. Make sure the Network Server is running. See Starting the Network Server for more
information.

2. Include the necessary Derby and network client driver connection attributes as part
of the database URL, as in the following example:

java org.apache.derby.tools.dblook -d
 'jdbc:derby://localhost:1527/sample;
user=user1;password=secret4me;'

For details on using the dblook tool, see the Derby Tools and Utilities Guide.

Differences between running Derby in embedded mode and using the Network
Server

This section describes the differences between running Derby in embedded mode and
using the Network Server.

See "Configuring Network Server authentication in special circumstances" in the Derby
Security Guide for information about authentication that is specific to the Network Server.

Derby Server and Administration Guide

30

Note: There may be undocumented differences that have not yet been identified.
Differences between the embedded client and the network client driver

The following are known differences that exist between the Derby embedded driver and
the network client driver.

There may be undocumented differences that have not yet been identified. Some
differences with the network client may be changed in future releases to match the
embedded driver functionality.

• Error messages and SQLStates can differ between the network client and
embedded driver.

• Treatment of error situations encountered during batch processing
with java.sql.Statement, java.sql.PreparedStatement, and
java.sql.CallableStatement is different. With the embedded driver,
processing stops when an error is encountered; with the network client
driver, processing continues, but an appropriate value as defined in the
java.sql.Statement API is returned in the resulting update count array.

Updatable result sets

In Derby, the functionality of updatable result sets in a server environment and in an
embedded environment are similar, with the exception of the following differences.

• The embedded driver allows for statement name changes when there is an open
result set on the statement object. This is not supported in a server environment.

• Use of the updateBytes method on the CHAR, VARCHAR, and LONG VARCHAR
datatypes is supported in an embedded environment, but is not supported in a
server environment.

Differences in JDBC methods

A few JDBC methods behave differently with the embedded driver from the way they
behave with the client driver.

These methods are as follows:

Connection.prepareStatement(String sql, String[] columnNames)
Connection.prepareStatement(String sql, int[] columnIndexes)

Statement.execute(String sql, String[] columnNames)
Statement.execute(String sql, int[] columnIndexes)
Statement.executeUpdate(String sql, String[] columnNames)
Statement.executeUpdate(String sql, int[] columnIndexes)

The differences in behavior are described in "Autogenerated keys" in the Derby
Reference Manual.

Differences using the Connection.setReadOnly method

In embedded mode, when the Connection.setReadOnly method has true as the
parameter, the connection is marked as a read-only connection. When you use the
Network Server, the Connection.setReadOnly(true) method is ignored, and the
connection is not marked as a read-only connection.

Setting port numbers

By default, the Derby Network Server listens on TCP/IP port number 1527. If you want
to use a different port number, you can specify it on the command line when starting the
Network Server.

For example:

java org.apache.derby.drda.NetworkServerControl start -p 1088

Derby Server and Administration Guide

31

1. However, it is better to specify the port numbers by using any of the following
methods:

• Change the startNetworkServer.bat or startNetworkServer.ksh
script

• Use the derby.drda.portNumber property in derby.properties

See Starting the Network Server for more information.

Managing the Derby Network Server
The Derby Network Server can be run in either of the following configurations.

• As a stand-alone server, in which case it is an independent Java process
embedding the Derby database engine

• As an embedded server, in which case it is embedded within another Java
application, and both the Network Server framework and the Derby database
engine are loaded by the Java application

You can use Java Management Extensions (JMX) technology to monitor and manage
Derby and the Network Server. For information on how to do this, see Using Java
Management Extensions (JMX) technology.

You can manage the Network Server by using shell scripts, the command line, or the
Network Server API.

Overview of Derby Network Server management

You can start the Derby Network Server by using the command line or by using the
Derby Network Server API.

Derby provides scripts for you to use to start the server from the command line. Before
starting the server, you will probably set certain Derby and Network Server properties.

Using the NetworkServerControl API

You need to create an instance of the NetworkServerControl class if you are using
the API.

There are four constructors for this class.

• NetworkServerControl()

This constructor creates an instance that listens either on the default port
(1527) or the port that is set by the derby.drda.portNumber property.
It will also listen on the host set by the derby.drda.host property
or the loopback address if the property is not set. This is the default
constructor; it does not allow remote connections. It is equivalent to calling
NetworkServerControl(InetAddress.getByName("localhost"),1527)
if no properties are set.

• NetworkServerControl(InetAddress address, int portNumber)

This constructor creates an instance that listens on the specified portNumber on
the specified address. The InetAddress will be passed to ServerSocket. NULL
is an invalid address value. The following examples show how you might allow the
Network Server to accept connections from other hosts:

// accepts connections from other hosts on an IPv4 system
NetworkServerControl serverControl =
 new NetworkServerControl(InetAddress.getByName("0.0.0.0"),1527);

// accepts connections from other hosts on an IPv6 system
NetworkServerControl serverControl =

http://db.apache.org/derby/papers/DerbyTut/ns_intro.html#ns_intro
http://db.apache.org/derby/papers/DerbyTut/ns_intro.html#Embedded+Server

Derby Server and Administration Guide

32

 new NetworkServerControl(InetAddress.getByName("::"),1527);
• NetworkServerControl(String userName, String password)

If a network server should run with user authentication, certain operations like
NetworkServerControl.shutdown() require that you provide user credentials.
This constructor creates an instance with user credentials, which are then used
for operations that require them. In all other aspects, this constructor behaves like
NetworkServerControl().

• NetworkServerControl(InetAddress address, int portNumber,
String userName, String password)

This constructor creates an instance with user credentials, which are then used
for operations that require them. In all other aspects, this constructor behaves like
NetworkServerControl(InetAddress address, int portNumber).

Setting Network Server properties

You can specify Network Server properties in the following ways.

• On the command line
• In the .bat or unix shell script files (load the properties by executing java -D)
• In the derby.properties file

Properties specified on the command line or in the .bat or .ksh files take precedence
over the properties in the derby.properties file. Arguments included in commands
that are issued on the command line take precedence over property values.

derby.drda.host property

Causes the Network Server to listen on a specific network interface.

This property allows multiple instances of Network Server to run on a single machine,
each using its own unique host:port combination. The host needs to be set to enable
remote connections.

By default, the Network Server will listen only on the loopback address. If the property is
set to 0.0.0.0, the Network Server will listen on all interfaces.

Ensure that user authorization is enabled before you enable remote connections with this
property.

Syntax

derby.drda.host=hostName

Default

If no host name is specified, the Network Server listens on the loopback address of the
current machine (localhost).

Example

derby.drda.host=myhost

Static or dynamic

Static. You must restart the Network Server for changes to take effect.

derby.drda.keepAlive property

Indicates whether SO_KEEPALIVE is enabled on sockets.

The keepAlive mechanism is used to detect when clients disconnect unexpectedly.
A keepalive probe is sent to the client if a long time (by default, more than two hours)
passes with no other data being sent or received. The derby.drda.keepAlive

Derby Server and Administration Guide

33

property is used to detect and clean up connections for clients on powered-off machines
or clients that have disconnected unexpectedly.

If the property is set to false, Derby will not attempt to clean up disconnected clients.
The keepAlive mechanism might be disabled if clients need to resume work without
reconnecting even after being disconnected from the network for some time. To disable
keepAlive probes on Network Server connections, set this property to false.

Syntax

derby.drda.keepAlive={true|false}

Default

True.

Example

derby.drdra.keepAlive=false

Static or dynamic

Static. You must restart the Network Server for changes to take effect.

derby.drda.logConnections property

Indicates whether to log connections.

This property also controls the logging of the connection number. Connection number
tracing, if enabled, goes to both the derby.log file and the Network Server console.

Syntax

derby.drda.logConnections={true|false}

Default

False.

Example

derby.drda.logConnections=true

Static or dynamic

Dynamic. You can change system values by using commands after the Network Server
has been started.

derby.drda.maxThreads property

Sets the maximum number of connection threads that the Network Server will allocate.

If all of the connection threads are currently being used and the Network Server has
already allocated the maximum number of threads, the threads will be shared by using
the derby.drda.timeSlice property to determine when sessions will be swapped.

Syntax

derby.drda.maxThreads=numThreads

Default

0 (zero).

Example

derby.drda.maxThreads=50

Static or dynamic

Derby Server and Administration Guide

34

Static. You must restart the Network Server for changes to take effect.

derby.drda.minThreads property

Sets the minimum number of connection threads that the Network Server will allocate.

By default, connection threads are allocated as needed.

Syntax

derby.drda.minThreads=numThreads

Default

0 (zero).

Example

derby.drda.minThreads=10

Static or dynamic

Static. You must restart the Network Server for changes to take effect.

derby.drda.portNumber property

Indicates the port number to use.

Syntax

derby.drda.portNumber=portNumber

Default

If no port number is specified, 1527 is the default.

Example

derby.drda.portNumber=1110

Static or dynamic

Static. You must restart the Network Server for changes to take effect.

derby.drda.securityMechanism property

Restricts the client connections based on the security mechanism.

If the derby.drda.securityMechanism property is set to a valid mechanism, the
Network Server accepts only connections which use that security mechanism. No other
types of connections are accepted. If the derby.drda.securityMechanism property
is not set, the Network Server accepts any connection which uses a valid security
mechanism.

Syntax

derby.drda.securityMechanism={
 USER_ONLY_SECURITY |
 CLEAR_TEXT_PASSWORD_SECURITY |
 ENCRYPTED_USER_AND_PASSWORD_SECURITY
}

Default

None.

Example

derby.drda.securityMechanism=USER_ONLY_SECURITY

Derby Server and Administration Guide

35

The server that runs with this setting accepts only client connections with the
USER_ONLY_SECURITY value.

Static or dynamic

Static. You must restart the Network Server for changes to take effect.

derby.drda.sslMode property

Indicates whether the client connection is encrypted or not, and whether certificate-based
peer authentication is enabled.

Syntax

derby.drda.sslMode={
 off |
 basic |
 peerAuthentication
}

Default

off.

Example

derby.drda.sslMode=basic

The server that runs with this setting accepts client connections encrypted with SSL.

Static or dynamic

Static. You must restart the Network Server for changes to take effect.

derby.drda.startNetworkServer property

Indicates whether the Network Server will start automatically when you start Derby.

Use the derby.drda.startNetworkServer property to simplify embedding the
Network Server in your Java application. When you set this property to true, the Network
Server will automatically start when you start Derby (in this context, Derby will start when
the embedded driver is loaded). Only one Network Server can be started in a JVM.

Note: If you start the Network Server with this property set to true, the Network Server
will stop when your application ends or when you stop it by other means (for example,
by using the Java API or the command line interface, or by shutting down the Derby
system), whichever comes first.

Syntax

derby.drda.startNetworkServer={true|false}

Default

False.

Example

derby.drda.startNetworkServer=true

Static or dynamic

Static. You must shut down the Network Server and restart Derby for this change to take
effect.

derby.drda.streamOutBufferSize property

Configures the size of the buffer for streaming blob/clob data from server to client.

Derby Server and Administration Guide

36

If the configured size is 0 or less, the buffer is not placed.

Note: This configuration is used when optimizing streaming blob/clob from server to
client.

If there were found many small packets, of which sizes are much lower than maximum
size of packet possible in the network, it will improve performance of streaming to setting
this configuration.

Recommended value of this configuration is maximum packet size possible in the
network minus appropriate size for header.

Syntax

derby.drda.streamOutBufferSize=sizeOfBuffer

Default

0 (zero).

Example

derby.drda.streamOutBufferSize=1024

Static or dynamic

Dynamic. You can change system values by using commands after the Network Server
has been started.

derby.drda.timeSlice property

Sets the number of milliseconds that each connection will use before yielding to another
connection.

This property is relevant only if the derby.drda.maxThreads property is set to a value
greater than zero.

Syntax

derby.drda.timeSlice=milliseconds

Default

0 (zero).

Example

derby.drda.timeSlice=2000

Static or dynamic

Static. You must restart the Network Server for changes to take effect.

derby.drda.traceAll property

Turns tracing on for all sessions.

Syntax

derby.drda.traceAll={true|false}

Default

False.

Example

derby.drda.traceAll=true

Derby Server and Administration Guide

37

Static or dynamic

Dynamic. You can change system values by using commands after the Network Server
has been started.

derby.drda.traceDirectory property

Indicates the location of tracing files.

Security Considerations

The Network Server will attempt to create the trace directory (and any parent directories)
if they do not exist.

Syntax

derby.drda.traceDirectory=traceFileDirectory

Default

If the derby.system.home property has been set, it is the default. Otherwise, the
default is the current directory.

Example

derby.drda.traceDirectory=c:/Derby/trace

Static or dynamic

Dynamic. You can change system values by using commands after the Network Server
has been started.

Verifying startup

To verify that the Derby Network Server is currently running, use the ping command.

You can use the ping command in the following ways:

• You can use the script NetworkServerControl.bat for Windows systems
or NetworkServerControl for UNIX systems with the ping command. For
example:

NetworkServerControl ping [-h <hostname>;] [-p <portnumber>]
• You can use the NetworkServerControl ping command:

java org.apache.derby.drda.NetworkServerControl
 ping [-h <hostname>] [-p <portnumber>]

• You can use the NetworkServerControl API to verify startup from within a Java
application:

ping();

The following example uses a method to verify startup. It will try to verify for the specified
number of seconds:

private static boolean isServerStarted(NetworkServerControl server, int
 ntries) {
 for (int i = 1; i <= ntries; i ++) {
 try {
 Thread.sleep(500);
 server.ping();
 return true;
 } catch (Exception e) {
 if (i == ntries) {
 return false;
 }

Derby Server and Administration Guide

38

 }
 }
 return false;
}

Using Java Management Extensions (JMX) technology
Derby includes a set of MBeans (Managed Beans) and their attributes and operations,
providing monitoring and management capabilities.

Before using the Derby MBeans, you should have a basic
understanding of JMX technology. A good source of information is
the "Monitoring and Management for the Java Platform" web page at
http://docs.oracle.com/javase/7/docs/technotes/guides/management/ .

The Derby MBeans instrument one or more parts of a running Derby system. This
instrumentation gives you real-time access to Derby-specific information and features
from a host of your choice, if you configure your Java Virtual Machine (JVM) and the
Derby security features to enable this access.

The Derby JMX features are automatically available when Derby is started in a JVM that
supports the platform MBean server. Most versions of the Java SE platform support JMX
technology.

You start Derby by loading the Derby embedded driver. If you are using the Derby
Network Server, the embedded driver is automatically loaded in the server JVM when the
server is started.

You may access the Derby MBeans by using an existing JMX client utility such as
JConsole, or programmatically by writing your own Java code that uses JMX.

Introduction to the Derby MBeans

Derby provides the MBeans described in this section.

The public API documentation for each Derby MBean describes its features in detail.

VersionMBean

VersionMBean exposes version information about the running Derby system jar file.

• Interface: org.apache.derby.mbeans.VersionMBean
• Implementation: org.apache.derby.iapi.services.info.Version (not in

the public API)
• ObjectName:
org.apache.derby:type=Version,system=<sysID>,jar=derby.jar
(monitors derby.jar, the Derby engine), or
org.apache.derby:type=Version,system=<sysID>,jar=derbynet.jar
(monitors derbynet.jar, the server)

• Instruments:
org.apache.derby.iapi.services.info.ProductVersionHolder

JDBCMBean

JDBCMBean exposes information about the JDBC driver.

• Interface: org.apache.derby.mbeans.JDBCMBean
• Implementation: org.apache.derby.jdbc.JDBC (not in the public API)
• ObjectName: org.apache.derby:type=JDBC,system=<sysID>
• Instruments: org.apache.derby.jdbc.InternalDriver and
org.apache.derby.iapi.services.info.JVMInfo

http://docs.oracle.com/javase/7/docs/technotes/guides/management/

Derby Server and Administration Guide

39

ManagementMBean

ManagementMBean manages the state of the Derby MBeans (registered or not).

• Interface org.apache.derby.mbeans.ManagementMBean
• Implementation: org.apache.derby.mbeans.Management (part of the public

API; may be registered by JMX clients)
• Extended by:
org.apache.derby.iapi.services.jmx.ManagementService (interface;
not in the public API), with the following implementations:

• org.apache.derby.impl.services.jmx.JMXManagementService
(not public)

• org.apache.derby.impl.services.jmxnone.NoManagementService
(not in the public API; empty implementation for environments without the
required JMX support)

• ObjectName: org.apache.derby:type=Management,system=<sysID> when
registered by Derby

• Instruments:
org.apache.derby.impl.services.jmx.JMXManagementService

NetworkServerMBean

NetworkServerMBean monitors and manages a running instance of the Network
Server.

• Interface: org.apache.derby.mbeans.drda.NetworkServerMBean
• Implementation: org.apache.derby.impl.drda.NetworkServerMBeanImpl

(not in the public API)
• ObjectName: org.apache.derby:type=NetworkServer,system=<sysID>
• Instruments: org.apache.derby.impl.drda.NetworkServerControlImpl

CacheManagerMBean

CacheManagerMBean monitors the page cache, the container cache, and the statement
cache of a running database instance.

• Interface: org.apache.derby.mbeans.CacheManagerMBean
• Implementation:
org.apache.derby.impl.services.cache.ConcurrentCacheMBeanImpl
(not in the public API)

• ObjectName:
org.apache.derby:type=CacheManager,name=PageCache,db=<databaseDir>,system=<sysID>
(monitors the page cache), or
org.apache.derby:type=CacheManager,name=ContainerCache,db=<databaseDir>,system=<sysID>
(monitors the container cache), or
org.apache.derby:type=CacheManager,name=StatementCache,db=<databaseDir>,system=<sysID>
(monitors the statement cache)

• Instruments: org.apache.derby.impl.services.cache.ConcurrentCache

For security reasons, JDK 20 restricted the deserialization of objects by remote MBeans.
You will need to loosen those restrictions if you see the following message when
accessing the org.apache.derby.mbeans.CacheManagerMBean:

java.io.InvalidClassException: filter status: REJECTED

To loosen the restrictions, you must relax the default deserialization filter declared
in $JAVA_HOME/conf/management/management.properties. Edit that file in the
JVM of your JMX client. The following liberal deserialization filter will work with
org.apache.derby.mbeans.CacheManagerMBean:

com.sun.management.jmxremote.serial.filter.pattern=*

Derby Server and Administration Guide

40

Enabling and disabling JMX

You can use JMX management and monitoring both locally and remotely.

The term local means on the same host (machine) and running as the same user. For
example, this means that local JMX access is possible only if the JVM you want to
access is running on the same host and as the same user as the user who is running a
JMX client such as JConsole (or a different user with sufficient file system permissions).
In order to allow other users to access the JVM, or to allow access from other hosts,
remote JMX must be enabled.

Local JMX access

Local JMX management and monitoring are enabled by default on platforms that support
JMX.

Remote JMX access

Remote JMX management and monitoring is a powerful Java feature, allowing you to
monitor a specific JVM from a remote location. Enabling remote JMX requires explicit
actions by the JVM administrator, since it may involve exposing sensitive information
about your system.

The most common way to enable remote JMX access to your JVM is to specify
a TCP/IP port number and some basic security settings when you start the
JVM. The security settings commonly include authentication and SSL (Secure
Socket Layer). Derby attempts to use the JVM's built-in platform MBean
server. For a list of current command line options (system properties) and their
meanings, refer to the table in the Java SE Monitoring and Management Guide at
http://docs.oracle.com/javase/7/docs/technotes/guides/management/agent.html#gdeum .

The following topics describe ways to enable and disable remote JMX access.

Enabling remote JMX with no authentication or SSL

The following simple example starts the Derby Network Server on the command line with
insecure remote JMX management and monitoring enabled, using an Oracle JDK JVM.

Password authentication over SSL is enabled by default, but here these security features
are disabled, to keep the example simple.

> Important: It is not recommended to disable authentication or SSL in production
environments.

java -Dcom.sun.management.jmxremote.port=9999
-Dcom.sun.management.jmxremote.authenticate=false
-Dcom.sun.management.jmxremote.ssl=false
-jar $DERBY_HOME/lib/derbyrun.jar server start

Enabling remote JMX with password authentication only

Some JVMs include built-in support for JMX password authentication.

For example, with the Oracle Java Development Kit (JDK), authentication is enabled
by default, and it is possible to specify a properties file that contains usernames and
passwords. The properties file syntax is the same as for other Java properties files.

For example, you could create a password file called jmxremote.password:

Defining two "roles", each with its own password
monitorRole derbym
controlRole derby

http://docs.oracle.com/javase/7/docs/technotes/guides/management/agent.html#gdeum

Derby Server and Administration Guide

41

The security of the password file relies on your file system's access control mechanisms.
The file must be readable by the owner only. Also, you may need to change the
permissions on the password file to be readable only by the user who starts the server.
To do this on Windows (NTFS), use a command like the following:

cacls jmxremote.password /P username:R

Note: FAT file systems do not support this feature.

The following example starts the Network Server on the command line with built-in
JMX password authentication enabled. SSL is disabled, meaning that JMX information,
including user names and passwords most likely will be transferred unprotected on the
computer network. The command line appears on multiple lines to improve readability,
but you would enter it as a single java command.

> Important: It is not recommended to disable SSL in production environments.

java -Dcom.sun.management.jmxremote.port=9999
-Dcom.sun.management.jmxremote.ssl=false
-Dcom.sun.management.jmxremote.password.file=jmxremote.password
-jar lib/derbyrun.jar server start

Enabling remote JMX with password authentication and SSL

This example shows how to start the Network Server as follows.

• Allowing connections from remote hosts (that is, on all IPv4 network interfaces) by
specifying -h 0.0.0.0

• Using password authentication, as described in Enabling remote JMX with
password authentication only, using the jmxremote.password file

• Using SSL (Secure Socket Layer) for the following:
• Authenticating clients
• Encrypting all JMX-related network communication
• Protecting the RMI registry used by the MBean server

This level of protection may or may not be adequate for you, but it is more secure than
the previous examples.

The command line appears on multiple lines to improve readability, but you would enter it
as a single java command.

java -Dcom.sun.management.jmxremote.port=9999
-Dcom.sun.management.jmxremote.password.file=jmxremote.password
-Djavax.net.ssl.keyStore=/home/user/.keystore
-Djavax.net.ssl.keyStorePassword=myKeyStorePassword
-Dcom.sun.management.jmxremote.ssl.need.client.auth=true
-Djavax.net.ssl.trustStore=/home/user/.truststore
-Djavax.net.ssl.trustStorePassword=myTrustStorePassword
-Dcom.sun.management.jmxremote.registry.ssl=true
-jar lib/derbyrun.jar server start -h 0.0.0.0

In the example above, system properties specify the keystore containing the server's
key pair, the keystore password, the truststore containing the client certificates, and the
truststore password. Setting up SSL keystores and truststores is described in the section
"Configuring SSL/TLS" in the Derby Security Guide, along with more information on
protecting database network traffic using SSL.

When you configure SSL as described above, the following requirements apply:

• The password of the private key must be the same as the password of the keystore.
• If the keystore contains more than one key pair, the key pair you want to use must

be listed first among all the keys in the keystore. Otherwise, you (or the clients) may
see an exception with a message like the following:

Derby Server and Administration Guide

42

unable to find valid certification path to requested target

The system property
com.sun.management.jmxremote.ssl.need.client.auth=true specifies that
clients must use SSL to authenticate themselves. This property, as well as the truststore
properties, may be removed if you do not want to authenticate clients using SSL.
However, there may be security risks associated with using password authentication
only.

The system property com.sun.management.jmxremote.registry.ssl=true
aims at resolving security issues with the RMI registry used in
relation with JMX. This property must be used in conjunction with
com.sun.management.jmxremote.ssl.need.client.auth=true in order to fully
secure the RMI registry.

Clients must also specify and use proper keystores and/or truststores (the truststores
must contain the server's SSL certificate).

For more information about the system properties used above and potential
security risks, see "Monitoring and Management Using JMX Technology" at
http://docs.oracle.com/javase/7/docs/technotes/guides/management/agent.html .

Simple authorization using an access file

Some JVMs support a simple access file system for controlling JMX access.

An access file is formatted the same way as password files (described in Enabling
remote JMX with password authentication only), and associates roles with an access
level. Valid access levels are readonly and readwrite:

• The readonly level only allows the JMX client to read an MBean's attributes and
receive notifications.

• The readwrite level also allows setting attributes, invoking operations, and
creating and removing MBeans.

To use an access file for JMX authorization, specify the name of the access file using a
system property upon JVM startup:

-Dcom.sun.management.jmxremote.access.file=jmxremote.access

The contents of such an access file may look like this:

monitorRole readonly
controlRole readwrite

For more information, see "Monitoring and Management Using JMX Technology" at
http://docs.oracle.com/javase/7/docs/technotes/guides/management/agent.html .

Disabling access to MBeans

You may wish to disable or restrict access to MBeans in security-conscious
environments.

Use the stopManagement() method of ManagementMBean. This method unregisters
all of the Derby MBeans except ManagementMBean itself, so it does not turn access off
completely.

Using JConsole to access the Derby MBeans

JConsole is a graphical JMX-compliant tool that is available in recent versions of the
Oracle JDKs. JConsole enables you to monitor and manage Java applications and virtual
machines on a local or remote machine.

http://docs.oracle.com/javase/7/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/7/docs/technotes/guides/management/agent.html

Derby Server and Administration Guide

43

More information about JConsole is available in the OpenJDK project at
http://openjdk.java.net/tools/svc/jconsole/index.html.

Starting JConsole and connecting to Derby

In the Oracle JDK, the JConsole binary is available in JDK_HOME/bin, where
JDK_HOME is the directory in which the JDK is installed. To start JConsole, use the
jconsole command, as in the following example on a UNIX system:

/usr/local/java/jdk1.7.0/bin/jconsole

If you did not disable SSL when booting the managed JVM, you probably have to
provide a truststore containing the server's SSL certificate to be able to establish JMX
connections. If SSL client authentication is enabled, a keystore must be configured as
well (see Enabling remote JMX with password authentication and SSL for details). The
following example shows how to start JConsole with SSL client and server authentication:

jconsole -J-Djavax.net.ssl.trustStore=/home/user/.truststoreForClient
-J-Djavax.net.ssl.trustStorePassword=myTruststorePassword
-J-Djavax.net.ssl.keyStore=/home/user/.keystoreForClient
-J-Djavax.net.ssl.keyStorePassword=myKeyStorePassword

A graphical user interface (GUI) appears. For additional startup options, refer to the
JConsole documentation. Once the GUI starts, you are presented with a list of the JVMs
that are accessible on the local host. Locate the JVM that is running Derby and connect
to it.

To connect to a JVM on a remote host, you will need to supply the host name and port
number, or a JMX service URL, instead.

If you cannot find the Derby JVM running on the local host, make sure you are running
JConsole as the same user as the Derby JVM, or as a different user with sufficient file
system permissions.

Accessing MBeans

Once you have connected to a JVM via JConsole, the JVM's MBeans should be
available on a separate tab in the internal JConsole window. Under the domain
org.apache.derby you should see a list of MBeans. Browse the MBeans and their
attributes and operations by navigating the hierarchy presented.

Another useful JConsole feature is that you can view dynamic data represented as JMX
attributes in graph form. To view these graphs, double-click an attribute value that is a
number.

Using custom Java code to access the Derby MBeans

In addition to using a tool like JConsole, you can also access the Derby MBeans from a
Java application.

How to do this may depend on how you configure the JVM that is running Derby, how
you configure user authentication and authorization, or the host(s) from which you want
to access the MBeans.

This section has some example code to help you get started. You will find
the JMX classes you need in the packages javax.management and
javax.management.remote.

You do not need any Derby libraries in the JMX client application's classpath (unless
MBean proxies are used).

Connecting to the MBean Server

http://openjdk.java.net/tools/svc/jconsole/index.html

Derby Server and Administration Guide

44

Derby will attempt to register its MBeans with the platform MBean server of the JVM
running the Derby system (embedded or Network Server). The following examples
assume that you have configured the Derby JVM to enable remote JMX, which means
that you have set a port number (com.sun.management.jmxremote.port) to be
used by the JMX Server Connector.

The examples below assume that the port configured for remote JMX is 9999, that the
host name of the host running Derby is example.com, and that this host is reachable
from the client host. (This host name is fictitious, and is used for example purposes only.)

The following example code shows how to connect to the MBean Server when JMX
security has been disabled:

 JMXServiceURL url = new JMXServiceURL(
 "service:jmx:rmi:///jndi/rmi://example.com:9999/jmxrmi");
 JMXConnector jmxc = JMXConnectorFactory.connect(url, null);
 MBeanServerConnection mbeanServerConn =
 jmxc.getMBeanServerConnection();

The following code shows how to connect to the MBean server when JMX password
authentication is enabled (the default):

 JMXServiceURL url = new JMXServiceURL(
 "service:jmx:rmi:///jndi/rmi://example.com:9999/jmxrmi");
 // Assuming the following JMX credentials:
 // username=controlRole, password=derby
 String[] credentials = new String[] { "controlRole" , "derby" };
 HashMap<String,Object> env = new HashMap<String,Object>();
 // Set credentials (jmx.remote.credentials,
 // see JMX Remote API 1.0 spec section 3.4)
 env.put(JMXConnector.CREDENTIALS, credentials);
 // if the server's RMI registry is protected with SSL/TLS
 // (com.sun.management.jmxremote.registry.ssl=true), the following
 // entry must be included:
 //env.put("com.sun.jndi.rmi.factory.socket",
 // new SslRMIClientSocketFactory()); // uncomment if needed

 // Connect to the server
 JMXConnector jmxc = JMXConnectorFactory.connect(url, env);
 MBeanServerConnection mbeanServerConn =
 jmxc.getMBeanServerConnection();

Note: Not specifying SslRMIClientSocketFactory when required may result in the
error message java.rmi.ConnectIOException: non-JRMP server at remote
endpoint.

Creating a ManagementMBean

The only Derby MBean that can be created by a JMX client is the ManagementMBean.
This MBean is useful for controlling Derby management (for example, enabling and
disabling management or MBeans), and to obtain information such as the system
identifier (which may be needed to specify MBeans later).

If you create such an MBean from your application, and if Derby has already registered
a ManagementMBean instance, the new MBean cannot have the same object name as
the ManagementMBean already registered with the server. It is therefore recommended
to use a different object name domain (that is, different from example.com) and/or a
different type key property value (different from Management).

The following example code shows how to create and register a new ManagementMBean
with the MBean server:

 ObjectName mgmtObjName = new ObjectName("com.example.app",
 "type", "DerbyManagement");
 try {

Derby Server and Administration Guide

45

 ObjectInstance mgmtObj =
 mbeanServerConn.createMBean("example.com.mbeans.Management",
 mgmtObjName);
 } catch (InstanceAlreadyExistsException e) {
 // A management MBean with this object name already exists!
 }

Activating Derby management

Derby attempts to activate its JMX management service by default, so it will usually be
active unless you explicitly deactivate it, providing that Derby has permissions to perform
the activation. If Derby management is not active, you will not be able to access any
MBeans except the ManagementMBean.

By accessing the ManagementActive attribute of the ManagementMBean, you can
check whether the Derby JMX management service is active or not. The following
example code performs this check and activates the Derby management service if it is
not already active:

 // assuming we already have a reference to the
 // ManagementMBean's object name
 Boolean active = (Boolean)
 mbeanServerConn.getAttribute(mgmtObjName, "ManagementActive");
 if (!active.booleanValue()) {
 // start management
 mbeanServerConn.invoke(mgmtObjName, "startManagement",
 new Object[0], new String[0]);
 }

Obtaining the system identifier

The system identifier is a unique String that distinguishes one running Derby system
from another. All MBeans that are instantiated by Derby include the system identifier in
their object names.

One way to access an MBean is to fully specify its object name when contacting the
MBean server. For this, you need to know the current system identifier. (Alternative ways
to access MBeans include querying the MBean server for all MBeans, or for MBeans
whose object names match a specific pattern.)

The following example shows how to obtain the system identifier by accessing a
ManagementMBean:

 // assuming we already have a reference to the
 // ManagementMBean's object name
 String systemID = (String) mbeanServerConn.getAttribute(mgmtObjName,
 "SystemIdentifier");

The following example shows how to obtain the system identifier from a Derby MBean's
object name:

 // assuming we already have a reference to the ObjectName
 // of an MBean registered by Derby, for example the
 // Derby-registered ManagementMBean
 String systemID = derbyMgmtObjectName.getKeyProperty("system");

Accessing a specific Derby-registered MBean

In the previous examples, you have already seen how to read a single MBean attribute,
and how to invoke an MBean operation. In order to do this, you usually need a reference
to the MBean's ObjectName.

If you consult the public API documentation for the Derby MBeans and obtain the
system identifier of the Derby system you are accessing through JMX, you have all the
information you need to be able to instantiate a javax.management.ObjectName

Derby Server and Administration Guide

46

object directly, by fully specifying its String representation (see the ObjectName API
documentation for details).

The following example code shows how to obtain a reference to the VersionMBean for
derby.jar:

 // Assuming we already know the system identifier
 // (see examples above), systemID.
 // A list of key properties is available is each MBean's Javadoc API.
 Hashtable<String, String> keyProps = new Hashtable<String, String>();
 keyProps.put("type", "Version");
 keyProps.put("jar", "derby.jar");
 keyProps.put("system", systemID);
 // MBeans registered by Derby always belong to the
 // "org.apache.derby" domain
 ObjectName versionObjectName =
 new ObjectName("org.apache.derby", keyProps);

 // we can now use the object name to read an attribute
 String versionString =
 (String) mbeanServerConn.getAttribute(versionObjectName,
 "VersionString");
 System.out.println("VersionString: " + versionString);

The output would look something like this:

VersionString: 10.9.1.1 - (1305115)

Troubleshooting JMX connection issues

If you experience problems connecting remotely to an MBean server using JMX, it may
be helpful to obtain some tracing information.

For details on connecting remotely to an MBean server, see Using JConsole to access
the Derby MBeans and Using custom Java code to access the Derby MBeans.

The JMX implementation in the Oracle JDK uses the java.util.logging API to
log JMX traces. For example, in order to trace SSL connection issues, set the system
property java.util.logging.config.file as shown in the following:

java -Djava.util.logging.config.file=logging.properties MyJmxClient

With JConsole, a separate logging window will appear if you specify the following option
when you start JConsole (see Using JConsole to access the Derby MBeans), as long as
the logging.properties file is found:

-J-Djava.util.logging.config.file=logging.properties

The logging.properties file should specify log handlers and logging levels, as in the
following example:

handlers = java.util.logging.ConsoleHandler
.level = INFO

java.util.logging.ConsoleHandler.level=FINEST
java.util.logging.ConsoleHandler.formatter=java.util.logging.SimpleFormatter

 // Level FINEST is suitable for diagnosing SSL-related JMX remote
 // connection issues.
javax.management.level=FINEST
javax.management.remote.level=FINEST

The blog entry
https://blogs.oracle.com/jmxetc/entry/troubleshooting_connection_problems_in_jconsole
provides additional hints and tips.

https://blogs.oracle.com/jmxetc/entry/troubleshooting_connection_problems_in_jconsole

Derby Server and Administration Guide

47

Managing the Derby Network Server remotely by using the servlet
interface

You can use the servlet interface to manage the Network Server remotely. To use
the servlet interface, the servlet must be registered with an Application Server, and
derby.system.home must be known to the Application Server.

> Important: The servlet interface is suitable only for testing purposes. It should not be
used in production.

A web application archive (WAR) file for the Derby Network Server, derby.war, is
available in $DERBY_HOME/lib. This file registers the Network Server's servlet at
the relative path /derbynet. See the documentation for your Application Server for
instructions on how to install it.

For example, if derby.war is installed in WebSphere Application Server with a context
root of derby, the URL of the server is:

http://<server>[:port]/derby/derbynet

Notes:
• A servlet engine is not part of the Network Server.
• When the Network Server is started by the servlet interface, shutting down the

Application Server also shuts the Network Server down, since both run in the same
JVM.

The servlet takes the following optional configuration parameters:

host
Specifies the host name to be used by the Network Server. See the Security
Considerations section below.

portNumber
Specifies the port number to be used by the Network Server.

startNetworkServerOnInit
Specifies that the Network Server is to be started when the servlet is initialized.

tracingDirectory
Specifies the location for trace files. If the tracing directory is not specified, the traces
are placed in derby.system.home.

Security considerations

For general security considerations for the Network Server, see the Derby Security
Guide.

The host parameter allows configuration of the host name that will be used for the
listening socket for network connections. By default, the Network Server will listen to
requests only on the loopback address, which means that it will only accept connections
from the local host. Changing this value could expose the server to external connections,
which raises security concerns, so before using the host parameter, you should enable
user authentication.

This section describes the servlet pages.

Start-up page

Use the start-up page to start the server.

In addition to starting the Network Server, you can use the startup page to perform the
following actions:

Derby Server and Administration Guide

48

• Turn logging on when the server is started.
• Turn tracing on for all sessions when the server is started.

Running page

If the Network Server is running (whether it was started by initializing the servlet or in
some other manner), the running page is displayed.

The running page indicates whether logging is on or off, whether tracing is on or off, and
if tracing is on, indicates for which session.

You can use the running page to stop the server and turn logging and tracing on or off.
The following options are available from the running page:

• Start or stop logging.
• Start or stop tracing all sessions.
• Specify session to trace. (If you choose this option, the Trace session page is

displayed.)
• Change tracing directory. (If you choose this option, the Trace directory page is

displayed.)
• Specify threading parameters for the Network Server. (If you choose this option, the

Thread parameters page is displayed.)
• Stop the Network Server.

Trace session page

If on the running page you choose to specify a session to trace, this page is displayed.
You must enter the Session ID.

You are given the option to turn tracing on or off or return to the previous menu. When
you click the Trace On/Off button, information indicating the current tracing state is
displayed.

Trace directory page

This page is displayed if the you choose to change the tracing directory on the Running
page. You must enter the Trace Directory.

You can either set a tracing directory, or you can return to the previous menu. Additional
information is displayed that indicates the current tracing directory when you click the Set
Directory button.

Set Network Server parameters

The first page is displayed if the thread parameter button is clicked. Use this page to set
the new parameters.

Enter the following information:

• New maximum number of threads
• New thread time slice

If either the maximum threads or time slice parameter is left blank, that value is left
unchanged from the current setting.

Click Set Network Server parameters to display the updated values for the maximum
threads and the time slice parameters.

Derby Network Server advanced topics

Derby Server and Administration Guide

49

This section discusses several advanced topics for users of the Derby Network Server.

Configuring the Network Server to handle connections

You can configure the Network Server to use a specific number of threads to handle
connections. You can change the configuration on the command line.

The minimum number of threads is the number of threads that are started
when the Network Server is booted. This value is specified as a property,
derby.drda.minThreads=min. The maximum number of threads is the maximum
number of threads that will be used for connections. If more connections are active
than there are threads available, the extra connections must wait until the next thread
becomes available. Threads can become available after a specified time, which is
checked only when a thread has finished processing a communication.

• You can change the maximum number of threads by using the following command
(all on one line):

java org.apache.derby.drda.NetworkServerControl maxthreads max
 [-h hostname] [-p portnumber

You can also use the derby.drda.maxThreads property to assign the maximum
value. A max value of 0 means that there is no maximum and a new thread will
be generated for a connection if there are no current threads available. This is the
default. The max and min values are stored as integers, so the theoretical maximum
is 2147483647 (the maximum size of an integer). But the practical maximum is
determined by the machine configuration.

• To change the time that a thread should work on one session's request and check if
there are waiting sessions, use the following command (all on one line):

java org.apache.derby.drda.NetworkServerControl
 timeslice milliseconds [-h hostname] [-p portnumber]

You can also use the derby.drda.timeSlice property to set this value. A value
of 0 milliseconds indicates that the thread will not give up working on the session
until the session ends. A value of -1 milliseconds indicates to use the default. The
default value is 0. The maximum number of milliseconds that can be specified is
2147483647 (the maximum size of an integer).

For more information on these properties, see derby.drda.minThreads property,
derby.drda.maxThreads property, and derby.drda.timeSlice property.

Controlling logging by using the log file

The Network Server uses the derby.log file to log problems that it encounters. It also
logs connections when the property derby.drda.logConnections is set to true.

See derby.drda.logConnections property for information on this property.

The derby.log file is created when the Derby server is started. The Network Server
then records the time and version. If a log file exists, it is overwritten, unless the property
derby.infolog.append is set to true.See "derby.infolog.append" in the Derby
Reference Manual for information on this property.

When the Network Server is logging connections, it also logs the Connection Number;
this log message is written both to the derby.log file and to the Network Server
console.

• To turn on connection logging, use the following command (all on one line):

java org.apache.derby.drda.NetworkServerControl

Derby Server and Administration Guide

50

 logconnections on [-h hostname] [-p portnumber]
• To turn off connection logging, use the following command (all on one line):

java org.apache.derby.drda.NetworkServerControl
 logconnections off [-h hostname][-p portnumber]

See the Derby Developer's Guide for more information about the derby.log file.

Controlling tracing by using the trace facility

Use the trace facility only if you are working with technical support and they require
tracing information.

Turning on the trace facility

Follow these steps to turn on the trace facility.

1. Turn on tracing for all sessions by specifying the following property:

derby.drda.traceAll=true

See derby.drda.traceAll property for information on this property.

Alternatively, while the Network Server is running, you can use the following
command (all on one line) to turn on the trace facility:

java org.apache.derby.drda.NetworkServerControl
 trace on [-s connection-number] [-h hostname][-p portnumber]

If you specify a connection-number, tracing will be turned on only for that
connection.

2. Set the location of the tracing files by specifying the following property:

derby.drda.traceDirectory=directory-for-tracing-files

See derby.drda.traceDirectory property for information on this property.

Alternatively, while the Network Server is running, use the following command (all
on one line) to set the trace directory:

java org.apache.derby.drda.NetworkServerControl traceDirectory
 directory-for-tracing-files [-h hostname] [-p portnumber]

You need to specify only the directory where the tracing files will reside. The names
of the tracing files are determined by the system. If you do not set a trace directory,
the tracing files will be placed in derby.system.home.

The Network Server will attempt to create the trace directory (and any parent
directories) if they do not exist.

Turning off the trace facility

Enter the following command (all on one line) to turn off tracing.

java org.apache.derby.drda.NetworkServerControl trace off
 [-s connection number] [-h hostname] [-p portnumber]

The tracing files are named ServerX.trace, where X is a connection number.

Derby Network Server sample programs
Derby provides several sample programs for Network Server users.

The NsSample sample program

Derby Server and Administration Guide

51

The NsSample demonstration program is a simple JDBC application that interacts with
the Network Server.

The NsSample program performs the following tasks:
• Starts the Network Server.
• Checks that the Network Server is running.
• Creates the NsSampledb database if it has not already been created.
• Checks to see if the schema is already created, and if not, creates the schema,

which includes the SAMPLETBL table and corresponding indexes.
• Connects to the database.
• Loads the schema by inserting data.
• Starts client threads to perform database related operations.
• Has each of the clients perform DML operations (select, insert, delete, update)

using JDBC calls. For example, one client thread establishes an embedded
connection to perform database operations, while another client thread establishes
a client connection to the Network Server to perform database operations.

• Waits for the client threads to finish the tasks.
• Shuts down the Network Server at the end of the demonstration.

You must install the following files in the %DERBY_HOME%\demo\nserverdemo\
directory before you can run the sample program:

• NsSample.java

This is the entry point into the sample program. The program starts up two client
threads. The first client establishes an embedded connection to perform database
operations, and the second client establishes a client connection to the Network
Server to perform database operations.

You can change the following constants to modify the sample program:

NUM_ROWS
The number of rows that must be initially loaded into the schema.

ITERATIONS
The number of iterations for which each client thread does database related work.

NUM_CLIENT_THREADS
The number of clients that you want to run the program against.

NETWORKSERVER_PORT
The port on which the Network Server is running.

• NsSampleClientThread.java
This file contains two Java classes:

• The NsSampleClientThread class extends Thread and instantiates a
NsSampleWork instance.

• The NsSampleWork class contains everything that is required to perform DML
operations using JDBC calls. The doWork method in the NsSampleWork
class represents all the work done as part of this sample program.

• NetworkServerUtil.java

This file contains helper methods to start the Network Server and to shut down the
server.

The compiled class files for the NsSample program are:
• NsSample.class
• NsSampleClientThread.class
• NsSampleWork.class
• NetworkServerUtil.class

Running the NsSample sample program

To run the NsSample program, follow these steps.

Derby Server and Administration Guide

52

1. Open a command prompt and change to the %DERBY_HOME%\demo\ directory,
where %DERBY_HOME% is the directory where you installed Derby.

2. Set the CLASSPATH to the current directory ("."), and also include the following jar
files in order to use the Network Server and the network client driver:

derbynet.jar
The Network Server jar file. It must be in your CLASSPATH to use any of the
Network Server functions.

derbyclient.jar
This jar file must be in your CLASSPATH to use the Network Client driver.

derby.jar
The Derby database engine jar file.

derbyshared.jar
Code shared by all Derby configurations.

derbytools.jar
Derby DataSources and tools.

3. Test the CLASSPATH settings by running the following Java command:

java org.apache.derby.tools.sysinfo

This command shows the Derby jar files that are in the classpath as well as their
respective versions.

4. After you set up your environment correctly, run the NsSample program from the
same directory:

java nserverdemo.NsSample

If the program runs successfully, you will receive output similar to the following:

Using JDBC driver: org.apache.derby.jdbc.ClientDriver
Derby Network Server created
Apache Derby Network Server started
and ready to accept connections on port 1621
[NsSample] Derby Network Server started.
[NsSample] Sample Derby Network Server program demo starting.
Please wait
Connection number: 2.
[NsSampleWork] Begin creating table - SAMPLETBL and necessary
 indexes.
[NsSampleClientThread] Thread id - 2; started.
[NsSampleWork] Thread id - 2; requests database connection,
 dbUrl =jdbc:derby://localhost:1621/NSSampledb;create=true;
[NsSampleClientThread] Thread id - 1; started.
[NsSampleWork] Thread id - 1; requests database connection,
 dbUrl =jdbc:derby:NSSampledb;
[NsSampleWork] Thread id - 1; inserted 1 row.
[NsSampleWork] Thread id - 1; inserted 1 row.
[NsSampleWork] Thread id - 1; deleted 1 row with t_key = 9372
[NsSampleWork] Thread id - 1 selected 1 row [920,Derby50
 ,951.7808,9216]
[NsSampleWork] Thread id - 1 selected 1 row [920,Derby50
 ,951.7808,9216]
[NsSampleWork] Thread id - 1; inserted 1 row.
[NsSampleWork] Thread id - 1 selected 1 row [920,Derby50
 ,951.7808,9216]
[NsSampleWork] Thread id - 1; deleted 1 row with t_key = 9216
[NsSampleWork] Thread id - 1 selected 1 row [824,Derby26
 ,8.802546E22,9155]
[NsSampleWork] Thread id - 1; updated 1 row with t_key = 9155
[NsSampleWork] Thread id - 1; closed connection to the database.
[NsSampleClientThread] Thread id - 1; finished all tasks.
[NsSampleWork] Thread id - 2; updated 0 row with t_key = 9372
[NsSampleWork] Thread id - 2; updated 1 row with t_key = 9155
[NsSampleWork] Thread id - 2 selected 1 row [56,Derby26
 ,8.802546E22,9155]

Derby Server and Administration Guide

53

[NsSampleWork] Thread id - 2; inserted 1 row.
[NsSampleWork] Thread id - 2; updated 1 row with t_key = 9155
[NsSampleWork] Thread id - 2; deleted 1 row with t_key = 9155
[NsSampleWork] Thread id - 2 selected 1 row [785,Derby2
 ,0.30170244,8280]
[NsSampleWork] Thread id - 2 selected 1 row [785,Derby2
 ,0.30170244,8280]
[NsSampleWork] Thread id - 2; updated 1 row with t_key = 8280
[NsSampleWork] Thread id - 2 selected 1 row [59,Derby2
 ,0.30170244,8280]
[NsSampleWork] Thread id - 2; closed connection to the database.
[NsSampleClientThread] Thread id - 2; finished all tasks.
[NsSample] Shutting down network server.
Apache Derby Network Server - shutdown
[NsSample] End of Network server demo.

Running the NsSample program also creates the following new directory and file:
NSSampledb

This directory makes up the NSSampledb database.
derby.log

This log file contains Derby progress and error messages.

Network Server sample programs for embedded and client connections

This Derby Network Server sample program demonstrates how to obtain an embedded
connection and client connections to the same database by using the Network Server.
This program shows how to use either the DriverManager or a DataSource to obtain
client connections.

For a database to be consistent, only one JVM can access it at a time. The embedded
driver is loaded when the Network Server is started. The JVM that starts the Network
Server can obtain an embedded connection to the same database that the Network
Server is accessing to serve clients from other JVMs. This solution provides the
performance benefits of the embedded driver and also allows client connections from
other JVMs to connect to the same database.

Overview of the SimpleNetworkServerSample program

The SimpleNetworkServerSample program starts the Derby Network Server, as well
as the embedded driver, and waits for clients to connect.

The program performs the following tasks.
1. Starts the Derby Network Server by using a property and also loads the embedded

driver
2. Determines if the Network Server is running
3. Creates the NSSimpleDB database if it is not already created
4. Obtains an embedded database connection
5. Tests the database connection by executing a sample query
6. Allows client connections to connect to the server until you decide to stop the server

and exit the program
7. Closes the connection
8. Shuts down the Network Server before exiting the program

To run the sample program, you need the following files in the
%DERBY_HOME%\demo\nserverdemo\ directory:

• The source file: SimpleNetworkServerSample.java
• The compiled class file: SimpleNetworkServerSample.class

Running the SimpleNetworkServerSample program

To run the Derby Network Server sample program, follow these steps.

Derby Server and Administration Guide

54

1. Open a command prompt and change directories to the
%DERBY_HOME%\demo\nserverdemo directory, where %DERBY_HOME% is the
directory where you installed Derby.

2. Set the classpath to include the current directory (".") and the following jar files:

derbynet.jar
The Network Server jar file. It must be in your CLASSPATH because you start the
Network Server in this program.

derby.jar
The database engine jar file.

derbtools.jar
DataSources.

derbyshared.jar
Common utility methods.

3. Test the CLASSPATH settings by running the following Java command:

java org.apache.derby.tools.sysinfo

This command displays the Derby jar files that are in the classpath.
4. After you set up your environment correctly, run the

SimpleNetworkServerSample program from the same directory:

java SimpleNetworkServerSample

If the program runs successfully, you will receive output that is similar to that shown
in the following example:

Starting Network Server
Testing if Network Server is up and running!
Derby Network Server now running
Got an embedded connection.
Testing embedded connection by executing a sample query
number of rows in sys.systables = 16
While my app is busy with embedded work, ij might connect like this:

 $ java -Dij.user=me -Dij.password=pw -Dij.protocol=
 jdbc:derby:\\localhost:1527\ org.apache.derby.tools.ij
 ij> connect 'NSSimpleDB';

Clients can continue to connect:
Press [Enter] to stop Server

Do not press Enter at this time. Leave the server running while you run the
SimpleNetworkClientSample program.

Running the SimpleNetworkServerSample program also creates the following new
directory and file:
NSSimpleDB

This directory makes up the NSSimpleDB database.
derby.log

This log file contains Derby progress and error messages.

Connecting a client to the Network Server with the SimpleNetworkClientSample program

The SimpleNetworkClientSample program is a client program that interacts with the
Derby Network Server from another JVM.

The program performs the following tasks:
1. Obtains a client connection by using the DriverManager.
2. Obtains a client connection by using a DataSource.
3. Tests the database connections by running a sample query.
4. Closes the connections and then exits the program.

Derby Server and Administration Guide

55

To run the sample program, use the following files in the
%DERBY_HOME%\demo\nserverdemo\ directory:

• The source file: SimpleNetworkClientSample.java
• The compiled class file: SimpleNetworkClientSample.class

Running the SimpleNetworkClientSample program

To connect to the Network Server that has been started with the
SimpleNetworkServerSample program, follow these steps.

1. Open a command prompt and change directories to the
%DERBY_HOME%\demo\nserverdemo directory, where %DERBY_HOME% is the
directory where you installed Derby.

2. Set the classpath to include the following jar files:

• The current directory (".")
• derbyclient.jar
• derbyshared.jar
• derbytools.jar

3. After you set up your environment correctly, run the
SimpleNetworkClientSample program from the same directory:

java SimpleNetworkClientSample

If the program runs successfully, you will receive output similar to that shown in the
following example:

Starting Sample client program
Got a client connection via the DriverManager.
connection from datasource; getDriverName = Apache Derby Network
 Client JDBC Driver
Got a client connection via a DataSource.
Testing the connection obtained via DriverManager by executing a
 sample query
number of rows in sys.systables = 23
Testing the connection obtained via a DataSource by executing a
 sample query
number of rows in sys.systables = 23
Goodbye!

4. After running the program, return to the command prompt where you ran the
SimpleNetworkServerSample program and press Enter.

Derby Server and Administration Guide

56

Part Two: Derby Administration Guide

This section of the guide is divided into several administrative tasks.

Maintaining database integrity
One of the most important responsibilities of a database administrator is to maintain the
integrity of the database and prevent it from becoming corrupted.

Derby must be able to sync to disk. Some machine, disk, or operating system settings
can prevent a proper sync and cause unrecoverable database corruption in the event of a
power failure, system crash, or software crash. To avoid database corruption, you can do
the following:

• Do not touch any files or directories in the database directory, including the log
and seg0 directories and the service.properties file. Editing, adding, or
deleting files in this directory may cause data corruption and leave the database in a
non-recoverable state.

• Do not enable disk write caching on the hard drive that holds the database. Disable
write caching if it is turned on (it is enabled by default on many Windows systems).
Disk write caching can increase operating system performance. However, it can
also result in the loss of information if a power failure, equipment failure, or software
failure occurs. Consult your operating system support documentation for information
on how to disable disk write caching.

• Run Derby on a local drive rather than on an NFS mounted, SMB mounted, or other
network mounted disk.

• Disable any other settings or options that might prevent a proper sync to disk when
Derby is writing its transaction logs or other data.

Many corruption issues can arise from improper backups or restores. Back up your
database in a way that prevents it from becoming corrupted:

• Always make sure the database is shut down or frozen before using operating
system commands to back it up.

• Always back up the database to a fresh location rather than overwriting any existing
data.

After you perform a backup, check the consistency of the database. See Checking
database consistency for details.

See Backing up and restoring databases for more information.

Checking database consistency
After you perform a backup, or if you experience hardware or operating system failure,
you can use the SYSCS_UTIL.SYSCS_CHECK_TABLE system function to verify that the
database is still consistent.

It is recommended that you run SYSCS_UTIL.SYSCS_CHECK_TABLE on all the tables in
a database offline after you back it up. Do not discard the previous backup until you have
verified the consistency of the current one. Otherwise, check consistency only if there are
indications that such a check is needed, because a consistency check can take a long
time on a large database.

See the Derby Reference Manual for details about this system function.

Derby Server and Administration Guide

57

The SYSCS_CHECK_TABLE function

The SYSCS_UTIL.SYSCS_CHECK_TABLE function checks the consistency of a Derby
table.

In particular, the SYSCS_UTIL.SYSCS_CHECK_TABLE function verifies the following
conditions:

• Base tables are internally consistent
• Base tables and all associated indexes contain the same number of rows
• The values and row locations in each index match those of the base table
• All BTREE indexes are internally consistent

You run this function in an SQL statement, as follows:

VALUES SYSCS_UTIL.SYSCS_CHECK_TABLE(SchemaName, TableName)

where SchemaName and TableName are expressions that evaluate to a string data type.
If you created a schema or table name as a non-delimited identifier, you must present
their names in all upper case. For example:

VALUES SYSCS_UTIL.SYSCS_CHECK_TABLE('APP', 'CITIES')

The SYSCS_UTIL.SYSCS_CHECK_TABLE function returns a SMALLINT. If the
table is consistent (or if you run SYSCS_UTIL.SYSCS_CHECK_TABLE on a view),
SYSCS_UTIL.SYSCS_CHECK_TABLE returns a non-zero value. Otherwise, the function
throws an exception on the first inconsistency that it finds.

For a consistent table, the following result is displayed:

1

1

1 row selected

Sample SYSCS_CHECK_TABLE error messages

This section provides examples of error messages that the
SYSCS_UTIL.SYSCS_CHECK_TABLE function can return.

If the row counts of the base table and an index differ, error message X0Y55 is issued:

ERROR X0Y55: The number of rows in the base table does not match
the number of rows in at least 1 of the indexes on the table. Index
'T1_I' on table 'APP.T1' has 4 rows, but the base table has 5 rows.
The suggested corrective action is to recreate the index.

If the index refers to a row that does not exist in the base table, error message X0X62 is
issued:

ERROR X0X62: Inconsistency found between table 'APP.T1' and index
'T1_I'. Error when trying to retrieve row location '(1,6)' from the
table. The full index key,including the row location, is '{ 1, (1,6) }'.
The suggested corrective action is to recreate the index.

If a key column value differs between the base table and the index, error message X0X61
is issued:

ERROR X0X61: The values for column 'C10' in index 'T1_C10' and
table 'APP.T1' do not match for row location (1,7). The value in the
index is '2 2 ', while the value in the base table is 'NULL'. The full
index key, including the row location, is '{ 2 2 , (1,7) }'. The
suggested corrective action is to recreate the index.

Derby Server and Administration Guide

58

Sample SYSCS_CHECK_TABLE queries

This section provides examples that illustrate how to use the
SYSCS_UTIL.SYSCS_CHECK_TABLE function in queries.

To check the consistency of a single table, run a query that is similar to the one shown in
the following example:

VALUES SYSCS_UTIL.SYSCS_CHECK_TABLE('APP', 'FLIGHTS')

To check the consistency of all of the tables in a schema, stopping at the first failure, run
a query that is similar to the one shown in the following example:

SELECT tablename, SYSCS_UTIL.SYSCS_CHECK_TABLE(
 'SAMP', tablename)
FROM sys.sysschemas s, sys.systables t
WHERE s.schemaname = 'SAMP' AND s.schemaid = t.schemaid

To check the consistency of an entire database, stopping at the first failure, run a query
that is similar to the one shown in the following example::

SELECT schemaname, tablename,
SYSCS_UTIL.SYSCS_CHECK_TABLE(schemaname, tablename)
FROM sys.sysschemas s, sys.systables t
WHERE s.schemaid = t.schemaid

Backing up and restoring databases
Derby provides a way to back up a database while it is either offline or online. You can
also restore a full backup from a specified location.

To back up a database, you can do any of the following:

• Shut down the database and use operating system commands to copy it to a
backup location, as described in Offline backups.

• Leave the database running and call one of four system backup procedures to copy
it to a backup location, as described in Using the backup procedures to perform an
online backup.

• Leave the database running, but call a system procedure to freeze the database,
use operating system commands to copy it to a backup location, then call a system
procedure to unfreeze the database, as described in Using operating system
commands with the freeze and unfreeze system procedures to perform an online
backup.

To restore a database from a backup copy, you must use one of three connection URL
attributes:

• restoreFrom=path, described in Restoring a database from a backup copy
• createFrom=path, described in Creating a database from a backup copy
• rollForwardRecoveryFrom=path, described in Roll-forward recovery

Backing up a database

You can back up a database either offline (when it is shut down) or online (when it is
running).

After you back up a database, make sure the backup copy is not corrupt. To do this, run
the SYSCS_UTIL.SYSCS_CHECK_TABLE system function on all the tables in the backup
copy. Do not discard the previous backup until you have verified the consistency of the
current one. See Checking database consistency for more information.

The topics in this section describe how to back up a database.

Derby Server and Administration Guide

59

Offline backups

To perform an offline backup of a database, use operating system commands to copy the
database directory.

> Important: You must shut down the database before you perform an offline backup.

For example, on Windows systems, the following operating system command backs up
a (closed) database that is named sample and that is located in d:\mydatabases by
copying it to the directory c:\mybackups\2012-04-01:

xcopy d:\mydatabases\sample c:\mybackups\2012-04-01\sample /s /i

If you are not using Windows, substitute the appropriate operating system command for
copying a directory and all contents to a new location.

Note: On Windows systems, do not attempt to update a database while it is being
backed up in this way. Attempting to update a database during an offline backup will
generate a java.io.IOException. Using online backups prevents this from occurring.

For large systems, shutting down the database might not be convenient. To back up a
database without having to shut it down, you can use an online backup.

After you back up a database, make sure the backup copy is not corrupt. To do this, run
the SYSCS_UTIL.SYSCS_CHECK_TABLE system function on all the tables in the backup
copy. Do not discard the previous backup until you have verified the consistency of the
current one. See Checking database consistency for more information.

Online backups

Use online backups to back up a database while it is running, without blocking
transactions.

You can perform online backups by using several types of backup procedures or by using
operating system commands with the freeze and unfreeze system procedures.

Using the backup procedures to perform an online backup:

Use the SYSCS_UTIL.SYSCS_BACKUP_DATABASE procedure or one of the other system
backup procedures to perform an online backup of a database to a specified location.

The backup procedures are as follows:

• SYSCS_UTIL.SYSCS_BACKUP_DATABASE
• SYSCS_UTIL.SYSCS_BACKUP_DATABASE_NOWAIT
• SYSCS_UTIL.SYSCS_BACKUP_DATABASE_AND_ENABLE_LOG_ARCHIVE_MODE
• SYSCS_UTIL.SYSCS_BACKUP_DATABASE_AND_ENABLE_LOG_ARCHIVE_MODE_NOWAIT

Use the
SYSCS_UTIL.SYSCS_BACKUP_DATABASE_AND_ENABLE_LOG_ARCHIVE_MODE
or
SYSCS_UTIL.SYSCS_BACKUP_DATABASE_AND_ENABLE_LOG_ARCHIVE_MODE_NOWAIT
procedure if you want to make it possible to perform a roll-forward recovery of a damaged
database. See Roll-forward recovery for details.

The NOWAIT versions of the procedures do not wait for transactions in progress with
unlogged operations to complete before proceeding with the backup; instead, they return
an error immediately.

See the Derby Reference Manual for details about these system procedures.

All four of these system procedures take a string argument that represents the location
in which to back up the database. Typically, you provide the full path to the backup
directory. (Relative paths are interpreted as relative to the current directory, not to the
derby.system.home directory.)

Derby Server and Administration Guide

60

For example, to specify a backup location of c:/mybackups/2012-04-01 for a
database that is currently open, use the following statement (forward slashes are used as
path separators in SQL commands):

CALL SYSCS_UTIL.SYSCS_BACKUP_DATABASE('c:/mybackups/2012-04-01')

The SYSCS_UTIL.SYSCS_BACKUP_DATABASE or
SYSCS_UTIL.SYSCS_BACKUP_DATABASE_NOWAIT procedure puts the database into
a state in which it can be safely copied. The procedure then copies the entire original
database directory (including data files, online transaction log files, and jar files) to the
specified backup directory. Files that are not within the original database directory (for
example, derby.properties) are not copied. With the exception of a few cases
mentioned in Unlogged Operations, the procedure does not block concurrent transactions
at any time.

A backup made with the
SYSCS_UTIL.SYSCS_BACKUP_DATABASE_AND_ENABLE_LOG_ARCHIVE_MODE
or
SYSCS_UTIL.SYSCS_BACKUP_DATABASE_AND_ENABLE_LOG_ARCHIVE_MODE_NOWAIT
procedure is not a full copy of the database, but depends on the log files created in the
database since the backup. An attempt to access the backup directly will invalidate the
backup. The result could include a corrupted database, missing data, errors during a
subsequent attempt at restoring the database, or database corruption errors encountered
only once the restored database is being used. The only supported way to access this
kind of backup is to restore the database as documented in Roll-forward recovery.

The following example shows how to back up a database to a directory with a name that
reflects the current date:

public static void backUpDatabase(Connection conn)
 throws SQLException {
 // Get today's date as a string:
 java.text.SimpleDateFormat todaysDate =
 new java.text.SimpleDateFormat("yyyy-MM-dd");
 String backupdirectory = "c:/mybackups/" +
 todaysDate.format((java.util.Calendar.getInstance()).getTime());

 CallableStatement cs =
 conn.prepareCall("CALL SYSCS_UTIL.SYSCS_BACKUP_DATABASE(?)");
 cs.setString(1, backupdirectory);
 cs.execute();
 cs.close();
 System.out.println("backed up database to " + backupdirectory);
}

For a database that was backed up on 2012-04-01, the previous commands copy the
current database to a directory of the same name in c:/mybackups/2012-04-01.

Uncommitted transactions do not appear in the backed-up database.

Note: Do not back up different databases with the same name to the same backup
directory. If a database of the same name already exists in the backup directory, it is
assumed to be an older version and is overwritten.

Unlogged Operations

For some operations, Derby does not log because it can keep the database consistent
without logging the data.

The SYSCS_UTIL.SYSCS_BACKUP_DATABASE procedure will issue an error if there are
any unlogged operations in the same transaction as the backup procedure.

Derby Server and Administration Guide

61

If any unlogged operations are in progress in other transactions in the system when
the backup starts, this procedure will block until those transactions are complete before
performing the backup.

Derby automatically converts unlogged operations to logged mode if they are started
while the backup is in progress (except operations that maintain application jar files in the
database). Procedures to install, replace, and remove jar files in a database are blocked
while the backup is in progress.

If you do not want backup to block until unlogged operations in other transactions are
complete, use the SYSCS_UTIL.SYSCS_BACKUP_DATABASE_NOWAIT procedure.
This procedure issues an error immediately at the start of the backup if there are
any transactions in progress with unlogged operations, instead of waiting for those
transactions to complete.

Unlogged operations include:

• Index creation.

Only CREATE INDEX is logged, not all the data inserts into the index. The reason
inserts into the index are not logged is that if there is a failure, it will just drop the
index.

If you create an index when the backup is in progress, it will be slower, because it
has to be logged.

Foreign keys and primary keys create backing indexes. Adding those keys to an
existing table with data will also run slower.

• Importing to an empty table or replacing all the data in a table.

In this case also, data inserts into the table are not logged. Internally, Derby creates
a new table for the import, changes the catalogs to point to the new table, and drops
the original table when the import completes.

If you perform such an import operation when backup is in progress, it will be slower
because data is logged.

Using operating system commands with the freeze and unfreeze system
procedures to perform an online backup:

Typically, these procedures are used to speed up the copy operation involved in an
online backup.

In this scenario, Derby does not perform the copy operation for you. You use the
SYSCS_UTIL.SYSCS_FREEZE_DATABASE procedure to lock the database, and then you
explicitly copy the database directory by using operating system commands.

For example, because the UNIX tar command uses operating system file-copying
routines, and the SYSCS_UTIL.SYSCS_BACKUP_DATABASE procedure uses
Java I/O calls with additional internal synchronization that allow updates
during the backup, the tar command might provide faster backups than the
SYSCS_UTIL.SYSCS_BACKUP_DATABASE procedure.

To use operating system commands for online database backups, call
the SYSCS_UTIL.SYSCS_FREEZE_DATABASE system procedure. The
SYSCS_UTIL.SYSCS_FREEZE_DATABASE system procedure puts the database into
a state in which it can be safely copied. After the database has been copied, use the
SYSCS_UTIL.SYSCS_UNFREEZE_DATABASE system procedure to continue working
with the database. Only after SYSCS_UTIL.SYSCS_UNFREEZE_DATABASE has been
specified can transactions once again write to the database. Read operations can
proceed while the database is frozen.

Derby Server and Administration Guide

62

Note: To ensure a consistent backup of the database, Derby might block applications
that attempt to write to a frozen database until the backup is completed and the
SYSCS_UTIL.SYSCS_UNFREEZE_DATABASE system procedure is called.

The following example demonstrates how the freeze and unfreeze procedures are used
to surround an operating system copy command:

public static void backUpDatabaseWithFreeze(Connection conn)
 throws SQLException {
 Statement s = conn.createStatement();
 s.executeUpdate(
 "CALL SYSCS_UTIL.SYSCS_FREEZE_DATABASE()");
 //copy the database directory during this interval
 s.executeUpdate(
 "CALL SYSCS_UTIL.SYSCS_UNFREEZE_DATABASE()");
 s.close();
}

When the log is in a non-default location

If you put the database log in a non-default location prior to backing up the database, be
aware of the following requirements.

• If you are using an operating system command to back up the database, you must
explicitly copy the log file as well, as shown in the following example:

xcopy d:\mydatabases\sample c:\mybackups\2012-04-01\sample /s /i
xcopy h:\janet\tourslog\log c:\mybackups\2012-04-01\sample\log /s /i

If you are not using Windows, substitute the appropriate operating system
command for copying a directory and all of its contents to a new location.

• Edit the logDevice entry in the service.properties file of the database
backup so that it points to the correct location for the log. In the previous example,
the log was moved to the default location for a log, so you can remove the
logDevice entry entirely, or leave the logDevice entry as is and wait until the
database is restored to edit the entry.

See Logging on a separate device for information about the default location of the
database log and about putting the log in a non-default location.

Backing up encrypted databases

When you back up an encrypted database, both the backup and the log files remain
encrypted.

To restore an encrypted database, you must know the boot password.

Restoring a database from a backup copy

To restore a database by using a full backup from a specified location, specify the
restoreFrom=path attribute in the boot-time connection URL.

If a database with the same name exists in the derby.system.home location, the
system will delete the database, copy it from the backup location, and then restart it.

The log files are copied to the same location they were in when the backup was taken.
You can use the logDevice attribute in conjunction with the restoreFrom=path
attribute to store logs in a different location.

For example, to restore the sample database by using a backup copy in
c:\mybackups\sample, the connection URL should be:

jdbc:derby:sample;restoreFrom=c:\mybackups\sample

For more information, see "restoreFrom=path attribute" in the Derby Reference Manual.

Derby Server and Administration Guide

63

Creating a database from a backup copy

To create a database from a full backup copy at a specified location, specify the
createFrom=path attribute in the boot-time connection URL.

If there is already a database with the same name in derby.system.home, an error will
occur and the existing database will be left intact. If there is not an existing database with
the same name in the current derby.system.home location, the system will copy the
whole database from the backup location to derby.system.home and start it.

The log files are also copied to the default location. You can use the logDevice attribute
in conjunction with the createFrom=path attribute to store logs in a different location.
With the createFrom=path attribute, you do not need to copy the individual log files to
the log directory.

For example, to create the sample database from a backup copy in
c:\mybackups\sample, the connection URL should be:

jdbc:derby:sample;createFrom=c:\mybackups\sample

For more information, see "createFrom=path attribute" in the Derby Reference Manual.

Roll-forward recovery

Derby supports roll-forward recovery to restore a damaged database to the most recent
state before a failure occurred.

Derby restores a database from full backup and replays all the transactions after the
backup. All the log files after a backup are required to replay the transactions after the
backup. By default, the database keeps only logs that are required for crash recovery.
For roll-forward recovery to be successful, all log files must be archived after a backup.
Log files can be archived using the backup function calls that enable log archiving.

In roll-forward recovery, the log archival mode ensures that all old log files are available.
The log files are available only from the time that the log archival mode is enabled.

Derby uses the following information to restore the database:
• The backup copy of the database
• The set of archived logs
• The current online active log

You cannot use roll-forward recovery to restore individual tables. Roll-forward recovery
recovers the entire database.

To restore a database by using roll-forward recovery, you must already have a backup
copy of the database, all the archived logs since the backup was created, and the active
log files. All the log files should be in the database log directory.

There are two types of log files in Derby: active logs and online archived logs.

Active logs
Active logs are used during crash recovery to prevent a failure that might leave a
database in an inconsistent state. Roll-forward recovery can also use the active logs
to recover to the end of the log files. Active logs are located in the database log path
directory.

Online archived logs
Log files that are stored for roll-forward recovery use when they are no longer needed
for crash recovery. Online archived logs are also kept in the database log path
directory.

Enabling log archival mode

Derby Server and Administration Guide

64

Online archive logs are available only if the database is enabled for log archival mode.
You can use the following system procedure to enable the database for log archival
mode:

SYSCS_UTIL.SYSCS_BACKUP_DATABASE_AND_ENABLE_LOG_ARCHIVE_MODE
(IN BACKUPDIR VARCHAR(32672), IN SMALLINT DELETE_ARCHIVED_LOG_FILES)

The input parameters for this procedure specify the location where the backup should
be stored and specify whether or not the database should keep online archived logs for
the backup. Existing online archived log files that were created before this backup will be
deleted if the input parameter value for the DELETE_ARCHIVED_LOG_FILES parameter
is non-zero. The log files are deleted only after a successful backup.
Note: Make sure to store the backup database in a safe place when you choose the log
file removal option.

The SYSCS_UTIL.SYSCS_BACKUP_DATABASE_AND_ENABLE_LOG_ARCHIVE_MODE
procedure will issue an error if there are any unlogged operations in the same transaction
as the backup procedure.

If any unlogged operations are in progress in other transactions in the system when
the backup starts, this procedure will block until those transactions are complete before
performing the backup. Derby automatically converts unlogged operations to logged
mode if they are started while the backup is in progress (except operations that maintain
application jar files in the database). Procedures to install, replace, and remove jar files in
a database are blocked while the backup is in progress.

If you do not want backup to block until unlogged operations
in other transactions are complete, use the
SYSCS_UTIL.SYSCS_BACKUP_DATABASE_AND_ENABLE_LOG_ARCHIVE_MODE_NOWAIT
procedure. This procedure issues an error immediately at the start of the backup if there
are any transactions in progress with unlogged operations, instead of waiting for those
transactions to complete.

Disabling log archival mode

After you enable log archival mode, the database will always have the log archival mode
enabled even if it is subsequently booted or backed up. The only way to disable the log
archive mode is to run the following procedure:

SYSCS_UTIL.SYSCS_DISABLE_LOG_ARCHIVE_MODE
(IN SMALLINT DELETE_ARCHIVED_LOG_FILES)

This system procedure disables the log archive mode and deletes any existing online
archived log files if the input parameter DELETE_ARCHIVED_LOG_FILES is non-zero.

Performing roll-forward recovery

If you have a backup made by using
SYSCS_UTIL.SYSCS_BACKUP_DATABASE_AND_ENABLE_LOG_ARCHIVE_MODE
or
SYSCS_UTIL.SYSCS_BACKUP_DATABASE_AND_ENABLE_LOG_ARCHIVE_MODE_NOWAIT,
you can restore it to its most recent state by using the full backup copy, archived logs,
and active logs. You perform a roll-forward recovery by specifying the connection URL
attribute rollForwardRecoveryFrom=path at boot time. All the log files should be in
the database log path directory.

The steps involved are as follows. They do not show the commands to start ij.

1. Back up the database with log archive mode enabled.

For example, you could back up a database named wombat to the /backup
directory as follows. After many operations, the database crashes.

Derby Server and Administration Guide

65

ij> connect 'jdbc:derby:wombat;create=true';
ij> create table t1(a int not null primary key);
0 rows inserted/updated/deleted
------------------DML/DDL Operations
ij> CALL
 SYSCS_UTIL.SYSCS_BACKUP_DATABASE_AND_ENABLE_LOG_ARCHIVE_MODE
('/backup', 0);
0 rows inserted/updated/deleted
ij> insert into t1 values(19);
1 row inserted/updated/deleted
ij> create table t2(a int);
0 rows inserted/updated/deleted
-----------------DML/DDL Operations
-----------------Database Crashed (Media Corruption on data disks)

2. Prepare the database for restoration.

Before you restore the database, shut down the original database and rename
the original database directory. For example, after shutdown, you could issue the
following commands in a Linux shell:

mv /databases/wombat /databases/brokenwombat
cd /databases

3. Restore the database using roll-forward recovery.

Since you moved the database, you need to specify the
logDevice=logDirectoryPath attribute in addition to the
rollForwardRecoveryFrom=path attribute when you restore the database
using roll-forward recovery. Use commands like the following (the connection URL
must be all on one line):

ij> connect
 'jdbc:derby:wombat;rollForwardRecoveryFrom=/backup/wombat;
logDevice=/databases/brokenwombat';
ij> select * from t1;
A

19

1 row selected
---------------DML/DDL Operations

After a database is restored from full backup, transactions from the online
archived logs and active logs are replayed. This brings the database to its
most recent state. All the log files should be in the directory specified by the
logDevice=logDirectoryPath attribute.

For more information, see "rollForwardRecoveryFrom=path attribute" and
"logDevice=logDirectoryPath attribute" in the Derby Reference Manual.

Importing and exporting data
You can import and export large amounts of data between files and the Derby database.
Instead of having to use INSERT and SELECT statements, you can use Derby system
procedures to import data directly from files into tables and to export data from tables into
files.

The Derby system procedures import and export data in delimited data file format.

• Use the export system procedures to write data from a database to one or more
files that are stored outside of the database. You can use a procedure to export
data from a table into a file or export data from a SELECT statement result into a
file.

Derby Server and Administration Guide

66

• Use the import system procedures to import data from a file into a table. If the target
table already contains data, you can replace or append to the existing data.

Methods for running the import and export procedures

You can run the import and export procedures from within an SQL statement using ij or
any Java application.

The import and export procedures read and write text files, and if you use an external file
when you import or export data, you can also import and export blob data. The import
procedures do not support read-once streams (live data feeds), because the procedures
read the first line of the file to determine the number of columns, then read the file again
to import the data.

Note: The import and export procedures are server-side utilities that exhibit different
behavior in client/server mode. Typically, you use these procedures to import data into
and export data from a locally running Derby database. However, you can use the import
and export procedures when Derby is running in a server framework if you specify import
and export files that are accessible to the server.

Bulk import and export requirements and considerations

There are requirements and limitations that you must consider before you use the Derby
import and export procedures.

Database transactions
Derby issues a COMMIT or a ROLLBACK statement after each import and export
procedure is run (a COMMIT if the procedure completes successfully, a ROLLBACK if
it fails). For this reason, you should issue either a COMMIT or ROLLBACK statement
to complete all transactions and release all table-level locks before you invoke an
import or export procedure. An error in an import or export procedure and the ensuing
ROLLBACK would throw away any changes performed before the procedure was
called, and vice versa: any unsound changes before the import or export procedure
call that should not be committed could be committed automatically.

Database connections
To invoke a Derby import or export procedure, you must be connected to the
database into which the data is imported or from which the data is exported. Other
user applications that access the table with a separate connection do not need to
disconnect.

Classpath
You must have the derbytools.jar file in your classpath before you can use the
import or export procedures from ij.

The table must exist
To import data into a table, the table must already exist in Derby. The table does not
have to be empty. If the table is not empty, bulk import performs single row inserts,
which result in slower performance.

Create indexes, keys, and unique constraints before you import
To avoid a separate step, create the indexes, keys (primary and foreign), and unique
constraints on tables before you import data. However, if your memory and disk
space resources are limited, you can build the indexes and primary keys after
importing data.

Data types
Derby implicitly converts the strings to the data type of the receiving column. If any of
the implicit conversions fail, the whole import is aborted. For example, "3+7" cannot
be converted into an integer. An export that encounters a runtime error stops.
Note: You cannot import or export the XML data type.

Locking during import

Derby Server and Administration Guide

67

Import procedures use the same isolation level as the connection in which they are
executed to insert data into tables. During import, the entire table is exclusively locked
irrespective of the isolation level.

Locking during export
Export procedures use the same isolation level as the connection in which they are
executed to fetch data from tables.

Import behavior on tables with triggers
The import procedures enable INSERT triggers when data is appended to the table.
The REPLACE parameter is not allowed when triggers are enabled on the table.

Restrictions on the REPLACE parameter
If you import data into a table that already contains data, you can either replace
or append to the existing data. You can use the REPLACE parameter on tables
that have dependent tables. The replaced data must maintain referential integrity;
otherwise, the import operation will be rolled back. You cannot use the REPLACE
parameter if the table has triggers enabled.

Restrictions on tables
You cannot use import procedures to import data into a system table or a declared
temporary table.

Bulk import and export of large objects

You can import and export large objects (LOBs) using the Derby system procedures.

Importing and exporting CLOB and BLOB data

CLOB and BLOB data can be exported to the same file as the rest of the column data, or
the LOB column data can be exported to a separate external file. When the LOB column
data is exported to a separate external file, reference to the location of the LOB data is
placed in the LOB column in the main export file.

Importing and exporting LOB data using a separate external file might be faster than
storing the LOB data in the same file as the rest of the column data:

• The CLOB data does not have to be scanned for the delimiters inside the data
• The BLOB data does not need to be converted to hexadecimal format

Importing and exporting other binary data

When you export columns that contain the data types CHAR FOR BIT DATA, VARCHAR
FOR BIT DATA, and LONG VARCHAR FOR BIT DATA, the column data is always
exported to the main export file. The data is written in hexadecimal format. To import
data into a table that has columns of these data types, the data in the import file for those
columns must be in hexadecimal format.

Importing LOB data from a file that contains all of the data

You can use the SYSCS_UTIL.SYSCS_IMPORT_TABLE and
SYSCS_UTIL.SYSCS_IMPORT_DATA procedures to import data into a table that contains
a LOB column. The LOB data must be stored in the same file as the other column data
that you are importing. If you are importing data from a file that was exported from a
non-Derby source, the binary data must be in hexadecimal format.

Importing LOB data from a separate external file

You can use the SYSCS_UTIL.SYSCS_IMPORT_TABLE_LOBS_FROM_EXTFILE and
SYSCS_UTIL.SYSCS_IMPORT_DATA_LOBS_FROM_EXTFILE procedures to import LOB
data that is stored in a file that is separate from the main import file. These procedures
read the LOB data using the reference that is stored in the main import file. If you are
importing data from a non-Derby source, the references to the LOB data must be in the
main import file in the format lobsFileName.Offset.length/. This is the same

Derby Server and Administration Guide

68

method that the Derby export procedures use to export the LOB data to a separate
external file.

Exporting LOB data to the same file as the other column data

You can use the SYSCS_UTIL.SYSCS_EXPORT_TABLE and
SYSCS_UTIL.SYSCS_EXPORT_QUERY procedures to write LOB data, along with the rest
of the column data, to a single export file.

CLOB column data is treated same as other character data. Character delimiters are
allowed inside the CLOB data. The export procedures write the delimiter inside the data
as a double-delimiter.

BLOB column data is written to the export file in hexadecimal format. For each byte of
BLOB data, two characters are generated. The first character represents the high nibble
(4 bits) in hexadecimal and the second character represents the low nibble.

Exporting LOB data to a separate external file from the other column data

You can use the SYSCS_UTIL.SYSCS_EXPORT_TABLE_LOBS_TO_EXTFILE and
SYSCS_UTIL.SYSCS_EXPORT_QUERY_LOBS_TO_EXTFILE procedures to write
LOB data to a separate external file. These procedures include the LOBSFILENAME
parameter, which specifies the name of the external file for the LOB data.

When you use these procedures, the location of the LOB data is written to the main
export file. The format of the reference to the LOB stored in the main export file is
lobsFileName.Offset.length/.

• Offset is the position in the external file in bytes
• length is the size of the LOB column data in bytes

If a LOB column value is NULL, length is written as -1. No data conversion is performed
when you export LOB data to an external file. BLOB data is written in binary format, and
CLOB data is written using the codeset that you specify.

See Examples of bulk import and export for examples using each of the import and
export procedures.

File format for input and output

There are specific requirements for the format of the input and output files when you
import and export data.

The default file format is a delimited text file with the following characteristics:

• Rows are separated by a newline
• Fields are separated by a comma (,)
• Character-based fields are delimited with double quotes (")

Restriction: Before you perform import or export operations, you must ensure that
the chosen delimiter character is not contained in the data to be imported or exported.
If you chose a delimiter character that is part of the data to be imported or exported,
unexpected errors might occur. The following restrictions apply to column and character
delimiters:

• Delimiters are mutually exclusive
• A delimiter cannot be a line-feed character, a carriage return, or a blank space
• The default decimal point (.) cannot be a character delimiter
• Delimiters cannot be hexadecimal characters (0-9, a-f, A-F).

The record delimiter is assumed to be a newline character. The record delimiter should
not be used as any other delimiter.

Derby Server and Administration Guide

69

Character delimiters are permitted with the character-based fields (CHAR, VARCHAR,
and LONG VARCHAR) of a file during import. Any pair of character delimiters found
between the enclosing character delimiters is imported into the database. For example,
suppose that you have the following character string:

"What a ""great"" day!"

The preceding character string gets imported into the database as:

What a "great" day!

During export, the rule applies in reverse. For example, suppose you have the following
character string:

"The boot has a 3" heel."

The preceding character string gets exported to a file as:

"The boot has a 3""heel."

The following example file shows four rows and four columns in the default file format:

1,abc,22,def
22,,,"a is a zero-length string, b is null"
13,"hello",454,"world"
4,b and c are both null,,

The export procedure outputs the following values:

1,"abc",22,"def"
22,,,"a is a zero-length string, b is null"
13,"hello",454,"world"
4,"b and c are both null",,

Importing data using the built-in procedures

You can use the Derby import procedures to import all of the data from a table or query,
or to import LOB data separately from the other data.

1. Use the following table to choose the correct procedure for the type of import that
you want to perform. For examples of these procedures, see Examples of bulk
import and export.

Table 9. Using the built-in import procedures

Type of Import Procedure to Use

To import all the data to
a table, where the import
file contains the LOB data

SYSCS_UTIL.SYSCS_IMPORT_TABLE
 (IN SCHEMANAME VARCHAR(128),
 IN TABLENAME VARCHAR(128),
 IN FILENAME VARCHAR(32672),
 IN COLUMNDELIMITER CHAR(1),
 IN CHARACTERDELIMITER CHAR(1),
 IN CODESET VARCHAR(128),
 IN REPLACE SMALLINT)

To import the data
to a table, where the
LOB data is stored in
a separate file and the
main import file contains
all of the other data with

SYSCS_UTIL.SYSCS_IMPORT_TABLE_LOBS_FROM_EXTFILE
 (IN SCHEMANAME VARCHAR(128),
 IN TABLENAME VARCHAR(128),
 IN FILENAME VARCHAR(32672),
 IN COLUMNDELIMITER CHAR(1),
 IN CHARACTERDELIMITER CHAR(1),
 IN CODESET VARCHAR(128),
 IN REPLACE SMALLINT)

Derby Server and Administration Guide

70

Type of Import Procedure to Use

a reference to the LOB
data

The import utility looks in the main import file for a
reference to the location of the LOB data. The format
of the reference to the LOB stored in the main import
file must be lobsFileName.Offset.length/.

To import data from a file
to a subset of columns in
a table, where the import
file contains the LOB data

SYSCS_UTIL.SYSCS_IMPORT_DATA
 (IN SCHEMANAME VARCHAR(128),
 IN TABLENAME VARCHAR(128),
 IN INSERTCOLUMNS VARCHAR(32672),
 IN COLUMNINDEXES VARCHAR(32672),
 IN FILENAME VARCHAR(32672),
 IN COLUMNDELIMITER CHAR(1),
 IN CHARACTERDELIMITER CHAR(1),
 IN CODESET VARCHAR(128),
 IN REPLACE SMALLINT)

You must specify the INSERTCOLUMNS parameter on
the table into which data will be imported. You must
specify the COLUMNINDEXES parameter to import data
fields from a file to a column in a table.

To import data to a
subset of columns
in a table, where the
LOB data is stored in
a separate file and the
main import file contains
all of the other data with
a reference to the LOB
data

SYSCS_UTIL.SYSCS_IMPORT_DATA_LOBS_FROM_EXTFILE
 (IN SCHEMANAME VARCHAR(128),
 IN TABLENAME VARCHAR(128),
 IN INSERTCOLUMNS VARCHAR(32672),
 IN COLUMNINDEXES VARCHAR(32672),
 IN FILENAME VARCHAR(32672),
 IN COLUMNDELIMITER CHAR(1),
 IN CHARACTERDELIMITER CHAR(1),
 IN CODESET VARCHAR(128),
 IN REPLACE SMALLINT)

The import utility looks in the main import file for a
reference to the location of the LOB data. The format
of the reference to the LOB stored in the main import
file must be lobsFileName.Offset.length/.

Parameters for the import procedures

The Derby import procedures use specific parameters.

SCHEMANAME
Specifies the schema of the table. You can specify a NULL value to use the default
schema name. The SCHEMANAME parameter takes an input argument that is a
VARCHAR(128) data type.

TABLENAME
Specifies the name of the table into which the data is to be imported. This table
cannot be a system table or a declared temporary table. The string must exactly
match the case of the table name. Specifying a NULL value results in an error. The
TABLENAME parameter takes an input argument that is a VARCHAR(128) data type.

INSERTCOLUMNS
Specifies the comma-separated column names of the table into which the data will be
imported. You can specify a NULL value to import into all columns of the table. The
INSERTCOLUMNS parameter takes an input argument that is a VARCHAR(32672)
data type.

COLUMNINDEXES
Specifies the comma-separated column indexes (numbered from one) of the input
data fields that will be imported. You can specify a NULL value to use all input data
fields in the file. The COLUMNINDEXES parameter takes an input argument that is a
VARCHAR(32672) data type.

FILENAME

Derby Server and Administration Guide

71

Specifies the name of the file that contains the data to be imported. If the path is
omitted, the current working directory is used. The specified location of the file should
refer to the server side location if you are using the Network Server. Specifying a
NULL value results in an error. The FILENAME parameter takes an input argument
that is a VARCHAR(32672) data type.

COLUMNDELIMITER
Specifies a column delimiter. The specified character is used in place of a comma to
signify the end of a column. You can specify a NULL value to use the default value
of a comma. The COLUMNDELIMITER parameter takes an input argument that is a
CHAR(1) data type.

CHARACTERDELIMITER
Specifies a character delimiter. The specified character is used in place of double
quotation marks to enclose a character string. You can specify a NULL value to use
the default value of a double quotation mark. The CHARACTERDELIMITER parameter
takes an input argument that is a CHAR(1) data type.

CODESET
Specifies the code set of the data in the input file. The code set name should be one
of the Java supported character encoding sets. Data is converted from the specified
code set to the database code set (UTF-8). You can specify a NULL value to interpret
the data file in the same code set as the JVM in which it is being executed. The
CODESET parameter takes an input argument that is a VARCHAR(128) data type.

REPLACE
A non-zero value for the REPLACE parameter will import in REPLACE mode, while
a zero value will import in INSERT mode. REPLACE mode deletes all existing
data from the table by truncating the table and inserts the imported data. The table
definition and the index definitions are not changed. You can import with REPLACE
mode only if the table already exists. INSERT mode adds the imported data to the
table without changing the existing table data. Specifying a NULL value results in an
error. The REPLACE parameter takes an input argument that is a SMALLINT data
type.

If you create a schema, table, or column name as a non-delimited identifier, you must
pass the name to the import procedure using all uppercase characters. If you created a
schema, table, or column name as a delimited identifier, you must pass the name to the
import procedure using the same case that was used when it was created.

Import into tables that contain identity columns

You can use the either the SYSCS_UTIL.SYSCS_IMPORT_DATA procedure or the
SYSCS_UTIL.SYSCS_IMPORT_DATA_LOBS_FROM_EXTFILE procedure to import data
into a table that contains an identity column. The approach that you take depends on
whether the identity column is GENERATED ALWAYS or GENERATED BY DEFAULT.

Identity columns and the REPLACE parameter

If the REPLACE parameter is used during import, Derby resets its internal counter of the
last identity value for a column to the initial value defined for the identity column.

Identity column is GENERATED ALWAYS

If the identity column is defined as GENERATED ALWAYS, an identity value is always
generated for a table row. When a corresponding row in the input file already contains
a value for the identity column, the row cannot be inserted into the table and the import
operation will fail.

To prevent such failure, the following examples show how to specify
parameters in the SYSCS_UTIL.SYSCS_IMPORT_DATA and
SYSCS_UTIL.SYSCS_IMPORT_DATA_LOBS_FROM_EXTFILE procedures to ignore data
for the identity column from the file, and omit the column name from the insert column list.

Derby Server and Administration Guide

72

The following table definition contains an identity column, c2, and is used in the
examples below:

CREATE TABLE tab1 (c1 CHAR(30), c2 INT GENERATED ALWAYS AS IDENTITY,
 c3 REAL, c4 CHAR(1))

• Suppose that you want to import data into tab1 from a file, myfile.del, that does
not have identity column information. The myfile.del file contains three fields
with the following data:

Robert,45.2,J
Mike,76.9,K
Leo,23.4,I

To import the data, you must explicitly list the column names in the tab1 table,
except for the identity column c2, when you call the procedure. For example:

CALL SYSCS_UTIL.SYSCS_IMPORT_DATA (NULL, 'TAB1', 'C1,C3,C4',
 null, 'myfile.del',null, null, null, 0)

• Suppose that you want to import data into tab1 from a file, empfile.del, that
also has identity column information. The file contains three fields with the following
data:

Robert,1,45.2,J
Mike,2,23.4,I
Leo,3,23.4,I

To import the data, you must explicitly specify an insert column list without the
identity column c2 and specify the column indexes without identity column data
when you call the procedure. For example:

CALL SYSCS_UTIL.SYSCS_IMPORT_DATA (NULL, 'TAB1', 'C1,C3,C4',
 '1,3,4', 'empfile.del',null, null, null, 0)

Identity column is GENERATED BY DEFAULT

If the identity column is defined as GENERATED BY DEFAULT, an identity value is
generated for a table row only if no explicit value is given. This means that you have
several options, depending on the contents of your input file and the desired outcome of
the import processing:

• You may omit the identity column from the insert column list, in which case Derby
will generate a new value for the identity column for each input row. You may use
this option whether or not the input file contains values for the identity column, but
note that if the input file contains values for the identity column, you must also then
omit the identity column from the column indexes when you call the procedure.

• You may include the identity column in the insert column list, in which case Derby
will use the column values from the input file. Of course, this option is available only
if the input file actually contains values for the identity column.

The following table definition contains an identity column, c2, and is used in the
examples below:

CREATE TABLE tab1 (c1 CHAR(30),
 c2 INT GENERATED BY DEFAULT AS IDENTITY,
 c3 REAL, c4 CHAR(1))

• Suppose that you want to import data into tab1 from a file, myfile.del, that does
not have identity column information. The myfile.del file contains three fields
with the following data:

Robert,45.2,J
Mike,76.9,K

Derby Server and Administration Guide

73

Leo,23.4,I

To import the data, you must explicitly list the column names in the tab1 table,
except for the identity column c2, when you call the procedure. For example:

CALL SYSCS_UTIL.SYSCS_IMPORT_DATA (NULL, 'TAB1', 'C1,C3,C4',
 null, 'myfile.del',null, null, null, 0)

• Suppose that you want to import data into tab1 from a file, empfile.del, that
also has identity column information. The file contains three fields with the following
data:

Robert,1,45.2,J
Mike,2,23.4,I
Leo,3,23.4,I

In this case, suppose that you wish to use the existing identity column values from
the input file. To import the data, you may simply pass null for the insert column
list and column indexes parameters when you call the procedure. For example:

CALL SYSCS_UTIL.SYSCS_IMPORT_DATA (NULL, 'TAB1', NULL,
 NULL, 'empfile.del',null, null, null, 0)

• Suppose (again) that you want to import data into tab1 from a file, empfile.del,
that also has identity column information, but in this case, suppose that you do
not wish to use the identity column values from the input file, but would prefer to
allow Derby to generate new identity column values instead. In this case, to import
the data, you must specify an insert column list without the identity column c2
and specify the column indexes without identity column data when you call the
procedure. For example:

CALL SYSCS_UTIL.SYSCS_IMPORT_DATA (NULL, 'TAB1', 'C1,C3,C4',
 '1,3,4', 'empfile.del',null, null, null, 0)

Exporting data using the built-in procedures

You can use the Derby export procedures to export all of the data from table or query, or
to export LOB data separately from the other data.

1. Use the following table to choose the correct procedure for the type of export that
you want to perform. For examples of these procedures, see Examples of bulk
import and export.

Table 10. Using the built-in export procedures

Type of Export Procedure to Use

To export all the data
from a table to a single
export file, including the
LOB data

SYSCS_UTIL.SYSCS_EXPORT_TABLE
 (IN SCHEMANAME VARCHAR(128),
 IN TABLENAME VARCHAR(128),
 IN FILENAME VARCHAR(32672),
 IN COLUMNDELIMITER CHAR(1),
 IN CHARACTERDELIMITER CHAR(1),
 IN CODESET VARCHAR(128))

To export all the data
from a table, and place
the LOB data into a
separate export file

SYSCS_UTIL.SYSCS_EXPORT_TABLE_LOBS_TO_EXTFILE
 (IN SCHEMANAME VARCHAR(128),
 IN TABLENAME VARCHAR(128),
 IN FILENAME VARCHAR(32672),
 IN COLUMNDELIMITER CHAR(1),
 IN CHARACTERDELIMITER CHAR(1),
 IN CODESET VARCHAR(128),
 IN LOBSFILENAME VARCHAR(32672))

A reference to the location of the LOB data is placed
in the LOB column in the main export file.

Derby Server and Administration Guide

74

Type of Export Procedure to Use

To export the result of a
SELECT statement to a
single file, including the
LOB data

SYSCS_UTIL.SYSCS_EXPORT_QUERY
 (IN SELECTSTATEMENT VARCHAR(32672),
 IN FILENAME VARCHAR(32672),
 IN COLUMNDELIMITER CHAR(1),
 IN CHARACTERDELIMITER CHAR(1),
 IN CODESET VARCHAR(128))

To export the result of
a SELECT statement to
a main export file, and
place the LOB data into a
separate export file

SYSCS_UTIL.SYSCS_EXPORT_QUERY_LOBS_TO_EXTFILE
 (IN SELECTSTATEMENT VARCHAR(32672),
 IN FILENAME VARCHAR(32672),
 IN COLUMNDELIMITER CHAR(1),
 IN CHARACTERDELIMITER CHAR(1),
 IN CODESET VARCHAR(128),
 IN LOBSFILENAME VARCHAR(32672))

A reference to the LOB data is written to the main
export file.

Parameters for the export procedures

The Derby export procedures use specific parameters.

SCHEMANAME
Specifies the schema of the table. You can specify a NULL value to use the default
schema name. The SCHEMANAME parameter takes an input argument that is a
VARCHAR(128) data type.

SELECTSTATEMENT
Specifies the SELECT statement query that returns the data to be exported.
Specifying a NULL value will result in an error. The SELECTSTATEMENT parameter
takes an input argument that is a VARCHAR(32672) data type.

TABLENAME
Specifies the table name of the table or view from which the data is to be exported.
This table cannot be a system table or a declared temporary table. The string must
exactly match the case of the table name. Specifying a NULL value results in an
error. The TABLENAME parameter takes an input argument that is a VARCHAR(128)
data type.

FILENAME
Specifies the file to which the data is to be exported. If the path is omitted, the current
working directory is used. If the name of a file that already exists is specified, the
export utility overwrites the contents of the file; it does not append the information.
The specified location of the file should refer to the server-side location if you
are using the Network Server. Specifying a NULL value results in an error. The
FILENAME parameter takes an input argument that is a VARCHAR(32672) data type.

COLUMNDELIMITER
Specifies a column delimiter. The specified character is used in place of a comma to
signify the end of a column. You can specify a NULL value to use the default value of
a comma. The COLUMNDELIMITER parameter must be a CHAR(1) data type.

CHARACTERDELIMITER
Specifies a character delimiter. The specified character is used in place of double
quotation marks to enclose a character string. You can specify a NULL value to use
the default value of a double quotation mark. The CHARACTERDELIMITER parameter
takes an input argument that is a CHAR(1) data type.

CODESET
Specifies the code set of the data in the export file. The code set name should be one
of the Java supported character encoding sets. Data is converted from the database
code page to the specified code page before writing to the file. You can specify a
NULL value to write the data in the same code page as the JVM in which it is being
executed. The CODESET parameter takes an input argument that is a VARCHAR(128)
data type.

Derby Server and Administration Guide

75

LOBSFILENAME
Specifies the file that the large object data is exported to. If the path is omitted, the
LOB file is created in the same directory as the main export file. If you specify the
name of an existing file, the export utility overwrites the contents of the file. The data
is not appended to the file. If you are using the Network Server, the file should be in a
server-side location. Specifying a NULL value results in an error. The LOBSFILENAME
parameter takes an input argument that is a VARCHAR(32672) data type.

If you create a schema, table, or column name as a non-delimited identifier, you must
pass the name to the export procedure using all uppercase characters. If you created a
schema or table name as a delimited identifier, you must pass the name to the export
procedure using the same case that was used when it was created.

Examples of bulk import and export

All of the examples in this section are run using the ij utility.

Example: Importing all data from a file

The following example shows how to import data into the STAFF table in a sample
database from the myfile.del file. The data will be appended to the existing data in the
table.

CALL SYSCS_UTIL.SYSCS_IMPORT_TABLE(
 null,'STAFF','myfile.del',null,null,null,0);

Example: Importing all data from a delimited file

The following example shows how to import data into the STAFF table in a sample
database from a delimited data file, myfile.del. This example defines the percentage
character (%) as the string delimiter, and a semicolon as the column delimiter. The data
will be appended to the existing data in the table.

CALL SYSCS_UTIL.SYSCS_IMPORT_TABLE(
 null,'STAFF','c:\output\myfile.del',';','%',null,0);

Example: Importing all data from a table, using a separate import file for the LOB
data

The following example shows how to import data into the STAFF table in a sample
database from a delimited data file, staff.del. The import file staff.del is the
main import file and contains references that point to a separate file which contains the
LOB data. This example specifies a comma as the column delimiter. The data will be
appended to the existing data in the table.

CALL SYSCS_UTIL.SYSCS_IMPORT_TABLE_LOBS_FROM_EXTFILE(
 null,'STAFF','c:\data\staff.del',',','"','UTF-8',0);

Example: Importing data into specific columns, using a separate import file for the
LOB data

The following example shows how to import data into several columns of the STAFF
table. The STAFF table includes a LOB column in a sample database. The import file,
staff.del, is a delimited data file. The staff.del file contains references that point
to a separate file which contains the LOB data. The data in the import file is formatted
using double quotation marks (") as the string delimiter and a comma (,) as the column
delimiter. The data will be appended to the existing data in the STAFF table.

CALL SYSCS_UTIL.SYSCS_IMPORT_DATA_LOBS_FROM_EXTFILE(
 null, 'STAFF', 'NAME,DEPT,SALARY,PICTURE', '2,3,4,6',
 'c:\data\staff.del', ',','"','UTF-8', 0);

Derby Server and Administration Guide

76

Example: Exporting all data from a table to a single export file

The following example shows how to export data from the STAFF table in a sample
database to the file myfile.del.

CALL SYSCS_UTIL.SYSCS_EXPORT_TABLE(
 null,'STAFF','myfile.del',null,null,null);

Example: Exporting data from a table to a single delimited export file

The following example shows how to export data from the STAFF table to a delimited
data file, myfile.del, with the percentage character (%) as the character delimiter, and
a semicolon as the column delimiter from the STAFF table.

CALL SYSCS_UTIL.SYSCS_EXPORT_TABLE(
 null,'STAFF','c:\output\myfile.del',';','%',null);

Example: Exporting all data from a table, using a separate export file for the LOB
data

The following example shows how to export data from the STAFF table in a sample
database to the main file, staff.del, and the LOB export file, pictures.dat.

CALL SYSCS_UTIL.SYSCS_EXPORT_TABLE_LOBS_TO_EXTFILE(null,'STAFF',
 'c:\data\staff.del',',','"','UTF-8', 'c:\data\pictures.dat');

Example: Exporting data from a query to a single export file

The following example shows how to export employee data in department 20 from the
STAFF table in a sample database to the file awards.del.

CALL SYSCS_UTIL.SYSCS_EXPORT_QUERY(
 'SELECT * FROM STAFF WHERE dept=20',
 'c:\output\awards.del',null,null,null);

Example: Exporting data from a query, using a separate export file for the LOB
data

The following example shows how to export employee data in department 20 from the
STAFF table in a sample database to the main file, staff.del, and the LOB data to the
file pictures.dat.

CALL SYSCS_UTIL.SYSCS_EXPORT_QUERY_LOBS_TO_EXTFILE(
 'SELECT * FROM STAFF WHERE dept=20',
 'c:\data\staff.del', ',' ,'"',
 'UTF-8','c:\data\pictures.dat');

Running import and export procedures from JDBC

You can run import and export procedures from a JDBC program.

The following code fragment shows how you might call the
SYSCS_UTIL.SYSCS_EXPORT_TABLE procedure from a Java program. In this
example, the procedure exports the data in the staff table in the default schema to the
staff.dat file. A percentage (%) character is used to specify the column delimiter.

PreparedStatement ps = conn.prepareStatement(
 "CALL SYSCS_UTIL.SYSCS_EXPORT_TABLE (?,?,?,?,?,?)");
ps.setString(1,null);
ps.setString(2,"STAFF");
ps.setString(3,"staff.dat");
ps.setString(4,"%");
ps.setString(5,null);
ps.setString(6,null);
ps.execute();

Derby Server and Administration Guide

77

How the import and export procedures process NULL values

In a delimited file, a NULL value is exported as an empty field.

The following example shows the export of a four-column row where the third column is
empty:

7,95,,Happy Birthday

The import procedures work the same way; an empty field is imported as a NULL value.

CODESET values for import and export procedures

Import and export procedures accept arguments to specify codeset values. You can
specify the codeset (character encoding) for import and export procedures to override the
system default.

For a table that shows a sample of the character encodings supported by the Java
Development Kit, see "derby.ui.codeset property" in the Derby Tools and Utilities Guide.
To review the complete list of character encodings, refer to your Java documentation.

Examples: Specifying the codeset in import and export procedures

The following example shows how to specify UTF-8 encoding to export to the
staff.dat table:

CALL SYSCS_UTIL.SYSCS_EXPORT_TABLE(
 NULL,'STAFF','staff.dat',NULL,NULL,'UTF-8')

The following example shows how to specify UTF-8 encoding to import from the
staff.dat table:

CALL SYSCS_UTIL.SYSCS_IMPORT_TABLE(
 NULL,'STAFF','staff.dat',NULL,NULL,'UTF-8',0)

Replicating databases
Replication is an important feature of a robust database management system. In Derby,
you start database replication by using connection URL attributes.

The replication capability of Derby has the following features:

• One master, one slave: A replicated database resides in two locations and is
managed by two different Derby instances. One of these Derby instances has the
master role for this database, and the other has the slave role. Typically, the master
and slave run on different nodes, but this is not a requirement. Together, the master
and its associated slave represent a replication pair.

• Roll-forward shipped log: Replication is based on shipping the Derby transaction
log from the master to the slave, and then rolling forward the operations described
in the log to the slave database.

• Asymmetry: Only the master processes transactions. The slave processes no
transactions, not even read operations.

• Asynchronicity: Transactions are committed on the master without waiting for the
slave. The shipping of the transaction log to the slave is performed regularly, and is
completely decoupled from the transaction execution at the master. This may lead
to a few lost transactions if the master crashes.

• Shared nothing: Apart from the network line, no hardware is assumed to be
shared.

Derby Server and Administration Guide

78

• Replication granularity: The granularity for replication is exactly one database.
However, one Derby instance may have different roles for different databases. For
example, one Derby instance may have the following roles, all at the same time:

• The master role for one database D1 replicated to one node
• The slave role for a database D2 replicated from another node
• The normal, non-replicated, role for a database D3

Replication builds on Derby's ability to recover from a crash by starting with a backup and
rolling forward Derby's transaction log files. The master sends log records to the slave
using a network connection. The slave then writes these log records to its local log and
redoes them.

If the master fails, the slave completes the recovery by redoing the log that has not
already been processed. The state of the slave after this recovery is close to the state
the master had when it crashed. However, some of the last transactions performed on
the master may not have been sent to the slave and may therefore not be reflected.
When the slave has completed the recovery work, it is transformed into a normal Derby
instance that is ready to process transactions. For more details, see Forcing a failover.

Several Derby properties allow you to specify the size of the replication log buffers
and the intervals between log shipments, as well as whether replication messages are
logged. See the Derby Reference Manual for details.

You can perform replication on a database that runs in either embedded mode or
Network Server mode.

Starting and running replication

Each replicated database is replicated from a master to a slave version of that database.

Initially there is no replication; a master database must be created before it can be
replicated. The database may, of course, be empty when replication starts. On the other
hand, replication does not need to be specified immediately after the database is created;
it can be initiated at any time after the database is created.

Before you start replication, you must shut down the master database and then copy the
database to the slave location. Follow these steps to start replication:

1. Make sure that the database on the master system is shut down cleanly.
2. Copy the database to the slave location.
3. Start slave replication mode on the Derby instance that is acting as the slave for

the database. To start slave replication, use the startSlave=true attribute
and, optionally, the slaveHost=hostname and slavePort=portValue
attributes. For example, for a database named wombat, you might use the following
connection URL:

jdbc:derby:wombat;startSlave=true
4. Start master replication mode on the Derby instance that is acting as the

master for the database. To start replication, connect to the database on the
master system using the startMaster=true attribute in conjunction with the
slaveHost=hostname attribute (and, optionally, the slavePort=portValue
attribute). For example, you might use the following connection URL:

jdbc:derby:wombat;startMaster=true;slaveHost=myremotesystem

A successful use of the startMaster=true attribute will also start the database.

See the Derby Reference Manual for details about these attributes.

After replication has been started, the slave is ready to receive logged operations from
the master. The master can now continue to process transactions. From this point on, the

Derby Server and Administration Guide

79

master forwards all logged operations to the slave in chunks. The slave repeats these
operations by applying the contents of the Derby transaction log, but does not process
any other operations. Attempts to connect to the slave database are refused. In case of
failure, the slave can recover to the state the master was in at the time the last chunk of
the transaction log was sent.

While replication is running, neither the slave or the master database is permitted to be
shut down. Replication must be stopped before you can shut down either the slave or the
master database. There is one exception to this rule: if the entire system is shut down,
the peer that is shut down notifies the other replication peer that replication is stopped.

If you install jar files on the master system while replication is running, the same jars are
not automatically installed on the slave. But because the transaction log information sent
to the slave system includes the jar file installation, the slave database has a record of
the jar files, even though they are not actually there. Therefore, you must install the jar
files on the former slave after a failover by calling either SQLJ.remove_jar followed by
SQLJ.install_jar, or SQLJ.replace_jar. (For information on installing jar files,
see "Loading classes from a database" in the Derby Developer's Guide and "System
procedures for storing jar files in a database" in the Derby Reference Manual.)

If the jar files must be available to clients immediately after a failover, you must stop
replication and then start replication over again from the beginning, so that the slave
database will have the same jar files as the master.

Stopping replication

To stop replication of a database, connect to the master database using the
stopMaster=true connection URL attribute.

The master sends the remaining log records that await shipment, and then sends a
stop replication command to the slave. The slave then writes all logs to disk and shuts
down the database. For example, for a database named wombat, you might specify the
following connection URL:

jdbc:derby:wombat;stopMaster=true

To stop replication on the slave system if the connection to the master is lost, use the
stopSlave=true connection URL attribute.

See the Derby Reference Manual for details about these attributes.

You cannot resume replication after it has been stopped. You need to start replication
over again from the beginning using the startMaster=true attribute, as described in
Starting and running replication.

Forcing a failover

At any time, you can transform the Derby database that has the slave role into a normal
Derby database that can process transactions. This transformation from being a slave to
becoming an active Derby database is called failover.

During failover, the slave applies the parts of the transaction log that have not yet been
processed. It then undoes operations that belong to uncommitted transactions, resulting
in a transaction-consistent state that includes all transactions whose commit log record
has been sent to the slave.

You perform failover from the master system. To do so, you connect to the database on
the master system using the failover=true connection URL attribute. For example,
for a database named wombat, you might specify the following connection URL:

Derby Server and Administration Guide

80

jdbc:derby:wombat;failover=true

If the network connection between the master system and the slave system is lost, you
can perform failover from the slave system.

See the Derby Reference Manual for details about the failover=true attribute.

There is no automatic failover or restart of replication after one of the instances has
failed.

Replication failure handling

Replication can encounter several failure situations. The following table lists these
situations and describes the actions that Derby takes as a result.

Table 11. Replication failure handling

Failure Situation Action Taken

Master loses connection
with slave.

Transactions are allowed to continue processing while
the master tries to reconnect with the slave. Log records
generated while the connection is down are buffered
in main memory. If the log buffer reaches its size limit
before the connection can be reestablished, the master
replication functionality is stopped. You can use the property
derby.replication.logBufferSize to configure the
size limit of the buffer; see the Derby Reference Manual for
details.

Slave loses connection
with master.

The slave tries to reestablish the connection with the master
by listening on the specified host and port. It will not give
up until it is explicitly requested to do so by either the
failover=true or stopSlave=true connection URL
attribute. If a failover is requested, the slave applies all
received log records and boots the database as described
in Forcing a failover. If the stopSlave=true attribute is
specified, the slave database is shut down without further
actions.

Two different masters
of database D try to
replicate to the same
slave.

The slave will only accept the connection from the first
master attempting to connect. Note that authentication is
required to start both the slave and the master.

The master and slave
Derby instances are
not at the same Derby
version.

An exception is raised and replication does not start.

The master Derby
instance crashes, then
restarts.

Replication must be restarted, as described in Starting and
running replication.

The master Derby
instance is not able to
send log data to the
slave at the same pace
as the log is generated.
The main memory log
buffer gradually fills up

The master notices that the main memory log buffer is
filling up. It first tries to increase the speed of the log
shipment to keep the amount of log in the buffer below
the maximum. If that is not enough to keep the buffer
from getting full, the response time of transactions may
increase for as long as log shipment has trouble keeping
up with the amount of generated log records. You can

Derby Server and Administration Guide

81

Failure Situation Action Taken

and eventually becomes
full.

use properties to tune both the log buffer size and the
minimum and maximum interval between consecutive
log shipments. See "derby.replication.logBufferSize",
"derby.replication.maxLogShippingInterval", and
"derby.replication.minLogShippingInterval" in the Derby
Reference Manual for details.

The slave Derby
instance crashes.

The master sees this as a lost connection to the slave. The
master tries to reestablish the connection until the replication
log buffer is full. Replication is then stopped on the master.
Replication must be restarted, as described in Starting and
running replication.

An unexpected failure is
encountered.

Replication is stopped. The other Derby instance of the
replication pair is notified of the decision if the network
connection is still alive.

Logging on a separate device
You can improve the performance of update-intensive, large databases by putting a
database's log on a separate device, which reduces I/O contention.

By default, the transaction log is in the log subdirectory of the database directory. Use
either of the following methods to store this log subdirectory in another location:

• Specify the non-default location by using the logDevice=logDirectoryPath
attribute on the database connection URL when you create the database.

• If the database is already created, move the log manually and update the
service.properties file.

Using the logDevice=logDirectoryPath attribute

To specify a non-default location for the log directory, set the
logDevice=logDirectoryPath attribute on the database connection URL.

This attribute is meaningful when you are creating a database or when
you are restoring a database using roll-forward recovery. You can specify
logDevice=logDirectoryPath as either an absolute path or as a path that is relative
to the directory where the JVM is executed.

Setting logDevice=logDirectoryPath on the database connection URL when
you create the database adds an entry to the service.properties file. If you ever
move the log manually, you will need to alter the entry in service.properties. If
you move the log back to the default location, remove the logDevice entry from the
service.properties file.

To check the log location for an existing database, you can retrieve the
logDevice=logDirectoryPath attribute as a database property by using the
following statement:

VALUES SYSCS_UTIL.SYSCS_GET_DATABASE_PROPERTY('logDevice')

For more information, see Roll-forward recovery in this manual and
"logDevice=logDirectoryPath attribute" in the Derby Reference Manual.

Example of creating a log in a non-default location

Derby Server and Administration Guide

82

The following database connection URL creates a database in the directory
d:/mydatabases, but puts the database log directory in h:/janets/tourslog.

jdbc:derby:d:/mydatabases/toursDB;
 create=true;logDevice=h:/janets/tourslog

Example of moving a log manually

If you want to move the log to g:/bigdisk/tourslog, move the log with operating
system commands.

For example, you could use the following command:

move h:\janets\tourslog\log*.* g:\bigdisk\tourslog\log

Then, alter the logDevice entry in service.properties to read as follows:

logDevice=g:/bigdisk/toursLog

Note: You can use either a single forward slash or double back slashes for a path
separator.

If you later want to move the log back to its default location (in this case,
d:\mydatabases\toursDB\log), move the log manually as follows:

move g:\bigdisk\tourslog\log*.* d:\mydatabases\toursDB\log

Then, delete the logDevice entry from service.properties.

Note: This example uses commands that are specific to the Windows operating system.
Use commands appropriate to your operating system to copy a directory and all of its
contents to a new location.

Issues for logging in a non-default location

When the log is not in the default location, backing up and restoring a database can
require extra steps.

See Backing up and restoring databases for details.

Obtaining locking information
Derby provides a tool to monitor and display locking information.

This tool can help you create applications that minimize deadlock. It can also help you
locate the cause of deadlock when it does occur.

To diagnose locking problems, constantly monitor locking traffic by logging all deadlocks
by using the derby.locks.monitor property, which is described in the Derby
Reference Manual.

Monitoring deadlocks

The derby.stream.error.logSeverityLevel property determines the level of
error that you are informed about.

By default, derby.stream.error.logSeverityLevel is set to 40000. If
derby.stream.error.logSeverityLevel is set to display transaction-level
errors (that is, if it is set to a value less than 40000), deadlock errors are logged to the
derby.log file. If it is set to a value of 40000 or higher, deadlock errors are not logged
to the derby.log file.

Derby Server and Administration Guide

83

The derby.locks.monitor property ensures that deadlock errors are logged
regardless of the value of derby.stream.error.logSeverityLevel. When
derby.locks.monitor is set to true, all locks that are involved in deadlocks are
written to derby.log along with a unique number that identifies the lock.

To see a thread's stack trace when a lock is requested, set
derby.locks.deadlockTrace to true. This property is ignored if
derby.locks.monitor is set to false.

Note: Use derby.locks.deadlockTrace with care. Setting this property can alter
the timing of the application, severely affect performance, and produce a very large
derby.log file.

For information about working with properties, see the Derby Developer's Guide. For
information about the specific properties that are mentioned in this topic, see the Derby
Reference Manual.

Here is an example of an error message when Derby aborts a transaction because of a
deadlock:

--SQLException Caught--

SQLState: 40001 =
Error Code: 30000
Message: A lock could not be obtained due to a deadlock,
cycle of locks and waiters is: Lock : ROW, DEPARTMENT, (1,14)
Waiting XID : {752, X} , APP, update department set location='Boise'
 where deptno='E21'
Granted XID : {758, X} Lock : ROW, EMPLOYEE, (2,8)
Waiting XID : {758, U} , APP, update employee set bonus=150 where
 salary=23840
Granted XID : {752, X} The selected victim is XID : 752

Note: You can use the derby.locks.waitTimeout and
derby.locks.deadlockTimeout properties to configure how long Derby waits for
a lock to be released, or when to begin deadlock checking. For more information about
these properties, see "Controlling Derby application behavior" in the Derby Developer's
Guide.

Reclaiming unused space
A Derby table or index (sometimes called a conglomerate) can contain unused space
after large amounts of data have been deleted or updated.

This happens because, by default, Derby does not return unused space to the operating
system. After a page has been allocated to a table or index, Derby does not automatically
return the page to the operating system until the table or index is dropped, even if the
space is no longer needed. However, Derby does provide a way to reclaim unused space
in tables and associated indexes.

If you determine that a table and its indexes have a significant amount of
unused space, use either the SYSCS_UTIL.SYSCS_COMPRESS_TABLE or
SYSCS_UTIL.SYSCS_INPLACE_COMPRESS_TABLE procedure to reclaim
that space. SYSCS_UTIL.SYSCS_COMPRESS_TABLE is guaranteed to
recover the maximum amount of free space, at the cost of temporarily
creating new tables and indexes before the statement is committed.
SYSCS_UTIL.SYSCS_INPLACE_COMPRESS_TABLE attempts to reclaim space within
the same table, but cannot guarantee it will recover all available space. The difference
between the two procedures is that unlike SYSCS_UTIL.SYSCS_COMPRESS_TABLE, the
SYSCS_UTIL.SYSCS_INPLACE_COMPRESS_TABLE procedure uses no temporary files
and moves rows around within the same conglomerate.

Derby Server and Administration Guide

84

You can use the SYSCS_DIAG.SPACE_TABLE diagnostic table to estimate the amount
of unused space in a table or index by examining, in particular, the values of the
NUMFREEPAGES and ESTIMSPACESAVING columns. For example:

SELECT * FROM TABLE(SYSCS_DIAG.SPACE_TABLE('APP', 'FLIGHTAVAILABILITY'))
 AS T

For more information about SYSCS_DIAG.SPACE_TABLE see "SYSCS_DIAG diagnostic
tables and functions" in the Derby Reference Manual.

As an example, after you have determined that the FlightAvailability table and
its related indexes have too much unused space, you could reclaim that space with the
following command:

call SYSCS_UTIL.SYSCS_COMPRESS_TABLE('APP', 'FLIGHTAVAILABILITY', 0);

The third parameter in the SYSCS_UTIL.SYSCS_INPLACE_COMPRESS_TABLE
procedure determines whether the operation will run in sequential or non-sequential
mode. If you specify 0 for the third argument in the procedure, the operation will run in
non-sequential mode. In sequential mode, Derby compresses the table and indexes
sequentially, one at a time. Sequential compression uses less memory and disk space
but is slower. To force the operation to run in sequential mode, substitute a non-zero
SMALLINT value for the third argument. The following example shows how to force the
procedure to run in sequential mode:

call SYSCS_UTIL.SYSCS_COMPRESS_TABLE('APP', 'FLIGHTAVAILABILITY', 1);

For more information about this command, see the Derby Reference Manual.

Derby Server and Administration Guide

85

Trademarks

The following terms are trademarks or registered trademarks of other companies and
have been used in at least one of the documents in the Apache Derby documentation
library:

Cloudscape, DB2, DB2 Universal Database, DRDA, and IBM are trademarks of
International Business Machines Corporation in the United States, other countries, or
both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

	Cover
	Contents
	Copyright
	License
	About this guide
	Purpose of this guide
	Audience
	How this guide is organized

	Part One: Derby Server
Guide
	Derby in a multi-user
environment
	Derby in a server
framework
	Connectivity configurations
	Multiple-client features available in
Derby
	Row-level locking
	Multiple concurrency levels
	Multi-connection and multi-threading
	Administrative tools

	The Derby Network
Server
	Embedded servers
	How to start an embedded server from an application
	Embedded server example

	About this guide and the Network Server documentation

	Using the Network Server with preexisting
Derby applications
	The Network Server and Java Virtual Machines (JVMs)
	Installing required jar files and adding them to the classpath/modulepath
	Starting the Network Server
	Starting the Network Server from a Java application
	Starting the Network Server on IPv6/IPv4 dual stack Windows machines

	Shutting down the Network Server
	Shutting down by using the command line
	Shutting down by using the API

	Obtaining system information
	Obtaining system information by using the command line
	Obtaining system information by using the API
	Obtaining Network Server runtime information
	Obtaining Network Server properties by using the getCurrentProperties
method

	Accessing the Network Server by using the network client driver
	Network client tracing
	Network client driver examples

	Accessing the Network Server by using a DataSource object
	DataSource access examples

	XA and the Network Server
	Using XA with the network client driver

	Using the Derby tools
with the Network Server
	Using the Derby ij
tool with the Network Server
	Using the Derby dblook
tool with the Network Server

	Differences between running
Derby in embedded mode and
using the Network Server
	Differences between the embedded client and the network client driver
	Updatable result sets
	Differences in JDBC methods
	Differences using the Connection.setReadOnly method

	Setting port numbers

	Managing the Derby
Network Server
	Overview of Derby
Network Server management
	Using the NetworkServerControl API

	Setting Network Server properties
	derby.drda.host property
	derby.drda.keepAlive property
	derby.drda.logConnections property
	derby.drda.maxThreads property
	derby.drda.minThreads property
	derby.drda.portNumber property
	derby.drda.securityMechanism property
	derby.drda.sslMode property
	derby.drda.startNetworkServer property
	derby.drda.streamOutBufferSize property
	derby.drda.timeSlice property
	derby.drda.traceAll property
	derby.drda.traceDirectory property

	Verifying startup

	Using Java Management Extensions (JMX) technology
	Introduction to the
Derby MBeans
	Enabling and disabling JMX
	Enabling remote JMX with no authentication or SSL
	Enabling remote JMX with password authentication only
	Enabling remote JMX with password authentication and SSL
	Simple authorization using an access file
	Disabling access to MBeans

	Using JConsole to access the
Derby MBeans
	Using custom Java code to access the
Derby MBeans
	Troubleshooting JMX connection issues

	Managing the Derby
Network Server remotely by using the servlet interface
	Start-up page
	Running page
	Trace session page
	Trace directory page
	Set Network Server parameters

	Derby Network Server
advanced topics
	Configuring the Network Server to handle connections
	Controlling logging by using the log file
	Controlling tracing by using the trace facility
	Turning on the trace facility
	Turning off the trace facility

	Derby Network Server
sample programs
	The NsSample sample program
	Running the NsSample sample program

	Network Server sample programs for embedded and client connections
	Overview of the SimpleNetworkServerSample program
	Running the SimpleNetworkServerSample program
	Connecting a client to the Network Server with the SimpleNetworkClientSample
program
	Running the SimpleNetworkClientSample program

	Part Two: Derby
Administration Guide
	Maintaining database integrity
	Checking database consistency
	The SYSCS_CHECK_TABLE function
	Sample SYSCS_CHECK_TABLE error messages
	Sample SYSCS_CHECK_TABLE queries

	Backing up and restoring databases
	Backing up a database
	Offline backups
	Online backups
	Using the backup procedures to perform an online backup
	Using operating system commands with the freeze and unfreeze system
procedures to perform an online backup

	When the log is in a non-default location
	Backing up encrypted databases

	Restoring a database from a backup copy
	Creating a database from a backup copy
	Roll-forward recovery

	Importing and exporting data
	Methods for running the import and export procedures
	Bulk import and export requirements and considerations
	Bulk import and export of large objects
	File format for input and output
	Importing data using the built-in procedures
	Parameters for the import procedures
	Import into tables that contain identity columns

	Exporting data using the built-in procedures
	Parameters for the export procedures

	Examples of bulk import and export
	Running import and export procedures from JDBC
	How the import and export procedures process NULL values
	CODESET values for import and export procedures

	Replicating databases
	Starting and running replication
	Stopping replication
	Forcing a failover
	Replication failure handling

	Logging on a separate device
	Using the logDevice=logDirectoryPath attribute
	Example of creating a log in a non-default location
	Example of moving a log manually
	Issues for logging in a non-default location

	Obtaining locking information
	Monitoring deadlocks

	Reclaiming unused space

	Trademarks

