Apache Derby %

Derby Server and Administration Guide

Version 10.17

Derby Document build:
October 22, 2023, 2:24:15 PM (PDT)

Version 10.17 Derby Server and Administration Guide

Contents
1670] o)V A 8 [0 1| ST TP PP PPR PP 4
o= 1= T PR 5
ADOUL IS QUILE...eeiiiiiiieie ettt e e st e et e e s saaree s 9
PUrpose Of thiS QUITE.......eiiiie e 9
U o 1= o o TR 9
How this guide iS OrganiZed.........oocuiiiiiiiiiiiie e 9
Part ONne: Derby Server GUITE.ot 11
Derby in a multi-usSer enVirONMeENT......coocuuiiiiiiiii e 11
Derby in a server frameworkK.. ... 11
About this guide and the Network Server documentation............ccccceeeeeviiiinnnnns 14
Using the Network Server with preexisting Derby applications............c.cccceeee. 14
The Network Server and Java Virtual Machines (JVMS)........cccccevviiiieeciniinenenn. 14
Installing required jar files and adding them to the classpath/modulepath.......... 14
Starting the NetWOrk SEIVET.......ocuvvii i 15
Shutting down the NetWOrk SEIVEr ... 18
Obtaining System iNfOrMALION.eeiiiiiiiiie e 19
Accessing the Network Server by using the network client driver....................... 20
Accessing the Network Server by using a DataSource object.............occveeeeennnee. 26
XA and the NetWOTrK SEIVET........ccoiiiiiiiiiiiiiii et 28
Using the Derby tools with the Network Server.........cccccccviieeiiiiiiieeeee e 29
Differences between running Derby in embedded mode and using the Network
ST Y= P RPRRRRRP 29
Setting POIt NUMDEIS. ...ccoiiiiiiee e 30
Managing the Derby NetwWork Server........cocoiiiiii e 31
Overview of Derby Network Server management............ooeevvivieieeiniieeeesniiieeenn 31
Setting Network Server PropPertieS.......ocuueeeeiiieiee et 32
VErfYING SEAITUD....eeiie ittt e e sbbe e e e 37
Using Java Management Extensions (JMX) technology.......ccccccoviiiiiiiiniinnnnn. 38
Introduction to the Derby MBEANS..........cuviiiiiiiiiiieiiiee e 38
Enabling and disabling JMX.........coiiiiiiiiiiie et 40
Using JConsole to access the Derby MBeans.........ccoccvvveveiiiiiiie i 42
Using custom Java code to access the Derby MBeans...........ccccovvveeeeiiiiieeeens 43
Troubleshooting JMX CONNECHION ISSUES.........uuiiiiiiiiiiie ittt 46
Managing the Derby Network Server remotely by using the servlet
) =T = Lo = SO 47
SEAIM-UD PAGE. . et teeeeeiiee ettt e e e e e e e e e 47
RUNNING PAJE ... eeiei ittt et s et e e e e e 48
TraCE SESSION PAGE. .. .ueeieieiiitiiie ettt e e ettt e ettt e e s ab bt e e e s atb b e e e s abbeeeeesabaeeeeeans 48
Trace dIrECIOMY PAYE .. eeeei i itiiee ettt ettt e et e e e e e e e 48
Set NetWork Server ParameterS..........eiieiiuieiee ettt 48
Derby Network Server advanced tOPICS. ...t 48
Configuring the Network Server to handle connections..............ccccccvvviveeenneeenn. 49
Controlling logging by using the 10g file...........oooiii e, 49
Controlling tracing by using the trace facility...........ccccoooiiiiiic, 50
Derby Network Server sample ProgramsS......ooueee e 50
The NsSample sample Program..........c.eeeiiieee e 50
Network Server sample programs for embedded and client connections........... 53
Part Two: Derby AdminisStration GUITE...........ooiiiiiiiiiiiii e 56
Maintaining database iNTegrity.......cccciiiiiiii e 56
Checking database CONSISIENCYcoiiiiiiiiiiiiiie e 56

Version 10.17 Derby Server and Administration Guide

The SYSCS_CHECK_TABLE fUNCHON.........coiiiiiiiiie i 56
Sample SYSCS_CHECK_TABLE error meSSages.........cccccuvrrvrerrereeeeesiesiinnnnnnns 57
Sample SYSCS _CHECK_TABLE QUETIES........ccccviiiiieeiieeee e 57
Backing up and restoring databases........ccccceveeeiiiiiiiiiiiie e 58
Backing Up @ database...........cueeeiiiiiiiiii e 58
Restoring a database from a backup COPY........cccooviiiiiiiiiiieiieeeee e 62
Creating a database from a backup COPY......ccoceeviiiiiiiiiiiiiiiiieee e 63
ROII-FOrWArd FECOVEIY......uuiiiiiieiiiee e e e e e e e e s e eeee s 63
Importing and exXporting data.........ccccuviiieiiiee e 65
Methods for running the import and export procedures.........cccccvvveeeeeeiieiinnnnnen, 66
Bulk import and export requirements and considerations...............cccccoeevvvvvnnen. 66
Bulk import and export of large ObjJecCtS............ccovciiiiiiiiiii e 67
File format for input and OULPUL...........eeeiiiiireiiii e 68
Importing data using the built-in procedures............ccccovieeiieiee e, 69
Exporting data using the built-in procedures...........ccovveeeeeieei i, 73
Examples of bulk import and eXport............ooociiiiiiiiie e 75
Running import and export procedures from JDBC............cccccveeveeeeeeiiicciinne, 76
How the import and export procedures process NULL values..........ccccccvveeeeennn. 77
CODESET values for import and export procedures............ccccvvvveeeeeeeeeeeieiiiinnns 77
Replicating databases. ... ———— 77
Starting and running repliCation...............veveeeiii i 78

Y (o] o] o1 o T =T o] o= 11T] o TSP PPERRPR 79
FOrciNg @ faIlOVET......cceiiieee e 79
Replication failure handling............ccccciiiiiiiiie e 80
L0OgQging 0N @ SeParate dEVICE.......uiiiieeei ittt e e e 81
Using the logDevice=logDirectoryPath attribute..............ccccovvvereeeeiiiiiiiiieee, 81
Example of creating a log in a non-default location...............cccooeeiiiiieineneeeenn, 81
Example of moving a log manually..........ccccccceeoiiiiiiiiiiiiieee e 82
Issues for logging in a non-default location................coeecviiiiieenee e, 82
Obtaining locking infOrmation.........cuueeiiiii e 82
MoNitoring deadIOCKS...........oo i 82
Reclaiming UNUSEd SPACE........cccciiiiiiiiiiie et e e s e e e e e e e e s e e annnnnes 83
LI 10 L= 4=V S PRSP SPRPPI 85

Derby Server and Administration Guide
Apache Software FoundationDerby Server and Administration GuideApache Derby

Derby Server and Administration Guide

Copyright

Apache Derby %

Copyright 2004-2023 The Apache Software Foundation

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this
file except in compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0.

Related information

License

http://www.apache.org/licenses/LICENSE-2.0

Derby Server and Administration Guide

License

The Apache License, Version 2.0

Apache License
Version 2.0, January 2004
http://ww. apache. org/licenses/

TERMS AND CONDI TI ONS FOR USE, REPRODUCTI ON, AND DI STRI BUTI ON
1. Definitions.

"Li cense" shall nmean the terns and conditions for use
reproduction, and distribution as defined by Sections 1 through
9 of this docunent.

"Li censor" shall mean the copyright owner or entity authorized
by the copyright owner that is granting the License

"Legal Entity" shall nean the union of the acting entity and al
other entities that control, are controlled by, or are under
common control with that entity. For the purposes of this
definition, "control" neans (i) the power, direct or indirect,
to cause the direction or managenent of such entity, whether by
contract or otherwise, or (ii) ownership of fifty percent (50%
or nmore of the outstanding shares, or (iii) beneficial ownership
of such entity.

"You" (or "Your") shall nmean an individual or Legal Entity
exerci sing perm ssions granted by this License.

"Source" formshall nean the preferred formfor naking
nodi fi cations, including but not linted to software source code
docunent ati on source, and configuration files.

"Cbject" formshall nean any formresulting from nechani ca
transformation or translation of a Source form including but
not limted to conpiled object code, generated docunentation,
and conversions to other nedia types.

"Work" shall nean the work of authorship, whether in Source or
Ooj ect form nade avail abl e under the License, as indicated by a
copyright notice that is included in or attached to the work

(an example is provided in the Appendi x bel ow).

"Derivative Wrks" shall mean any work, whether in Source or
oject form that is based on (or derived fronm) the Wrk and
for which the editorial revisions, annotations, el aborations,
or other nodifications represent, as a whole, an original work
of authorship. For the purposes of this License, Derivative
Works shall not include works that remain separable from or
nerely link (or bind by nane) to the interfaces of, the Wrk
and Derivative Wrks thereof.

"Contribution" shall mean any work of authorship, including
the original version of the Work and any nodifications or
additions to that Work or Derivative Wrks thereof, that is
intentionally submtted to Licensor for inclusion in the Wrk
by the copyright owner or by an individual or Legal Entity
authorized to subnmit on behalf of the copyright owner. For the
purposes of this definition,

"submtted" means any form of electronic, verbal, or witten
comuni cation sent to the Licensor or its representatives,
including but not limted to comrunication on electronic mailing
lists, source code control systenms, and issue tracking systens

Derby Server and Administration Guide

that are nmanaged by, or on behalf of, the Licensor for the
purpose of discussing and i nproving the Work, but excl uding
communi cation that is conspicuously nmarked or otherw se
designated in witing by the copyright owner as "Not a
Contri bution.™"

"Contributor" shall nean Licensor and any individual or Legal
Entity on behal f of whom a Contribution has been recei ved by
Li censor and subsequently incorporated within the Wrk.

2. Gant of Copyright License. Subject to the terns and conditions
of this License, each Contributor hereby grants to You a
per petual, worldw de, non-exclusive, no-charge, royalty-free,
irrevocabl e copyright license to reproduce, prepare Derivative
Works of, publicly display, publicly perform sublicense, and
distribute the Work and such Derivative Wrks in Source or
Obj ect form

3. Grant of Patent License. Subject to the ternms and conditions of
this License, each Contributor hereby grants to You a perpetual,
wor | dwi de, non-excl usi ve, no-charge, royalty-free, irrevocable
(except as stated in this section) patent |icense to make, have
made, use, offer to sell, sell, inport, and otherw se transfer
the Wrk, where such license applies only to those patent clains
l'i censabl e by such Contributor that are necessarily infringed by
their Contribution(s) alone or by conbination of their
Contribution(s) with the Wrk to which such Contribution(s) was
submitted. If You institute patent litigation against any entity
(including a cross-claimor counterclaimin a lawsuit) alleging
that the Work or a Contribution incorporated within the Wrk
constitutes direct or contributory patent infringenent, then any
patent |icenses granted to You under this License for that Wrk
shall terminate as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Wrks thereof in any nedium wth or wthout
nmodi fications, and in Source or (bject form provided that You
neet the follow ng conditions:

(a) You must give any other recipients of the Work or
Derivative Wrks a copy of this License; and

(b) You nust cause any nodified files to carry promi nent notices
stating that You changed the files; and

(c) You nust retain, in the Source formof any Derivative Wrks
that You distribute, all copyright, patent, trademark, and
attribution notices fromthe Source formof the Wrk,
excl udi ng those notices that do not pertain to any part of
the Derivative Wrks; and

(d) If the Work includes a "NOTICE" text file as part of its
di stribution, then any Derivative Wrks that You distribute
nmust include a readable copy of the attribution notices
contai ned within such NOTICE file, excluding those notices
that do not pertain to any part of the Derivative Wrks, in
at | east one of the follow ng places: within a NOTICE text
file distributed as part of the Derivative Wrks; within the
Source form or docunentation, if provided along with the
Derivative Wrrks; or, within a display generated by the
Derivative Wrks, if and wherever such third-party notices
normal | y appear. The contents of the NOTICE file are for
i nformati onal purposes only and do not nodify the License.
You may add Your own attribution notices within Derivative
Works that You distribute, alongside or as an addendumto
the NOTICE text fromthe Work, provided that such additional
attribution notices cannot be construed as nodifying the
Li cense.

You may add Your own copyright statenent to Your nodifications

Derby Server and Administration Guide

and nay provide additional or different |license terns and
conditions for use, reproduction, or distribution of Your

nodi fications, or for any such Derivative Wrks as a whol e,
provi ded Your use, reproduction, and distribution of the Work
ot herwi se conplies with the conditions stated in this License.

5. Subni ssion of Contributions. Unless You explicitly state
ot herwi se, any Contribution intentionally subnmitted for
inclusion in the Wrk by You to the Licensor shall be under the
ternms and conditions of this License, w thout any additional
terns or conditions. Notwithstanding the above, nothing herein
shal | supersede or nodify the terns of any separate |icense
agreenent you may have executed with Licensor regardi ng such
Contri buti ons.

6. Trademarks. This License does not grant perm ssion to use the
trade names, trademarks, service marks, or product nanes of the
Li censor, except as required for reasonable and custonary use
in describing the origin of the Wrk and reproducing the content
of the NOTICE file.

7. Disclaimer of Warranty. Unl ess required by applicable |aw or
agreed to in witing, Licensor provides the Wrk (and each
Contri butor provides its Contributions) on an "AS | S* BASI S,

W THOUT WARRANTI ES OR CONDI TI ONS OF ANY KIND, either express or
inmplied, including, without limtation, any warranties or
conditions of TITLE, NON- I NFRI NGEMENT, MERCHANTABI LITY, or

FI TNESS FOR A PARTI CULAR PURPCSE. You are solely responsible for
determ ni ng the appropriateness of using or redistributing the
Work and assune any risks associated with Your exercise of
permi ssi ons under this License

8. Limtation of Liability. In no event and under no | egal theory,
whet her in tort (including negligence), contract, or otherw se,
unl ess required by applicable | aw (such as deliberate and
grossly negligent acts) or agreed to in witing, shall any
Contributor be liable to You for danmages, including any direct,
indirect, special, incidental, or consequential danages of any
character arising as a result of this License or out of the use
or inability to use the Work (including but not limted to
danmages for |oss of goodw ||, work stoppage, conputer failure or
mal function, or any and all other conmercial danmages or | osses),
even i f such Contributor has been advi sed of the possibility of
such damages.

9. Accepting Warranty or Additional Liability. Wile redistributing
the Work or Derivative Wrks thereof, You may choose to offer
and charge a fee for, acceptance of support, warranty, indemity,
or other liability obligations and/or rights consistent with this
Li cense. However, in accepting such obligations, You may act only
on Your own behal f and on Your sole responsibility, not on behal f
of any other Contributor, and only if You agree to i ndemify,
def end, and hol d each Contributor harm ess for any liability
incurred by, or clains asserted agai nst, such Contributor by
reason of your accepting any such warranty or additiona
liability.

END OF TERMS AND CONDI TI ONS
APPENDI X: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the foll ow ng
boil erpl ate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
coment syntax for the file format. W al so recommend that a
file or class nanme and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives

Derby Server and Administration Guide
Copyright [yyyy] [name of copyright owner]

Li censed under the Apache License, Version 2.0 (the "License");
you may not use this file except in conpliance with the License.
You may obtain a copy of the License at

http://ww. apache. org/ |l i censes/ LI CENSE-2. 0

Unl ess required by applicable |aw or agreed to in witing, software
di stributed under the License is distributed on an "AS | S" BASI S,

W THOUT WARRANTI ES OR CONDI TI ONS OF ANY KI ND, either express or
inmplied. See the License for the specific | anguage governing

perm ssions and |limtations under the License.

Derby Server and Administration Guide

About this guide

For general information about the Derby documentation, such as a complete list of books,
conventions, and further reading, see Getting Started with Derby.

For more information about Derby, visit the Derby website at http://db.apache.org/derby.
The website provides pointers to the Derby Wiki and other resources, such as the
derby-users mailing list, where you can ask questions about issues not covered in the
documentation.

Purpose of this guide

Audience

This guide explains how to use Derby in a multiple-client environment. It also provides
information that a server administrator might need to keep Derby running with a high

level of performance and reliability in a server framework or in a multiple-client application
server environment.

When running in embedded mode, Derby databases typically do not need any
administration.

To connect multiple clients with Derby, you can embed Derby in a server framework
that you choose, or you can use the Derby Network Server. This guide describes these
options.

This guide has two parts, each for a different audience.

The first part of this guide is intended for developers of client/server and multiple-client
applications. The second part of this guide is intended for administrators.

How this guide is organized

This guide describes how to run and manage the Derby network server.
Part One: Derby Server Guide
» Derby in a multi-user environment

Describes the different options for embedding Derby in a server framework and
explains the Network Server option.
» Using the Network Server with preexisting Derby applications

Describes how to change existing Derby applications to work with the Network
Server.
* Managing the Derby Network Server

Describes how to use shell scripts, the command line, and the Network Server API
to manage the Network Server.
» Using Java Management Extensions (JMX) technology

Describes how to use the Derby MBeans and other JMX features.
» Managing the Derby Network Server remotely by using the servlet interface

Describes how to use the servlet interface to manage the Network Server. (The
servlet interface should be used for testing purposes only, not in production.)
» Derby Network Server advanced topics

http://db.apache.org/derby/

Derby Server and Administration Guide

Describes advanced topics for Derby Network Server users.
¢ Derby Network Server sample programs

Describes several Derby Network Server sample programs for Network Server
users.

Part Two: Derby Administration Guide
¢ Maintaining database integrity

Describes how to prevent Derby database corruption.
¢ Checking database consistency

Describes how to check the consistency of Derby databases.
¢ Backing up and restoring databases

Describes how to back up and restore a database.
¢ Importing and exporting data

Describes how to import and export large amounts of data between files and
database tables.
* Replicating databases

Describes how to replicate databases.
¢ Logging on a separate device

Describes how to put a database's log on a separate device, which can improve the
performance of large databases.
¢ Obtaining locking information

Describes how to get detailed information about locking status.
¢ Reclaiming unused space

Describes how to identify and reclaim unused space in tables and related indexes.

10

Derby Server and Administration Guide

Part One: Derby Server Guide

This part of the guide explains the Derby Network Server and other server frameworks.

Derby in a multi-user environment

This section describes how to use Derby in a multi-user (or "server") environment.

Derby in a server framework

In a sense, Derby is always an embedded product. You can embed it in an application in
which users access the database from a single Java Virtual Machine (JVM), or you can
embed it in a server framework (an application that allows users from different JVMs to
connect to Derby simultaneously).

When Derby is embedded in an application, the local JDBC driver calls the local Derby
database.

When Derby is embedded in a server framework, the server framework's connectivity
software provides data to multiple client JDBC applications over a network or the Internet.

For local or remote multi-user connectivity (multiple users who access Derby from
different JVMs), use the Derby Network Server. If you require features that are not
included in the Network Server, you can embed the basic Derby product in another
server framework.

Connectivity configurations
There are several ways to embed Derby in a server framework.

Use the Network Server
This is the easiest way to provide connectivity to multiple users who are accessing
Derby databases from different JVMs. The Derby Network Server provides this kind
of connectivity to Derby databases within a single system or over a network.

Purchase another server framework
You can use Derby within many server frameworks, such as IBM WebSphere
Application Server.

Write your own framework
Derby's flexibility allows other configurations as well. For example, rather than
embedding Derby in a server that communicates with a client that uses JDBC, you
can embed Derby within a servlet in a web server that communicates with a browser
using HTTP.

Multiple-client features available in Derby

Derby contains some features that are useful for developing multi-user applications.
Row-level locking:
To support multi-user access, Derby uses row-level locking.

However, you can configure Derby to use table-level locking in environments that

have few concurrent transactions (for example, a read-only database). Table-level

locking is preferable if there are few or no writes to the server, while row-level locking is
essential for good performance if many clients write to the server concurrently. The Derby
optimizer tunes lock choice for queries automatically.

11

Derby Server and Administration Guide
Multiple concurrency levels:

Derby supports the SERIALIZABLE (RR), REPEATABLE (RS), READ COMMITTED
(CS), and READ UNCOMMITTED (UR) isolation levels.

CSs
CS (the default isolation level) provides the best balance between concurrency and
consistency in multiple-client environments.

RS
RS provides less consistency than RR but allows more concurrency.

RR
RR provides greatest consistency.

UR
UR provides maximum concurrency, if uncommitted values are allowed in the query.
It is typically used if approximate results are acceptable.

See "Types and Scope of Locks in Derby Systems" in the Derby Developer's Guide for
more information.

Multi-connection and multi-threading:
Derby allows multiple simultaneous connections to a database, even in embedded mode.

Derby is also fully multi-threaded, and you can have multiple threads active at the same
time. However, JDBC semantics impose some limitations on multi-threading. See the
Derby Developer's Guide for more information.

Administrative tools:

Derby provides some tools and features to assist database administrators, including the
following.

« Consistency checker

¢ Online backup

» Procedures for importing and exporting data

« Database replication

The ability to put a database's log on a separate device
 Locking information monitoring

« Reclaiming unused space

These tools and features are discussed in Part Two of this guide. See the sections in that
part for more information.

The Derby Network Server

The Derby Network Server provides multi-user connectivity to Derby databases within a
single system or over a network.

The Network Server uses the standard Distributed Relational Database Architecture
(DRDA) protocol to receive and reply to queries from clients. Databases are accessed
through the Derby Network Server by using the Derby Network Client driver.

The Network Server is a solution for multiple JVMs that connect to the database, unlike
the embedded scenario where only one JVM runs as part of the system. When Derby is
embedded in a single-JVM application, the embedded JDBC driver calls the local Derby
database. When Derby is embedded in a server framework, the server framework's
connectivity software provides data to multiple client JDBC applications over a network or
the Internet.

To run the Derby Network Server, you need to install the following files:
e Onthe server side, install der by. j ar and der bynet . j ar.
« On the client side, install der byclient.jar.

12

Derby Server and Administration Guide
There are several ways to manage the Derby Network Server, including:

e Through the command line

e By using . bat and . ksh scripts

« With your own Java program (written using the Network Server API)
« By setting Network Server properties

Using the Network Server with preexisting Derby applications explains how to change
existing Java applications that currently run against Derby in embedded mode to run
against the Derby Network Server.

Managing the Derby Network Server explains how to manage the Network Server by
using the command line, including starting and stopping it.

Derby Network Server advanced topics contains advanced topics for Derby Network
Server users.

Because of the differences in JDBC drivers that are used, you might encounter
differences in functionality when running Derby in the Network Server framework as
opposed to running it embedded in a user application. Refer to Using the Network
Server with preexisting Derby applications for a complete list of the differences between
embedded and Network Server configurations.

Embedded servers

Because Derby is written in the Java programming language, you have great flexibility in
how you choose to configure your deployment.

For example, you can run Derby, the JDBC server framework, and another application in
the same JVM as a single process.

How to start an embedded server from an application

In one thread, the embedding application starts the local JDBC driver for its own access.

Connecti on conn = Driver Manager. get Connecti on(
"j dbc: der by: sanpl e") ;

In another thread, the same application starts the server framework to allow remote
access. Starting the server framework from within the application allows both the server
and the application to run in the same JVM.

Embedded server example

You can start the Network Server in another thread automatically when Derby starts by
setting the der by. dr da. st art Net wor kSer ver property, or you can start it by using a
program.

See Setting Network Server properties for details on this property.

The following example shows how to start the Network Server by using a program:

i mport org. apache. der by. dr da. Net wor kSer ver Contr ol ;

i nport java. net. | net Address;

Net wor kSer ver Control server = new Networ kServer Contr ol
(I net Addr ess. get ByNane("| ocal host"), 1527) ;

server.start(null);

The program that starts the Network Server can access the database by using either
the embedded driver or the Network Client driver. The server framework's attempt to
boot the local JDBC driver is ignored because it has already been booted within the
application's JVM. The server framework simply accesses the instance of Derby that is
already booted. There is no conflict between the application and the server framework.

The remote client can then connect through the Derby client driver:

13

Derby Server and Administration Guide

String nsURL="j dbc: derby://I| ocal host: 1527/ sanpl e";
java. util.Properties props = new java.util.Properties();

props. set Property("user”,"usr");
props. set Property("password", " pwd");

Connecti on conn = Driver Manager . get Connecti on(nsURL, props);

/*interact with Derby*/
Statenent s = conn.createStatenment();

ResultSet rs = s.executeQuery(
"SELECT * FROM Hot el Booki ngs");

About this guide and the Network Server documentation
This guide assumes that you are familiar with Derby features and tuning.

Before reading this guide, you should first learn about basic Derby functionality by
reading the Derby Developer's Guide. Also, because multi-user environments typically
have performance and tuning issues, you should read Tuning Derby.

Using the Network Server with preexisting Derby applications

You must modify Java applications that currently run against Derby in embedded mode
so that they work with the Derby Network Server.

The topics in this section discuss these changes.

The Network Server and Java Virtual Machines (JVMs)

The Derby Network Server is compatible with Java Platform, Standard Edition (Java SE)
19 and above.

Installing required jar files and adding them to the classpath/modulepath

To use the Network Server and network client driver, add the following jar file to your
server classpath/modulepath.

e derbyrun.jar

Adding this file to your classpath/modulepath has the effect of including all of the Derby
classes. These classes are in the following jar files, which you can also add to your
classpath/modulepath separately:

e derbyshared. jar

This jar file contains code which is common to all Derby configurations.
e derbynet.jar

This jar file contains the Network Server code. It must be in your
classpath/modulepath to start the Network Server.
e derby.jar

This jar file contains the Derby database engine code. It must be in the
classpath/modulepath in order for the Network Server to access Derby databases.
der by. j ar isincluded in the O ass- Pat h attribute of der bynet . j ar 's manifest
file. If you have der bynet . j ar in the classpath/modulepath and der by. j ar isin
the same directory as der bynet . j ar, it is not necessary to include der by. j ar
explicitly.

e derbyclient.jar

14

Derby Server and Administration Guide

This jar file contains the Derby Network Client JDBC driver that is necessary for
communication with the Network Server. It must be in the classpath/modulepath
of the application on the client side in order to access Derby databases over a
network.

e derbytool s.jar

This jar file contains the standard Derby tools, such asi j , sysi nf o, and dbl ook.
This jar file also contains the Derby DataSources.
e derbyoptionaltools.jar

This jar file contains additional Derby tools, such as the Lucene plug-in. The
der byopti onal t ool s. j ar file is not needed in your classpath/modulepath to run
the Network Server, but it is automatically included by der byrun. j ar.

All of the jar files are in the $DERBY_HOME/ | i b directory.

Derby provides script files for setting the classpath/modulepath to work with the Network
Server. The scripts are located in the $DERBY_HOVE/ bi n directory.

« set Net wor kd i ent CP. bat (Windows)
« set Net wor kd i ent CP (UNIX)
» set Net wor kSer ver CP. bat (Windows)
« set Net wor kSer ver CP (UNIX)

See Managing the Derby Network Server and Getting Started with Derby for more
information on setting the classpath/modulepath.

Starting the Network Server
To start the Network Server, you can invoke a script, a jar file, or a class.

> Important: Always shut down the Network Server properly after use, because failure
to do so might result in unpredictable side effects, such as blocked ports on the server.

You are strongly urged to enable user authentication and user authorization when

you run a Network Server. For details on how to configure user authentication and
authorization, see "Configuring user authentication" and "Configuring user authorization"
in the Derby Security Guide.

If you start the Derby Network Server from the command line as described here, access
to databases and to other Derby files is by default restricted to the operating system
account that started the Network Server. It is possible to override this default behavior.
For more information, see "Restricting file permissions" in the Derby Security Guide.

You can start the Network Server in any of the following ways:

« If you are relatively new to the Java programming language, follow the
instructions in "Setting up your environment" in Getting Started with Derby
to set the DERBY_HOVME and JAVA HOVE environment variables and to add
DERBY_HOVE/ bi n to your path. Then use the st art Net wor kSer ver . bat script
to start the Network Server on Windows machines and the st art Net wor kSer ver
script to start the Network Server on UNIX systems. These scripts are located in
$DERBY_HOWE/ bi n, where $DERBY_HOME is the directory where you installed
Derby.

You can run NetworkServerControl commands only from the host that started the
Network Server. The following table shows the sequence of commands.

Table 1. Commands to run the st ar t Net wor kSer ver command

15

Derby Server and Administration Guide

Operating
System Command
Windows set DERBY_HOMVE=C: \ der by

set JAVA HOME=C: \ Program Fi | es\ Java\j dkl. 6.0_24
set PATH=%DERBY_HOVE% bi n; %PATHY
st art Net wor kSer ver

UNIX (Korn Shell) | export DERBY_HOVE=/ opt/ der by

export JAVA _HOVE=/usr/j 2se

export PATH=" $DERBY_HOVE/ bi n: $PATH"
st art Net wor kSer ver

« If you are a regular Java user but are new to Derby, set the DERBY_HOVE
environment variable, then use a j ava command to invoke the der byrun. j ar or
der bynet . j ar file, as shown in the following table.

Table 2. Commands to invoke the Derby jar files

Operating
System Command
Windows set DERBY_HOVE=C:\ der by
java -jar YOERBY_HOVE% | i b\ der byrun.jar server
start

or
java -jar Y%DERBY_HOVE% | i b\derbynet.jar start

UNIX (Korn Shell) | export DERBY_HOVE=/ opt/ der by)

java -jar $DERBY_HOWE/ |l i b/ derbyrun.jar server
start

or

java -jar $DERBY_HOMWE/ | i b/ derbynet.jar start

To see the command syntax, invoke der byrun. jar server orderbynet.jar
with no arguments.

« If you are familiar with both the Java programming language and Derby, you have
already set DERBY_ HOME. Set your classpath/modulepath to include the Derby jar
files. Then use a j ava command to invoke the Net wor kSer ver Cont r ol class
directly, as shown in the following tables.

Table 3. Commands to invoke the Net wor kSer ver Cont r ol class viathe

classpath
Operating
System Command
Windows YOERBY_HOVE% bi n\ set Net wor kSer ver CP
j ava org. apache. der by. drda. Net wor kSer ver Cont r ol
start

UNIX (Korn Shell) | $DERBY_HOVE/ bi n/ set Net wor kSer ver CP
java org. apache. der by. dr da. Net wor kSer ver Cont r ol
start

Table 4. Commands to invoke the Net wor kSer ver Cont r ol class via the

modulepath
Operating
System Command
Windows YOERBY_HOVE% bi n\ set Net wor kSer ver CP
java -p %VODULEPATHY ~

16

Derby Server and Administration Guide

Operating
System Command

-m
or g. apache. der by. server/
or g. apache. der by. dr da. Net wor kSer ver Control start

UNIX (Korn Shell) | $DERBY_HOVE/ bi n/ set Net wor kSer ver CP
java -p $MODULEPATH \
-m
or g. apache. der by. server/
or g. apache. der by. dr da. Net wor kServer Control start

The default system directory is the directory in which Derby was started. (See the Derby
Developer's Guide for more information about the default system directory.)

You can specify a different host or port number when you start the Network Server by
specifying an option to the command.

» Specify a port number other than the default (1527) by using the - p port nunber
option, as shown in the following example:

java org. apache. der by. drda. Net wor kServer Control start -p 1368
« Specify a specific interface (host name or IP address) to listen on other than the
default (I ocal host) by using the - h option, as shown in the following example:

$DERBY_HOVE/ bi n/ st art Net wor kServer -h nyhost -p 1368
where myhost is the host name or IP address.
Remember: Before using the - h option, you should enable user authentication.

By default, the Network Server will listen to requests only on the loopback address, which
means that it will only accept connections from the local host.

Starting the Network Server from a Java application

Always shut down the Network Server properly after use, because failure to do so might
result in unpredictable side effects, such as blocked ports on the server.

There are two ways to start the Network Server from a Java application.

* You can include the following line in the der by. pr operti es file:

der by. dr da. st art Net wor kSer ver =t rue

This starts the server on the default port, 1527, listening on | ocal host (all
interfaces).

To specify a different port or a specific interface in the der by. properti es file,
include the following lines, respectively:

der by. dr da. port Nunber=1110
der by. dr da. host =nyhost

You can also specify the st art Net wor kSer ver and port Nurber properties by
using a Java command:

java - Dder by. drda. start Net wor kServer=true \
- Dder by. dr da. port Number =1110 \
- Dder by. dr da. host =myhost your App
¢ You can use the NetworkServerControl API to start the Network Server from a

separate thread within a Java application:

Net wor kSer ver Control server = new Networ kServerControl ();
server.start (null);

17

Derby Server and Administration Guide
Starting the Network Server on IPv6/IPv4 dual stack Windows machines

Add the following JVM properties to the command when you start the server on an
IPv6/IPv4 dual stack Windows machine.

-Dj ava. net. preferl| Pv4St ack=f al se
-Dj ava. net . prefer| Pv6Addr esses=true

Shutting down the Network Server
To shut down the Network Server, you can invoke a script, a jar file, or a class.

The scripts to shut down the Network Server are located in the $DERBY_HOVE/ bi n
directory.

> Important: If user authentication is enabled, you must specify a valid Derby user
name and password; if the user authentication check fails, you'll see an authentication
error and the running server remains intact. Note that Derby does not yet restrict the
shutdown privilege to specific users: the server can be shut down by any user on the
server machine who presents valid credentials.
» To shut down the Network Server by using the scripts provided for Windows
systems, use:

st opNet wor kServer. bat [-h hostnane] [-p portnunber] [-user usernane]
[- password password]

« To shut down the Network Server by using the scripts provided for UNIX systems,
use:

st opNet wor kServer [-h hostnane] [-p portnunber] [-user usernane]
[- password password]
Shutting down by using the command line

From the command line, you can shut down the Network Server by invoking a jar file or a
class.

You must provide user credential arguments to shut down a server running with user
authentication.

» To shut down the Network Server by invoking a jar file from the $DERBY_HOVE/ | i b
directory, use:

java -jar derbyrun.jar server shutdown [-h <hostnane>] [-p
<portnunber>] [-user <username>] [-password <password>]

or

java -jar derbynet.jar shutdown [-h <hostnane>] [-p <portnunber>]
[-user <usernane>] [-password <passwor d>]

» To shut down the Network Server by invoking a class, use:

java org. apache. der by. dr da. Net wor kSer ver Cont rol shutdown [-h
<host name>] [-p <portnunber>] [-user <usernanme>] [-password
<passwor d>]
Shutting down by using the API

You can use the NetworkServerControl API to shut down the Network Server from within
a Java application.

The name of the method that you use to shut down the Network Server is shut down() .

For example, the following command shuts down the Network Server running on the
current machine using the default port number (1527):

Net wor kSer ver Control server = new Networ kServer Control ();

18

Derby Server and Administration Guide
server. shut down() ;

To shut down a server running with user authentication, you need to use a
NetworkServerControl instance created with user credentials:

Net wor kSer ver Control server = new Networ kServer Control (user nane,
passwor d) ;
server. shut down() ;

Obtaining system information

You can obtain information about the Network Server, such as version and current
property values, Java information, and Derby database server information, by using the
sysi nf o utility.

The sysi nf o utility is available from scripts, the command line, and the
NetworkServerControl API.

The following scripts are located in the $DERBY_HOVE/ bi n directory. Before running
these scripts, make sure that the Derby Network Server is started.

« Run the following script to obtain information about the Network Server on a
Windows system:

Net wor kSer ver Control . bat sysinfo [-h hostnane] [-p portnunber]
« Run the following script to obtain information about the Network Server on a UNIX
system:

Net wor kSer ver Control sysinfo [-h hostnane] [-p portnunber]
For more information on the sysi nf o utility, see the Derby Tools and Utilities Guide.

You can also use Java Management Extensions (JMX) technology to obtain system
information. For details, see Using Java Management Extensions (JMX) technology.

Obtaining system information by using the command line

To run sysi nf o from the command line, use a command like one of the following while
the Network Server is running.

java -jar $DERBY_HOWE/Ili b/ derbyrun.jar server sysinfo
[-h hostnane] [-p portnumnber]

java org. apache. der by. drda. Net wor kSer ver Control sysinfo
[-h hostnane] [-p portnunber]

Administrative commands such as sysi nf o can only execute on the host where the
server was started, even if the server was started with the - h option.

Obtaining system information by using the API
The get Sysi nf o method produces the same information as the sysi nf o command.

The signature for this method is

String getSysinfo();

For example:

Net wor kSer ver Control serverControl = new NetworkServerControl ();
String nyinfo = serverControl . get Sysinfo();

The get Sysi nf o method returns information about the Network Server that is running
on the current machine on the default port number (1527).

19

Derby Server and Administration Guide
Obtaining Network Server runtime information:

Use the runt i mei nf o command or the get Runt i nel nf o method to get memory
usage and current session information about the Network Server, including user,
database, and prepared statement information.

e Torunrunti nei nf o from the command line:

java org. apache. der by. drda. Net wor kSer ver Control runti nei nfo
[-h <hostname>][<-p portnunber >]

* The get Runt i nel nf o method returns the same information as the r unt i nei nf o
command. The signature for the get Runt i nel nf o method is

String getRunti mel nfo()

For example:

Net wor kSer ver Control serverControl = new NetworkServerControl ();
String nyinfo = serverControl.getRunti mel nfo();

Obtaining Network Server properties by using the getCurrentProperties
method:

The get Curr ent Properti es method is a Java method that you can use to obtain
information about the Network Server.

It returns a Pr opert i es object with the value of all the Network Server properties as
they are currently set.

The signature of this method is:

Properties getCurrentProperties()

For example:

Net wor kSer ver Control server = new Networ kServer Control ();
Properties p = server.getCurrentProperties();
p.list(Systemout);

System out . printl n(p.getProperty("derby.drda. host"));

As shown in the previous example, you can look up the current properties and then work
with individual properties if needed by using various APIs on the Pr operti es class. You
can also print out all the properties by using the Properti es. | i st method.

Accessing the Network Server by using the network client driver

When connecting to the Network Server, your application needs to load a driver and
connection URL that are specific to the Network Server. In addition, you must specify a
user name and password if you are using authentication.

See "Configuring user authentication" in the Derby Security Guide for information about
configuring Network Server authentication.

The driver that you need to access the Network Server is:
org. apache. derby. jdbc. dientDriver

The syntax of the URL that is required to access the Network Server is:

jdbc: derby://server[:port]/
dat abaseNane[; URL-attri bute=value [;...]]

where the URL- at t ri but e is either a Derby embedded or network client attribute.
Neither the database name nor the name of a directory in the database path can contain

20

Derby Server and Administration Guide

a colon (:), although the colon after the drive name in a Windows path is allowed. The
path separator in the connection URL is a forward slash (/).

For complete information about the connection URL, see the Derby Reference Manual
and the Derby Developer's Guide.

When you access the Network Server using a connection URL, the network client driver
is loaded automatically.

To access an in-memory database using the Network Server, the syntax is:

jdbc: derby://server[:port]/nenory:

dat abaseNane[; URL-attribute=value [;...]]

For more information, see "Using in-memory databases" in the Derby Developer's Guide.

For both driver and DataSource access, the database name (including path), user,
password, and other attribute values must consist of characters that can be converted

to UTF-8. The total byte length of the database name plus attributes when converted to
UTF-8 must not exceed 1024 bytes; keep in mind that in UTF-8, a character may occupy
from 1 to 4 bytes. You may be able to work around this restriction for long paths or paths
that include multibyte characters by setting the der by. syst em hone system property
when starting the Network Server and accessing the database with a relative path that is
shorter and does not include multibyte characters.

The following table shows standard JDBC DataSource properties.

Table 5. Standard JDBC DataSource properties

or TCP/IP
address where
the server is
listening for
requests.

URL
Property Type Description Attribute Notes
dat abaseNane St ri ng The name of None This property is
the database. also available using
This property is EnbeddedDat aSour ce.
required.
dat aSour ceNane| St ri nd The data source | None This property is
name. also available using
EnbeddedDat aSour ce.
description Stri ng A description of | None This property is
the data source. also available using
EnbeddedDat aSour ce.
user Stri ng The user's user Default is APP.
account name. This property is
also available using
EnbeddedDat aSour ce.
passwor d Stri ng The user's passwor d | This property is
database also available using
password. EnbeddedDat aSour ce.
server Nanme Stri ng The host name | None Defaultis | ocal host .

21

Derby Server and Administration Guide

Property

Type

Description

URL
Attribute

Notes

port Number

| nt ege

The port number
where the server
is listening for
requests.

None Default is 1527.

The following table shows client-specific JDBC DataSource properties.

Table 6. Client-specific DataSource properties

Property

Type

Description

URL Attribute

Notes

traceFile

String

The filename for
tracing output.
Setting this
property turns
on tracing. See
Network client
tracing.

traceFil e

None

traceDirectory

String

The directory
for the tracing
output. Each
connection will
send output

to a separate
file. Setting this
property turns
on tracing. See
Network client
tracing.

traceDirectory

None

tracelLevel

I nt ege

The level of

client tracing
iftraceFileort
is set.

tracelLevel

The default is
TRACE ALL.

traceFi | eAppend

Bool ed

Value istrue

if tracing output
should append to
the existing trace
file.

traceFi | eAppend

The default is
fal se.

secur it yMechani

I nt ege

The security
mechanism. See
"Configuring
Network Client
authentication
without
SSL/TLS" in the
Derby Security
Guide.

securityMechani s

The default is U

SER_ONLY_SEC

retri eveMessage

Bool ed

Retrieve
message

text from the
server. A stored

retri eveMessageT|

The default is
true.

22

Derby Server and Administration Guide

Property Type Description URL Attribute Notes
procedure is
called to retrieve
the message
text with each
SQLExcepti on
and might start a
new unit of work.
Set this property
tofal se if you
do not want the
performance
impact or when
starting new
units of work.
ssl Stringl The SSL mode ssl The default is
for the client of f.
connection. See
"Configuring
SSL/TLS" in the
Derby Security
Guide.
The following table shows server-specific JDBC DataSource properties.
Table 7. Server-specific DataSource properties
URL
Property Type Description Attribute Notes
connectionAttr{ Stri ng Setto the Various This property is
list of Derby also available using
embedded EnmbeddedDat aSour ce.
connection See the Derby
attributes Reference Manual for
separated by more information about
semicolons. the various connection
attributes.
creat eDat abase| String Ifsettocreate,|create This property is
create the also available using
database EnmbeddedDat aSour ce.
specified See the Derby
with the Reference Manual
dat abaseNamne for more information.
property. Similar to setting connec

to cr eat e=t r ue. Only
creat e is allowed;

other values equate

to nul I . The result of
conflicting settings of

cr eat eDat abase,

shut downDat abase,
and connecti onAttriQ

is undefined.

23

i onAttri but

ut es

Derby Server and Administration Guide

URL
Property Type Description Attribute Notes

shut downDat abay Stri nd If set to shut down | This property is
shut down, also available using
shut down EnmbeddedDat aSour ce.
the database See the Derby
specified Reference Manual
with the for more information.
dat abaseNane Similar to setting connecfi onAttri but
property. to shut down=t r ue.

Only shut down

is allowed; other
values equate to

nul | . The result of
conflicting settings of
cr eat eDat abase,
shut downDat abase,
and connecti onAttri HQut es
is undefined. If
authentication and

SQL authorization are
both enabled, database
shutdown is restricted to
the database owner.

Note: The set Attri but esAsPasswor d property, which is available for the embedded
DataSource, is not available for the client DataSource.
Network client tracing

The Derby Network client provides a tracing facility to collect JDBC trace information and
view protocol flows.

There are various ways to obtain trace output. However, the easiest way to obtain trace
output is to use the t r aceFi | e=pat h attribute on the URL ini j . The following example
shows all tracing going to the file t race. out fromanij session.

i j>connect 'jdbc:derby://Iocal host: 1527/ mydb;
create=true;traceFil e=trace. out; user=user 1; passwor d=secr et 4ne' ;

To append trace information to the specified file, use the t r aceFi | eAppend=t r ue URL
attribute in addition to t r aceFi | e=pat h.

For more information, see "traceFile=path attribute" and "traceFileAppend=true attribute"
in the Derby Reference Manual.

Implementing ClientDataSource tracing
You can use one of three methods to collect tracing data while obtaining connections
from the C i ent Dat aSour ce:
* UsethesetLogWiter(java.io.PrintWiter) method of
Cl i ent Dat aSour ce and set the Pri nt Wi t er to a non-null value.
» Usetheset TraceFil e(String fil enane) method of O i ent Dat aSour ce.
* Usetheset TraceDirectory(String dirnane) method of
C i ent Dat aSour ce to trace each connection flow in its own file for programs that
have multiple connections.

Derby provides two ClientDataSource implementations. You can use the
or g. apache. derby. j dbc. d i ent Dat aSour ce class on all supported Java SE
versions except Java SE 8 Compact Profile 2. On Java SE 8 Compact Profile 2, you must

24

Derby Server and Administration Guide

use the or g. apache. der by. j dbc. Basi cCl i ent Dat aSour ce40 class. For more
information, see "JDBC support for Java SE 8 Compact Profiles" in the Derby Reference
Manual.

Implementing DriverManager tracing
Use one of the following two options to enable and collect tracing information while
obtaining connections using the Dr i ver Manager :
e Usetheset LogWiter(java.io.PrintWiter) methodof Dri ver Manager
and set the Pri nt Wi t er to a non null-value.
« UsethetraceFi |l e=pat h ortracebDi rect or y=pat h URL attributes
to set these properties prior to creating the connection with the
Dri ver Manager . get Connect i on() method. For more information, see
"traceFile=path attribute" and "traceDirectory=path attribute" in the Derby Reference
Manual.

Changing the default trace level

The default trace level is C i ent Dat aSour ce. TRACE_ALL. You can choose the
tracing level by calling the set TraceLevel (i nt | evel) method or by setting the
tracelLevel =val ue URL attribute:

String url = "jdbc:derby://sanpl ehost. exanpl e. com 1528/ nydb" +
":;traceFil e=/u/userl/trace.out" +
";tracelLevel =" +

or g. apache. der by. j dbc. d i ent Dat aSour ce. TRACE_PROTOCOL_FLOWS;
Dri ver Manager . get Connecti on(url, "user 1", "secret4nme");

The following table shows the tracing levels you can set.

Table 8. Available tracing levels and values

Trace Level Value
org.apache.derby.jdbc.ClientDataSource. TRACE_NONE 0x0
org.apache.derby.jdbc.ClientDataSource. TRACE_CONNECTION_CALLS | Ox1
org.apache.derby.jdbc.ClientDataSource. TRACE_STATEMENT_CALLS | Ox2
org.apache.derby.jdbc.ClientDataSource. TRACE_RESULT_SET_CALLS | 0x4
org.apache.derby.jdbc.ClientDataSource. TRACE 0x10
_DRIVER_CONFIGURATION
org.apache.derby.jdbc.ClientDataSource. TRACE_CONNECTS 0x20
org.apache.derby.jdbc.ClientDataSource. TRACE_PROTOCOL_FLOWS | 0x40
org.apache.derby.jdbc.ClientDataSource. TRACE 0x80
_RESULT_SET_META_DATA
org.apache.derby.jdbc.ClientDataSource. TRACE 0x100
_PARAMETER_META_DATA
org.apache.derby.jdbc.ClientDataSource. TRACE_DIAGNOSTICS 0x200
org.apache.derby.jdbc.ClientDataSource. TRACE_XA_CALLS 0x800
org.apache.derby.jdbc.ClientDataSource. TRACE_ALL OXFFFFFFFIF

To specify more than one trace level, use one of the following techniques:

« Use hitwise OR operators (|) with two or more trace values. For example, to trace
PROTOCOL flows and connection calls, specify this value fortr aceLevel :

25

Derby Server and Administration Guide
TRACE_PROTOCOL_FLOAS | TRACE_CONNECTI ON_CALLS
« Use a bitwise complement operator (~) with a trace value to specify all except a
certain trace. For example, to trace everything except PROTOCOL flows, specify
this value for t r aceLevel :

~TRACE_PROTOCOL_FLOAS
For more information, see "traceLevel=value attribute" in the Derby Reference Manual.
Network client driver examples
The following examples specify the user and password URL attributes.

To enable user authentication, you must either use NATIVE authentication or explicitly
set the property der by. connect i on. requi r eAut hent i cati on totrue. Otherwise,
Derby does not require a user name and password. For details on how to enable user
authentication, see "Configuring user authentication" in the Derby Security Guide.

For a multi-user product, you would typically specify authentication for the system in
the der by. properti es file for your server, since it is in a trusted environment. The
following property setting specifies NATIVE authentication:

der by. aut henti cati on. provi der =NATI VE: myCr edent i al sDB: LOCAL

> Important: It is strongly recommended that production systems rely on NATIVE
authentication, an external directory service such as LDAP, or a user-defined class for
authentication. It is also strongly recommended that production systems protect network
connections with SSL/TLS.

Example 1

The following example connects to the default server name localhost on the default port,
1527, and to the database sample.

jdbc: derby:/ /1 ocal host: 1527/ sanpl e; user =j udy; passwor d=nol2see

Example 2

The following example specifies both Derby and Network Client driver attributes:

jdbc: derby: //| ocal host: 1527/ sanpl e; cr eat e=t r ue; user =j udy; passwor d=nol2see
Example 3

This example connects to the default server name | ocal host on the default port, 1527,
and includes the path in the database name portion of the URL.

jdbc: derby:/ /1 ocal host: 1527/ c: / ny- db-di r/ my- db- nane; user =j udy;
passwor d=nol2see

For a programming example that shows how to connect to the server using NATIVE
authentication, see "NATIVE authentication and SQL authorization example" in the Derby
Developer's Guide.

Accessing the Network Server by using a DataSource object
The Network Server supports a set of Derby Network Client driver Dat aSour ce classes.

You can use the or g. apache. der by. j dbc. C i ent Dat aSour ce and
or g. apache. derby. j dbc. d i ent Connect i onPool Dat aSour ce classes on all
supported Java SE versions.

Using statement caching

26

Derby Server and Administration Guide

Derby supports JDBC statement caching, which can improve the performance of
applications that use Pr epar edSt at enent or Cal | abl eSt at enment objects.
Statement caching avoids the performance penalty incurred by going over the network
from the client to the server to prepare a statement that has already been prepared on
the same connection.

To use statement caching, you must use an

or g. apache. der by. j dbc. d i ent Connecti onPool Dat aSour ce or

or g. apache. der by. j dbc. Basi cd i ent Connect i onPool Dat aSour ce40 object.
After you instantiate this object, perform these steps:

1. Specify the desired size of your statement cache by calling the
set MaxSt at enent s method on the Dat aSour ce object, specifying an argument
greater than zero.

2. Call the get Pool edConnect i on method on the Dat aSour ce object to obtain a
j avax. sql . Pool edConnect i on object (a physical connection).

3. Callthe j avax. sql . Pool edConnect i on. get Connect i on method to obtain a
j ava. sgl . Connect i on object (a logical connection).

After you obtain a connection, use either prepared statements or callable statements to
interact with the database. Close each statement to return it to the cache after you finish
using it. The statements you create are held in the cache on the client side and reused
when needed.

See Statement caching example for a code example.

Use of the JDBC statement cache makes each physical connection use more memory.
The amount depends on how many statements the connection is allowed to cache and
how many statements are actually cached.

If you enable JDBC statement caching, error handling changes slightly. Some errors that
previously appeared when the pr epar eSt at enent method was executed may now
appear during statement execution. For example, suppose you query a table using a
prepared statement that is then cached. If the table is deleted, the prepared statement
that queries the table is not invalidated. If the query is prepared again on the same
connection, the cached object is fetched from the cache, and the pr epar eSt at enent
call seems to have succeeded, although the statement has not actually been prepared.
When the prepared statement is executed, the error is detected on the server side, and
the client is notified.

DataSource access examples

These examples use or g. apache. der by. j dbc. C i ent Dat aSour ce and
or g. apache. der by. j dbc. d i ent Connect i onPool Dat aSour ce to access the
Network Server.

The following example uses or g. apache. der by. j dbc. O i ent Dat aSour ce to
access the Network Server:

or g. apache. derby. j dbc. O i ent Dat aSource ds =
new or g. apache. derby. j dbc. d i ent Dat aSour ce() ;
ds. set Dat abaseNane(" nydb") ;
ds. set Cr eat eDat abase("create");
ds. set User ("user");
ds. set Passwor d(" nypass");

/1 The host on which Network Server is running
ds. set Server Name("| ocal host");

/1 The port on which Network Server is |istening
ds. set Por t Nunmber (1527) ;

Connecti on conn = ds. get Connection();

27

Derby Server and Administration Guide
Statement caching example

The following example uses
or g. apache. der by. j dbc. d i ent Connecti onPool Dat aSour ce to access the
Network Server and use JDBC statement caching:

or g. apache. der by. j dbc. O i ent Connect i onPool Dat aSour ce cpds =
new Cl i ent Connect i onPool Dat aSour ce() ;

// Set the nunber of statenents the cache is allowed to cache.
/1 Any nunber greater than zero will enable the cache.
cpds. set MaxSt at enent s(20) ;

/1 Set other DataSource properties
cpds. set Dat abaseNanme(" nmydb") ;

cpds. set Cr eat eDat abase("create");
cpds. set User ("user");

cpds. set Passwor d(" mypass") ;

cpds. set Server Nane("| ocal host") ;
cpds. set Port Nunber (1527) ;

/1l Thi s physical connection will have JDBC statenment cachi ng enabl ed.
j avax. sql . Pool edConnecti on pc = cpds. get Pool edConnecti on();

/1l Create a |ogical connection.
j ava. sql . Connecti on con = pc. get Connection();

/1 Interact with the database.
java. sql . Prepar edSt at ement ps = con. prepar eSt at ement (
"select * fromnyTable where id = ?");

ps.close(); // Inserts or returns statenent to the cache
con. cl ose();

/1 The next |ogical connection can gain fromusing the cache.
con = pc. get Connection();

/1 This prepare causes a statenent to be fetched fromthe | ocal cache.
PreparedSt at enent ps = con. prepar eSt at ement (
"select * fromnyTable where id = ?");

/1 To dispose of the cache, close the connection.
pc. cl ose();

XA and the Network Server

Both the Derby embedded driver and the Network Server provide XA support. The
Network Server provides DRDA level 7 support. DRDA clients that support XAMGR, such
as the Derby network client, can send XA requests to the Network Server.

Using XA with the network client driver

You can access XA support for the Network Server by using the network client driver's
XA DataSource interface.

You can use the or g. apache. der by. j dbc. i ent XADat aSour ce class on all
supported Java SE versions.

The following example illustrates how to obtain an XA connection with the network client
driver:

i mport org. apache. derby. j dbc. O i ent XADat aSour ce;
i mport javax. sql.XAConnecti on;

28

Derby Server and Administration Guide

XAConnect i on xaConnection = null;
Connection conn = null;

Cl i ent XADat aSource ds = new Cl i ent XADat aSour ce() ;

ds. set Dat abaseNane ("sanple");
ds. set Cr eat eDat abase("create");

ds. set Server Name("| ocal host");
ds. set Port Nunmber (1527) ;

xaConnecti on = ds. get XAConnecti on("auser", "shhhh");

conn = xaConnecti on. get Connection();

Using the Derby tools with the Network Server
The Derby tools i j and dbl ook work in embedded mode and client/server mode.
Using the Derby ij tool with the Network Server
To use the i j tool with the network client driver, follow these steps.

1. Startij in one of the following ways. For details, see "Starting ij" in the Derby Tools
and Utilities Guide.
a. Use a script.

Runtheij . bat script on Windows systems and the i j script on UNIX
systems. These scripts are located in the $DERBY_HOVE/ bi n directory.
b. Runtheij tool using the $DERBY_HOVE/ | i b/ der byrun. j ar file.

java -jar derbyrun.jar ij
c. Runtheij tool by specifying the class name.

java org. apache. derby.tool s.ij
2. Connect by specifying the URL:

i j> CONNECT ' jdbc: derby://Ilocal host: 1527/ sanpl €'
USER ' j udy' PASSWORD ' nol2see';

See Network client driver examples for additional URL examples.
Using the Derby dblook tool with the Network Server

To use the dbl ook tool with the network client driver, follow these steps.

1. Make sure the Network Server is running. See Starting the Network Server for more
information.

2. Include the necessary Derby and network client driver connection attributes as part
of the database URL, as in the following example:

java org. apache. derby. t ool s. dbl ook -d
"jdbc: derby: / /1 ocal host: 1527/ sanpl e;
user =user 1; passwor d=secr et 4ne; '

For details on using the dbl ook tool, see the Derby Tools and Utilities Guide.

Differences between running Derby in embedded mode and using the Network
Server

This section describes the differences between running Derby in embedded mode and
using the Network Server.

See "Configuring Network Server authentication in special circumstances” in the Derby
Security Guide for information about authentication that is specific to the Network Server.

29

Derby Server and Administration Guide

Setting port

Note: There may be undocumented differences that have not yet been identified.
Differences between the embedded client and the network client driver

The following are known differences that exist between the Derby embedded driver and
the network client driver.

There may be undocumented differences that have not yet been identified. Some
differences with the network client may be changed in future releases to match the
embedded driver functionality.
« Error messages and SQLSt at es can differ between the network client and
embedded driver.
« Treatment of error situations encountered during batch processing
with j ava. sql . St at enent , j ava. sql . Prepar edSt at enent , and
j ava. sgl . Cal | abl eSt at enrent is different. With the embedded driver,
processing stops when an error is encountered; with the network client
driver, processing continues, but an appropriate value as defined in the
j ava. sql . St at enent API is returned in the resulting update count array.

Updatable result sets

In Derby, the functionality of updatable result sets in a server environment and in an
embedded environment are similar, with the exception of the following differences.

« The embedded driver allows for statement name changes when there is an open
result set on the statement object. This is not supported in a server environment.

« Use of the updat eByt es method on the CHAR, VARCHAR, and LONG VARCHAR
datatypes is supported in an embedded environment, but is not supported in a
server environment.

Differences in JIDBC methods

A few JDBC methods behave differently with the embedded driver from the way they
behave with the client driver.

These methods are as follows:

Connecti on. prepareStatenent (String sqgl, String[] col umNanes)
Connecti on. prepareStatenent (String sql, int[] columml ndexes)

St at enent . execute(String sql, String[] col umNanes)

St at enent . execute(String sql, int[] col uml ndexes)

St at enent . execut eUpdate(String sql, String[] columNanes)
St at enent . execut eUpdate(String sql, int[] columl ndexes)

The differences in behavior are described in "Autogenerated keys" in the Derby
Reference Manual.

Differences using the Connection.setReadOnly method

In embedded mode, when the Connect i on. set ReadOnl y method has t r ue as the
parameter, the connection is marked as a read-only connection. When you use the
Network Server, the Connecti on. set ReadOnl y(true) method is ignored, and the
connection is not marked as a read-only connection.

numbers

By default, the Derby Network Server listens on TCP/IP port number 1527. If you want
to use a different port number, you can specify it on the command line when starting the
Network Server.

For example:

java org. apache. der by. drda. Net wor kServer Control start -p 1088

30

Derby Server and Administration Guide
1. However, it is better to specify the port numbers by using any of the following
methods:
e Change the st art Net wor kSer ver . bat or st art Net wor kSer ver. ksh
script
« Use the der by. dr da. por t Nunber property in der by. properties

See Starting the Network Server for more information.

Managing the Derby Network Server
The Derby Network Server can be run in either of the following configurations.

« As a stand-alone server, in which case it is an independent Java process
embedding the Derby database engine

» As an embedded server, in which case it is embedded within another Java
application, and both the Network Server framework and the Derby database
engine are loaded by the Java application

You can use Java Management Extensions (JMX) technology to monitor and manage
Derby and the Network Server. For information on how to do this, see Using Java
Management Extensions (JMX) technology.

You can manage the Network Server by using shell scripts, the command line, or the
Network Server API.

Overview of Derby Network Server management

You can start the Derby Network Server by using the command line or by using the
Derby Network Server API.

Derby provides scripts for you to use to start the server from the command line. Before
starting the server, you will probably set certain Derby and Network Server properties.

Using the NetworkServerControl API

You need to create an instance of the Net wor kSer ver Cont r ol class if you are using
the API.

There are four constructors for this class.
« Net wor kSer ver Control ()

This constructor creates an instance that listens either on the default port
(1527) or the port that is set by the der by. dr da. port Nunber property.
It will also listen on the host set by the der by. dr da. host property
or the loopback address if the property is not set. This is the default
constructor; it does not allow remote connections. It is equivalent to calling
Net wor kSer ver Cont r ol (| net Addr ess. get ByNane("| ocal host "), 1527)
if no properties are set.
* Net wor kServer Control (I net Address address, int portNunber)

This constructor creates an instance that listens on the specified por t Nunber on
the specified address. The | net Addr ess will be passed to Ser ver Socket . NULL
is an invalid address value. The following examples show how you might allow the
Network Server to accept connections from other hosts:

/| accepts connections fromother hosts on an |IPv4 system
Net wor kSer ver Cont rol server Control =
new Net wor kServer Control (| net Addr ess. get ByNanme("0. 0. 0.0"), 1527) ;

/| accepts connections from other hosts on an |Pv6 system
Net wor kSer ver Control serverControl =

31

http://db.apache.org/derby/papers/DerbyTut/ns_intro.html#ns_intro
http://db.apache.org/derby/papers/DerbyTut/ns_intro.html#Embedded+Server

Derby Server and Administration Guide
new Net wor kSer ver Control (| net Addr ess. get ByNane("::"), 1527);
* Networ kServerControl (String userNane, String password)

If a network server should run with user authentication, certain operations like
Net wor kSer ver Cont r ol . shut down() require that you provide user credentials.
This constructor creates an instance with user credentials, which are then used
for operations that require them. In all other aspects, this constructor behaves like
Net wor kSer ver Control ().

* Net wor kServer Control (I net Address address, int portNunber,
String userNanme, String password)

This constructor creates an instance with user credentials, which are then used
for operations that require them. In all other aspects, this constructor behaves like
Net wor kSer ver Cont r ol (|1 net Address address, int portNunber).

Setting Network Server properties
You can specify Network Server properties in the following ways.

e On the command line
< Inthe . bat or unix shell script files (load the properties by executing j ava - D)
* Inthe der by. properti es file

Properties specified on the command line or in the . bat or. ksh files take precedence
over the properties in the der by. properti es file. Arguments included in commands
that are issued on the command line take precedence over property values.

derby.drda.host property
Causes the Network Server to listen on a specific network interface.

This property allows multiple instances of Network Server to run on a single machine,
each using its own unique host:port combination. The host needs to be set to enable
remote connections.

By default, the Network Server will listen only on the loopback address. If the property is
setto 0. 0. 0. 0, the Network Server will listen on all interfaces.

Ensure that user authorization is enabled before you enable remote connections with this
property.

Syntax

der by. dr da. host =host Nane

Default

If no host name is specified, the Network Server listens on the loopback address of the
current machine (localhost).

Example

der by. dr da. host =nyhost

Static or dynamic

Static. You must restart the Network Server for changes to take effect.
derby.drda.keepAlive property

Indicates whether SO_KEEPALIVE is enabled on sockets.

The keepAlive mechanism is used to detect when clients disconnect unexpectedly.
A keepalive probe is sent to the client if a long time (by default, more than two hours)
passes with no other data being sent or received. The der by. dr da. keepAl i ve

32

Derby Server and Administration Guide

property is used to detect and clean up connections for clients on powered-off machines
or clients that have disconnected unexpectedly.

If the property is set to f al se, Derby will not attempt to clean up disconnected clients.
The keepAlive mechanism might be disabled if clients need to resume work without
reconnecting even after being disconnected from the network for some time. To disable
keepAlive probes on Network Server connections, set this property to f al se.

Syntax

der by. drda. keepAl i ve={true| f al se}
Default
True.

Example

der by. drdra. keepAl i ve=f al se

Static or dynamic

Static. You must restart the Network Server for changes to take effect.
derby.drda.logConnections property

Indicates whether to log connections.

This property also controls the logging of the connection number. Connection number
tracing, if enabled, goes to both the der by. | og file and the Network Server console.

Syntax

der by. drda. | ogConnecti ons={true|fal se}
Default
False.

Example

der by. dr da. | ogConnect i ons=true
Static or dynamic

Dynamic. You can change system values by using commands after the Network Server
has been started.

derby.drda.maxThreads property
Sets the maximum number of connection threads that the Network Server will allocate.

If all of the connection threads are currently being used and the Network Server has
already allocated the maximum number of threads, the threads will be shared by using
the der by. drda. ti neSl i ce property to determine when sessions will be swapped.

Syntax

der by. dr da. maxThr eads=nuniThr eads
Default

0 (zero).

Example

der by. dr da. maxThr eads=50

Static or dynamic

33

Derby Server and Administration Guide
Static. You must restart the Network Server for changes to take effect.

derby.drda.minThreads property
Sets the minimum number of connection threads that the Network Server will allocate.
By default, connection threads are allocated as needed.

Syntax

der by. drda. mi nThr eads=nuniThr eads

Default

0 (zero).

Example

der by. drda. mi nThreads=10

Static or dynamic

Static. You must restart the Network Server for changes to take effect.
derby.drda.portNumber property

Indicates the port number to use.

Syntax

der by. dr da. port Nunber =por t Nunber
Default
If no port number is specified, 1527 is the default.

Example

der by. dr da. port Nunber=1110

Static or dynamic

Static. You must restart the Network Server for changes to take effect.
derby.drda.securityMechanism property

Restricts the client connections based on the security mechanism.

If the der by. dr da. securi t yMechani smproperty is set to a valid mechanism, the
Network Server accepts only connections which use that security mechanism. No other
types of connections are accepted. If the der by. dr da. securi t yMechani smproperty
is not set, the Network Server accepts any connection which uses a valid security
mechanism.

Syntax

der by. drda. securi t yMechani sne{
USER_ONLY_SECURI TY |
CLEAR_TEXT_PASSWORD_SECURI TY |
ENCRYPTED_USER_AND PASSWORD SECURI TY

}
Default

None.

Example

der by. drda. securityMechani smFUSER_ONLY_SECURI TY

34

Derby Server and Administration Guide

The server that runs with this setting accepts only client connections with the
USER_ONLY_SECURI TY value.

Static or dynamic
Static. You must restart the Network Server for changes to take effect.
derby.drda.ssIMode property

Indicates whether the client connection is encrypted or not, and whether certificate-based
peer authentication is enabled.

Syntax

der by. drda. ssl Mbde={
of f |
basi c |
peer Aut henti cati on
Default
of f.

Example

der by. dr da. ssl Mode=basi c

The server that runs with this setting accepts client connections encrypted with SSL.
Static or dynamic

Static. You must restart the Network Server for changes to take effect.
derby.drda.startNetworkServer property

Indicates whether the Network Server will start automatically when you start Derby.

Use the der by. dr da. st art Net wor kSer ver property to simplify embedding the
Network Server in your Java application. When you set this property to true, the Network
Server will automatically start when you start Derby (in this context, Derby will start when
the embedded driver is loaded). Only one Network Server can be started in a JVM.

Note: If you start the Network Server with this property set to true, the Network Server
will stop when your application ends or when you stop it by other means (for example,
by using the Java API or the command line interface, or by shutting down the Derby
system), whichever comes first.

Syntax

der by. drda. st art Net wor kServer ={true| f al se}
Default
False.

Example

der by. dr da. st art Net wor kSer ver =t rue
Static or dynamic

Static. You must shut down the Network Server and restart Derby for this change to take
effect.

derby.drda.streamOutBufferSize property

Configures the size of the buffer for streaming blob/clob data from server to client.

35

Derby Server and Administration Guide
If the configured size is 0 or less, the buffer is not placed.

Note: This configuration is used when optimizing streaming blob/clob from server to
client.

If there were found many small packets, of which sizes are much lower than maximum
size of packet possible in the network, it will improve performance of streaming to setting
this configuration.

Recommended value of this configuration is maximum packet size possible in the
network minus appropriate size for header.

Syntax

der by. drda. st reanQut Buf f er Si ze=si zeOf Buf f er
Default

0 (zero).

Example

der by. dr da. st r eanut Buf f er Si ze=1024

Static or dynamic

Dynamic. You can change system values by using commands after the Network Server
has been started.

derby.drda.timeSlice property

Sets the number of milliseconds that each connection will use before yielding to another
connection.

This property is relevant only if the der by. dr da. naxThr eads property is set to a value
greater than zero.

Syntax

derby.drda.tineSlice=nilliseconds

Default

0 (zero).

Example

derby. drda.ti neSl i ce=2000

Static or dynamic

Static. You must restart the Network Server for changes to take effect.
derby.drda.traceAll property

Turns tracing on for all sessions.

Syntax

derby. drda. traceAl | ={true| fal se}
Default
False.

Example

derby. drda.traceAl | =true

36

Derby Server and Administration Guide
Static or dynamic

Dynamic. You can change system values by using commands after the Network Server
has been started.

derby.drda.traceDirectory property
Indicates the location of tracing files.
Security Considerations

The Network Server will attempt to create the trace directory (and any parent directories)
if they do not exist.

Syntax

derby. drda. tracebDirectory=traceFil eDirectory
Default

If the der by. syst em hone property has been set, it is the default. Otherwise, the
default is the current directory.

Example

derby. drda. tracebDi rectory=c:/Derby/trace
Static or dynamic

Dynamic. You can change system values by using commands after the Network Server
has been started.

Verifying startup
To verify that the Derby Network Server is currently running, use the pi ng command.
You can use the pi ng command in the following ways:

* You can use the script Net wor kSer ver Cont r ol . bat for Windows systems
or Net wor kSer ver Cont r ol for UNIX systems with the pi ng command. For
example:

Net wor kSer ver Control ping [-h <hostname>;] [-p <portnunber>]
* You can use the NetworkServerControl pi ng command:

java org. apache. der by. dr da. Net wor kSer ver Cont r ol
ping [-h <hostnane>] [-p <portnunber>]
* You can use the NetworkServerControl API to verify startup from within a Java
application:

ping();

The following example uses a method to verify startup. It will try to verify for the specified
number of seconds:

private static bool ean isServer Started(NetworkServerControl server, int
ntries) {
for (int i =1; i <=ntries; i ++) {
try {
Thr ead. sl eep(500) ;
server. ping();
return true;
} catch (Exception e) {
if (i == ntries) {
return fal se;
}

37

Derby Server and Administration Guide

}

return fal se;

Using Java Management Extensions (JMX) technology

Derby includes a set of MBeans (Managed Beans) and their attributes and operations,
providing monitoring and management capabilities.

Before using the Derby MBeans, you should have a basic
understanding of JMX technology. A good source of information is

the "Monitoring and Management for the Java Platform" web page at
http://docs.oracle.com/javase/7/docs/technotes/guides/management/ .

The Derby MBeans instrument one or more parts of a running Derby system. This
instrumentation gives you real-time access to Derby-specific information and features
from a host of your choice, if you configure your Java Virtual Machine (JVM) and the
Derby security features to enable this access.

The Derby JMX features are automatically available when Derby is started in a JVM that
supports the platform MBean server. Most versions of the Java SE platform support IMX
technology.

You start Derby by loading the Derby embedded driver. If you are using the Derby
Network Server, the embedded driver is automatically loaded in the server JVM when the
server is started.

You may access the Derby MBeans by using an existing JMX client utility such as
JConsole, or programmatically by writing your own Java code that uses JMX.

Introduction to the Derby MBeans
Derby provides the MBeans described in this section.
The public API documentation for each Derby MBean describes its features in detail.
VersionMBean
Ver si onMBean exposes version information about the running Derby system jar file.

« Interface: or g. apache. der by. nbeans. Ver si onMBean

e Implementation: or g. apache. der by. i api . servi ces. i nfo. Versi on (notin
the public API)

« ObjectName:
or g. apache. der by: t ype=Ver si on, syst enr<sysl| D>, j ar =der by. j ar
(monitors der by. j ar, the Derby engine), or
or g. apache. der by: t ype=Ver si on, syst enr<sysl D>, j ar =der bynet . j ar
(monitors der bynet . j ar, the server)

* Instruments:
or g. apache. der by. i api . servi ces. i nfo. Product Ver si onHol der

JDBCMBean
JDBCMBean exposes information about the JDBC driver.

« Interface: or g. apache. der by. nbeans. JDBCVBean
« Implementation: or g. apache. der by. j dbc. JDBC (not in the public API)
« ObjectName: or g. apache. der by: t ype=JDBC, syst enr<sysl| D>
« Instruments: or g. apache. der by. jdbc. I nternal Dri ver and
or g. apache. derby. i api . servi ces. i nfo.JVM nfo

38

http://docs.oracle.com/javase/7/docs/technotes/guides/management/

Derby Server and Administration Guide
ManagementMBean

Managenent MBean manages the state of the Derby MBeans (registered or not).

« Interface or g. apache. der by. nbeans. Managenent MBean
« Implementation: or g. apache. der by. nbeans. Managenent (part of the public
API; may be registered by JMX clients)
« Extended by:
or g. apache. der by. i api . servi ces. j nx. Managenent Ser vi ce (interface;
not in the public API), with the following implementations:
e org. apache. derby. i npl . services.jnx. JMXManagenent Servi ce
(not public)
e org. apache. derby. i npl . servi ces. j nxnone. NoManagemnent Ser vi ce
(not in the public API; empty implementation for environments without the
required JMX support)
e ObjectName: or g. apache. der by: t ype=Managenent , syst eme<sysl| D> when
registered by Derby
* Instruments:
org. apache. derby. i npl . servi ces. j nx. JMXManagenent Ser vi ce

NetworkServerMBean

Net wor kSer ver MBean monitors and manages a running instance of the Network
Server.

« Interface: or g. apache. der by. nbeans. dr da. Net wor kSer ver MBean

« Implementation: or g. apache. der by. i npl . dr da. Net wor kSer ver MBeanl npl
(not in the public API)

« ObjectName: or g. apache. der by: t ype=Net wor kSer ver, syst enr<sysl| D>

« Instruments: or g. apache. der by. i npl . dr da. Net wor kSer ver Cont r ol | npl

CacheManagerMBean

CacheManager MBean monitors the page cache, the container cache, and the statement
cache of a running database instance.

« Interface: or g. apache. der by. nbeans. CacheManager MBean

* Implementation:
or g. apache. derby. i npl . servi ces. cache. Concurr ent CacheMBeanl nmpl
(not in the public API)

« ObjectName:
or g. apache. der by: t ype=CacheManager , name=PageCache, db=<dat abaseDi r >, syst enr
(monitors the page cache), or
or g. apache. der by: t ype=CacheManager , name=Cont ai ner Cache, db=<dat abaseDi r >, sy
(monitors the container cache), or
or g. apache. der by: t ype=CacheManager , name=St at ement Cache, db=<dat abaseDi r >, sy
(monitors the statement cache)

 Instruments: or g. apache. der by. i npl . servi ces. cache. Concurrent Cache

For security reasons, JDK 20 restricted the deserialization of objects by remote MBeans.
You will need to loosen those restrictions if you see the following message when
accessing the or g. apache. der by. nbeans. CacheManager MBean:

java.io.lnvalidd assException: filter status: REJECTED

To loosen the restrictions, you must relax the default deserialization filter declared
in $JAVA_HOME/conf/management/management.properties. Edit that file in the
JVM of your JMX client. The following liberal deserialization filter will work with

or g. apache. der by. nbeans. CacheManager MBean:

com sun. managenent . j nxrenote. serial .filter. pattern=*

39

Derby Server and Administration Guide

Enabling and disabling JMX

You can use JMX management and monitoring both locally and remotely.

The term local means on the same host (machine) and running as the same user. For
example, this means that local JMX access is possible only if the JVM you want to
access is running on the same host and as the same user as the user who is running a
JMX client such as JConsole (or a different user with sufficient file system permissions).
In order to allow other users to access the JVM, or to allow access from other hosts,
remote JMX must be enabled.

Local JMX access

Local JIMX management and monitoring are enabled by default on platforms that support
JMX.

Remote JMX access

Remote JMX management and monitoring is a powerful Java feature, allowing you to
monitor a specific JVM from a remote location. Enabling remote JMX requires explicit
actions by the JVM administrator, since it may involve exposing sensitive information
about your system.

The most common way to enable remote JMX access to your JVM is to specify

a TCP/IP port number and some basic security settings when you start the

JVM. The security settings commonly include authentication and SSL (Secure

Socket Layer). Derby attempts to use the JVM's built-in platform MBean

server. For a list of current command line options (system properties) and their
meanings, refer to the table in the Java SE Monitoring and Management Guide at
http://docs.oracle.com/javase/7/docs/technotes/guides/management/agent.html#gdeum .

The following topics describe ways to enable and disable remote JMX access.
Enabling remote JMX with no authentication or SSL

The following simple example starts the Derby Network Server on the command line with
insecure remote JMX management and monitoring enabled, using an Oracle JDK JVM.

Password authentication over SSL is enabled by default, but here these security features
are disabled, to keep the example simple.

> Important: Itis not recommended to disable authentication or SSL in production
environments.

java -Dcom sun. managenent . j nxr enot e. port =9999

- Dcom sun. nanagenent . j nxr enot e. aut hent i cat e=f al se
- Dcom sun. managenent . j nxr enot e. ssl =f al se

-jar $DERBY_HOVE/ |i b/ derbyrun.jar server start

Enabling remote JMX with password authentication only
Some JVMs include built-in support for IMX password authentication.

For example, with the Oracle Java Development Kit (JDK), authentication is enabled
by default, and it is possible to specify a properties file that contains usernames and
passwords. The properties file syntax is the same as for other Java properties files.

For example, you could create a password file called j nxr enpt e. passwor d:

Defining two "roles", each with its own password
noni torRol e derbym
control Rol e derby

40

http://docs.oracle.com/javase/7/docs/technotes/guides/management/agent.html#gdeum

Derby Server and Administration Guide

The security of the password file relies on your file system's access control mechanisms.
The file must be readable by the owner only. Also, you may need to change the
permissions on the password file to be readable only by the user who starts the server.
To do this on Windows (NTFS), use a command like the following:

cacl s j nxrenote. password /P usernane: R
Note: FAT file systems do not support this feature.

The following example starts the Network Server on the command line with built-in
JMX password authentication enabled. SSL is disabled, meaning that JIMX information,
including user names and passwords most likely will be transferred unprotected on the
computer network. The command line appears on multiple lines to improve readability,
but you would enter it as a single j ava command.

> Important: Itis not recommended to disable SSL in production environments.

java - Dcom sun. managenent . j nxr enpt e. port =9999

- Dcom sun. managenent . j nxr enot e. ssl =f al se

- Dcom sun. managenent . j nxr enot e. passwor d. fi | e=j mxr enot e. passwor d
-jar lib/derbyrun.jar server start

Enabling remote JMX with password authentication and SSL
This example shows how to start the Network Server as follows.

« Allowing connections from remote hosts (that is, on all IPv4 network interfaces) by
specifying-h 0.0.0.0
« Using password authentication, as described in Enabling remote JMX with
password authentication only, using the j mxr enot e. passwor d file
« Using SSL (Secure Socket Layer) for the following:
 Authenticating clients
« Encrypting all IMX-related network communication
« Protecting the RMI registry used by the MBean server

This level of protection may or may not be adequate for you, but it is more secure than
the previous examples.

The command line appears on multiple lines to improve readability, but you would enter it
as a single j ava command.

java - Dcom sun. managenent . j nxr enpt e. port =9999

- Dcom sun. managenent . j nxr enot e. passwor d. fi | e=j mxr enot e. passwor d
- Dj avax. net . ssl . keySt or e=/ honme/ user/ . keyst ore

- D avax. net . ssl . keySt or ePasswor d=nyKey St or ePasswor d

- Dcom sun. nanagenent . j nxr enot e. ssl . need. cl i ent. aut h=true

-Dj avax. net.ssl.trust Store=/home/user/.truststore

- Dj avax. net . ssl . trust St or ePasswor d=nyTr ust St or ePasswor d

- Dcom sun. managenent . j nkrenot e. regi stry. ssl =true

-jar lib/derbyrun.jar server start -h 0.0.0.0

In the example above, system properties specify the keystore containing the server's
key pair, the keystore password, the truststore containing the client certificates, and the
truststore password. Setting up SSL keystores and truststores is described in the section
"Configuring SSL/TLS" in the Derby Security Guide, along with more information on
protecting database network traffic using SSL.

When you configure SSL as described above, the following requirements apply:

* The password of the private key must be the same as the password of the keystore.

« If the keystore contains more than one key pair, the key pair you want to use must
be listed first among all the keys in the keystore. Otherwise, you (or the clients) may
see an exception with a message like the following:

41

Derby Server and Administration Guide
unable to find valid certification path to requested target

The system property

com sun. managenent . j nxr enot e. ssl . need. cl i ent . aut h=t r ue specifies that
clients must use SSL to authenticate themselves. This property, as well as the truststore
properties, may be removed if you do not want to authenticate clients using SSL.
However, there may be security risks associated with using password authentication
only.

The system property com sun. managenent. j nxrenote. regi stry. ssl =true
aims at resolving security issues with the RMI registry used in

relation with IMX. This property must be used in conjunction with

com sun. managenent . j nxr enot e. ssl . need. cl i ent. aut h=t r ue in order to fully
secure the RMI registry.

Clients must also specify and use proper keystores and/or truststores (the truststores
must contain the server's SSL certificate).

For more information about the system properties used above and potential
security risks, see "Monitoring and Management Using JMX Technology" at
http://docs.oracle.com/javase/7/docs/technotes/guides/management/agent.html .

Simple authorization using an access file
Some JVMs support a simple access file system for controlling JMX access.

An access file is formatted the same way as password files (described in Enabling
remote JMX with password authentication only), and associates roles with an access
level. Valid access levels are r eadonl y and readwri t e:

» Thereadonl y level only allows the JMX client to read an MBean's attributes and
receive notifications.

« Thereadw it e level also allows setting attributes, invoking operations, and
creating and removing MBeans.

To use an access file for IMX authorization, specify the name of the access file using a
system property upon JVM startup:

- Dcom sun. managenent . j nxr enot e. access. fi | e=j nxr enpt e. access

The contents of such an access file may look like this:

nmoni t or Rol e readonly
control Rol e readwite

For more information, see "Monitoring and Management Using JMX Technology" at
http://docs.oracle.com/javase/7/docs/technotes/guides/management/agent.html .

Disabling access to MBeans

You may wish to disable or restrict access to MBeans in security-conscious
environments.

Use the st opManagenent () method of Managenent MBean. This method unregisters
all of the Derby MBeans except Managenent MBean itself, so it does not turn access off
completely.

Using JConsole to access the Derby MBeans

JConsole is a graphical JIMX-compliant tool that is available in recent versions of the
Oracle JDKs. JConsole enables you to monitor and manage Java applications and virtual
machines on a local or remote machine.

42

http://docs.oracle.com/javase/7/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/7/docs/technotes/guides/management/agent.html

Derby Server and Administration Guide

More information about JConsole is available in the OpenJDK project at
http://openjdk.java.net/tools/svc/jconsole/index.html.

Starting JConsole and connecting to Derby

In the Oracle JDK, the JConsole binary is available in JDK_HOVE/ bi n, where
JDK_HOME is the directory in which the JDK is installed. To start JConsole, use the
j consol e command, as in the following example on a UNIX system:

/usr/local/javal/jdkl.7.0/bin/jconsol e

If you did not disable SSL when booting the managed JVM, you probably have to

provide a truststore containing the server's SSL certificate to be able to establish IMX
connections. If SSL client authentication is enabled, a keystore must be configured as
well (see Enabling remote JMX with password authentication and SSL for details). The
following example shows how to start JConsole with SSL client and server authentication:

jconsol e -J-D avax. net. ssl.trust Store=/hone/ user/.truststoreFordient
-J-Dj avax. net . ssl . trust St or ePasswor d=nmyTr ust st or ePasswor d

-J- D avax. net . ssl . keySt or e=/ hone/ user/ . keyst or eFor Cl i ent

-J- D avax. net . ssl . key St or ePasswor d=nyKey St or ePasswor d

A graphical user interface (GUI) appears. For additional startup options, refer to the
JConsole documentation. Once the GUI starts, you are presented with a list of the JVMs
that are accessible on the local host. Locate the JVM that is running Derby and connect
to it.

To connect to a JVM on a remote host, you will need to supply the host name and port
number, or a JMX service URL, instead.

If you cannot find the Derby JVM running on the local host, make sure you are running
JConsole as the same user as the Derby JVM, or as a different user with sufficient file
system permissions.

Accessing MBeans

Once you have connected to a JVM via JConsole, the JVM's MBeans should be
available on a separate tab in the internal JConsole window. Under the domain

or g. apache. der by you should see a list of MBeans. Browse the MBeans and their
attributes and operations by navigating the hierarchy presented.

Another useful JConsole feature is that you can view dynamic data represented as JMX
attributes in graph form. To view these graphs, double-click an attribute value that is a
number.

Using custom Java code to access the Derby MBeans

In addition to using a tool like JConsole, you can also access the Derby MBeans from a
Java application.

How to do this may depend on how you configure the JVM that is running Derby, how
you configure user authentication and authorization, or the host(s) from which you want
to access the MBeans.

This section has some example code to help you get started. You will find
the JMX classes you need in the packages j avax. managenent and
j avax. managenent . r enot e.

You do not need any Derby libraries in the JMX client application's classpath (unless
MBean proxies are used).

Connecting to the MBean Server

43

http://openjdk.java.net/tools/svc/jconsole/index.html

Derby Server and Administration Guide

Derby will attempt to register its MBeans with the platform MBean server of the JVM
running the Derby system (embedded or Network Server). The following examples
assume that you have configured the Derby JVM to enable remote JMX, which means
that you have set a port number (com sun. managemnent . j nxr enot e. port) to be
used by the JMX Server Connector.

The examples below assume that the port configured for remote JMX is 9999, that the
host name of the host running Derby is exanpl e. com and that this host is reachable
from the client host. (This host name is fictitious, and is used for example purposes only.)

The following example code shows how to connect to the MBean Server when JMX
security has been disabled:

JMXServi ceURL url = new JMXServi ceURL(
"service:jmk:rm:///jndi/rm://exanpl e.com 9999/ nxrm");
JMXConnect or jnmxc = JMXConnect or Factory. connect (url, null);
MBeanSer ver Connect i on nmbeanSer ver Conn =
j mxc. get MBeanSer ver Connecti on();

The following code shows how to connect to the MBean server when JMX password
authentication is enabled (the default):

JMXServi ceURL url = new JMXSer vi ceURL(
"service:jmk:rm:///jndi/rm://exanpl e.com 9999/ nxrm");

/1 Assuming the foll owing JMX credenti al s:

/'l username=control Rol e, password=der by

String[] credentials = new String[] { "control Role" , "derby" };

HashMap<Stri ng, Obj ect > env = new HashMap<Stri ng, bj ect>();

/1 Set credentials (jnx.renote.credentials,

/!l see JW Renpte APl 1.0 spec section 3.4)

env. put (JMXConnect or . CREDENTI ALS, credenti al s);

/1l if the server's RM registry is protected with SSL/TLS

/1 (com sun. managenent . j nxrenote. regi stry. ssl=true), the follow ng

/1 entry must be included:

//env.put ("comsun.jndi.rm.factory.socket",

/1 new Ssl RM Cl i ent Socket Factory()); // unconment if needed

/1 Connect to the server
JMXConnect or jmxc = JMXConnect or Factory. connect (url, env);
MBeanSer ver Connecti on nmbeanServer Conn =

j mxc. get MBeanSer ver Connecti on() ;

Note: Not specifying Ss| RM Cl i ent Socket Fact or y when required may result in the
error message j ava. rm . Connect | CExcepti on: non-JRMP server at renote
endpoi nt .

Creating a ManagementMBean

The only Derby MBean that can be created by a JMX client is the Managenent MBean.
This MBean is useful for controlling Derby management (for example, enabling and
disabling management or MBeans), and to obtain information such as the system
identifier (which may be needed to specify MBeans later).

If you create such an MBean from your application, and if Derby has already registered
a Managenent MBean instance, the new MBean cannot have the same object name as
the Managenent MBean already registered with the server. It is therefore recommended
to use a different object name domain (that is, different from exanpl e. conj and/or a
different t ype key property value (different from Managenent).

The following example code shows how to create and register a new Managenent MBean
with the MBean server:

Obj ect Name ngnt Obj Nane = new Obj ect Name(" com exanpl e. app",
"type", "DerbyManagenent");
try {

44

Derby Server and Administration Guide

Obj ect I nstance mgnt Cbj =
nbeanSer ver Conn. cr eat eMBean(" exanpl e. com nbeans. Managenent ",
mgnt Cbj Nane) ;
} catch (I nstanceAl readyExi st sException e) {
/1 A managenment MBean with this object nanme already exists!
}

Activating Derby management

Derby attempts to activate its IMX management service by default, so it will usually be
active unless you explicitly deactivate it, providing that Derby has permissions to perform
the activation. If Derby management is not active, you will not be able to access any
MBeans except the Managenent MBean.

By accessing the Managenent Act i ve attribute of the Managenent MBean, you can
check whether the Derby JMX management service is active or not. The following
example code performs this check and activates the Derby management service if it is
not already active:

/1 assumi ng we already have a reference to the
/1 Management MBean' s obj ect name
Bool ean active = (Bool ean)

nbeanSer ver Conn. get Att ri but e(ngnt Gbj Nane, " Managenent Active");
if (!'active.bool eanVal ue()) {

/] start managenent

mbeanSer ver Conn. i nvoke(ngnt Obj Nane, "start Managenent ",

new bject[0], new String[0]);

}

Obtaining the system identifier

The system identifier is a unique St r i ng that distinguishes one running Derby system
from another. All MBeans that are instantiated by Derby include the system identifier in
their object names.

One way to access an MBean is to fully specify its object name when contacting the
MBean server. For this, you need to know the current system identifier. (Alternative ways
to access MBeans include querying the MBean server for all MBeans, or for MBeans
whose object names match a specific pattern.)

The following example shows how to obtain the system identifier by accessing a
Managenent MBean:

/1 assum ng we already have a reference to the

/1 Managenent MBean' s obj ect nane

String system D = (String) nbeanServer Conn. get Attri bute(ngnt Cbj Nane,
"System dentifier");

The following example shows how to obtain the system identifier from a Derby MBean's
object name:

/1 assumi ng we already have a reference to the ObjectNane
/1 of an MBean registered by Derby, for exanple the
/1 Derby-regi stered Managenent MBean

String system D = der byMynt Obj ect Nane. get KeyProperty("systent);

Accessing a specific Derby-registered MBean

In the previous examples, you have already seen how to read a single MBean attribute,
and how to invoke an MBean operation. In order to do this, you usually need a reference
to the MBean's Obj ect Nane.

If you consult the public APl documentation for the Derby MBeans and obtain the
system identifier of the Derby system you are accessing through JMX, you have all the
information you need to be able to instantiate a j avax. managenent . Cbj ect Nane

45

Derby Server and Administration Guide

object directly, by fully specifying its St r i ng representation (see the Obj ect Nane API
documentation for details).

The following example code shows how to obtain a reference to the Ver si oniVBean for
derby.jar:

/1 Assuming we already know the systemidentifier
/'l (see exanpl es above), systenl D
/1 Alist of key properties is available is each MBean's Javadoc API.
Hasht abl e<String, String> keyProps = new Hashtabl e<String, String>();
keyProps. put ("type", "Version");
keyProps. put("jar", "derby.jar");
keyPr ops. put ("system', systenl D);
/1l MBeans registered by Derby always belong to the
/1 "org.apache. derby" domain
oj ect Nane ver si onQhj ect Nane =
new bj ect Nane("or g. apache. derby", keyProps);

/'l we can now use the object nane to read an attribute
String versionString =
(String) nbeanServer Conn.get Attri bute(versionObj ect Nane,
"VersionString");
Systemout.println("VersionString: " + versionString);

The output would look something like this:

VersionString: 10.9.1.1 - (1305115)

Troubleshooting JMX connection issues

If you experience problems connecting remotely to an MBean server using JMX, it may
be helpful to obtain some tracing information.

For details on connecting remotely to an MBean server, see Using JConsole to access
the Derby MBeans and Using custom Java code to access the Derby MBeans.

The JMX implementation in the Oracle JDK uses the j ava. uti |l .| oggi ng API to
log JMX traces. For example, in order to trace SSL connection issues, set the system
property j ava. util .| oggi ng. config.fil e as shown in the following:

java -Djava. util .l ogging.config.file=logging.properties M JmC ient

With JConsole, a separate logging window will appear if you specify the following option
when you start JConsole (see Using JConsole to access the Derby MBeans), as long as
the | oggi ng. properti es file is found:

-J-Djava. util .l ogging.config.file=l ogging. properties

The | oggi ng. pr operti es file should specify log handlers and logging levels, as in the
following example:

handl ers = java.util.l oggi ng. Consol eHandl er
.level = INFO

java. util .l oggi ng. Consol eHandl er. | evel =FI NEST
java. util .l oggi ng. Consol eHandl er. formatter=java. util .| oggi ng. Si npl eFor matter

/1 Level FINEST is suitable for diagnosing SSL-related JMX renote
/1l connection issues.

j avax. managenent . | evel =FI NEST

j avax. managenent . r enot e. | evel =FI NEST

The blog entry
https://blogs.oracle.com/jmxetc/entry/troubleshooting_connection_problems_in_jconsole
provides additional hints and tips.

46

https://blogs.oracle.com/jmxetc/entry/troubleshooting_connection_problems_in_jconsole

Derby Server and Administration Guide

Managing the Derby Network Server remotely by using the servlet
interface

You can use the servlet interface to manage the Network Server remotely. To use
the servlet interface, the servlet must be registered with an Application Server, and
der by. syst em hone must be known to the Application Server.

> Important: The servlet interface is suitable only for testing purposes. It should not be
used in production.

A web application archive (WAR) file for the Derby Network Server, der by. war , is
available in $DERBY_HOWVE/ | i b. This file registers the Network Server's servlet at
the relative path / der bynet . See the documentation for your Application Server for
instructions on how to install it.

For example, if der by. war is installed in WebSphere Application Server with a context
root of der by, the URL of the server is:

http://<server>[:port]/derby/derbynet

Notes:
< A servlet engine is not part of the Network Server.
« When the Network Server is started by the servlet interface, shutting down the
Application Server also shuts the Network Server down, since both run in the same
JVM.

The servlet takes the following optional configuration parameters:

host
Specifies the host name to be used by the Network Server. See the Security
Considerations section below.
portNumber
Specifies the port number to be used by the Network Server.
startNetworkServerOnlnit
Specifies that the Network Server is to be started when the servlet is initialized.
tracingDirectory
Specifies the location for trace files. If the tracing directory is not specified, the traces
are placed in der by. syst em hone.

Security considerations

For general security considerations for the Network Server, see the Derby Security
Guide.

The host parameter allows configuration of the host name that will be used for the
listening socket for network connections. By default, the Network Server will listen to
requests only on the loopback address, which means that it will only accept connections
from the local host. Changing this value could expose the server to external connections,
which raises security concerns, so before using the host parameter, you should enable
user authentication.

This section describes the servlet pages.

Start-up page
Use the start-up page to start the server.

In addition to starting the Network Server, you can use the startup page to perform the
following actions:

a7

Derby Server and Administration Guide

« Turn logging on when the server is started.
« Turn tracing on for all sessions when the server is started.

Running page

If the Network Server is running (whether it was started by initializing the servlet or in
some other manner), the running page is displayed.

The running page indicates whether logging is on or off, whether tracing is on or off, and
if tracing is on, indicates for which session.

You can use the running page to stop the server and turn logging and tracing on or off.
The following options are available from the running page:

 Start or stop logging.

 Start or stop tracing all sessions.

» Specify session to trace. (If you choose this option, the Trace session page is
displayed.)

« Change tracing directory. (If you choose this option, the Trace directory page is
displayed.)

« Specify threading parameters for the Network Server. (If you choose this option, the
Thread parameters page is displayed.)

« Stop the Network Server.

Trace session page

If on the running page you choose to specify a session to trace, this page is displayed.
You must enter the Session ID.

You are given the option to turn tracing on or off or return to the previous menu. When
you click the Trace On/Off button, information indicating the current tracing state is
displayed.

Trace directory page

This page is displayed if the you choose to change the tracing directory on the Running
page. You must enter the Trace Directory.

You can either set a tracing directory, or you can return to the previous menu. Additional
information is displayed that indicates the current tracing directory when you click the Set
Directory button.

Set Network Server parameters

The first page is displayed if the thread parameter button is clicked. Use this page to set
the new parameters.

Enter the following information:

* New maximum number of threads
* New thread time slice

If either the maximum threads or time slice parameter is left blank, that value is left
unchanged from the current setting.

Click Set Network Server parameters to display the updated values for the maximum
threads and the time slice parameters.

Derby Network Server advanced topics

48

Derby Server and Administration Guide
This section discusses several advanced topics for users of the Derby Network Server.

Configuring the Network Server to handle connections

You can configure the Network Server to use a specific number of threads to handle
connections. You can change the configuration on the command line.

The minimum number of threads is the number of threads that are started

when the Network Server is booted. This value is specified as a property,

der by. drda. mi nThr eads=n n. The maximum number of threads is the maximum
number of threads that will be used for connections. If more connections are active
than there are threads available, the extra connections must wait until the next thread
becomes available. Threads can become available after a specified time, which is
checked only when a thread has finished processing a communication.

* You can change the maximum number of threads by using the following command
(all on one line):

java org. apache. der by. drda. Net wor kSer ver Control maxt hreads nmax
[-h hostnane] [-p portnunmber

You can also use the der by. dr da. maxThr eads property to assign the maximum
value. A max value of 0 means that there is no maximum and a new thread will
be generated for a connection if there are no current threads available. This is the
default. The max and min values are stored as integers, so the theoretical maximum
is 2147483647 (the maximum size of an integer). But the practical maximum is
determined by the machine configuration.

» To change the time that a thread should work on one session's request and check if
there are waiting sessions, use the following command (all on one line):

java org. apache. der by. dr da. Net wor kSer ver Cont r ol
timeslice mlliseconds [-h hostnanme] [-p portnunber]

You can also use the der by. drda. ti neSl i ce property to set this value. A value
of 0 milliseconds indicates that the thread will not give up working on the session
until the session ends. A value of -1 milliseconds indicates to use the default. The
default value is 0. The maximum number of milliseconds that can be specified is
2147483647 (the maximum size of an integer).

For more information on these properties, see derby.drda.minThreads property,
derby.drda.maxThreads property, and derby.drda.timeSlice property.

Controlling logging by using the log file

The Network Server uses the der by. | og file to log problems that it encounters. It also
logs connections when the property der by. dr da. | ogConnecti ons issettotrue.

See derby.drda.logConnections property for information on this property.

The der by. | og file is created when the Derby server is started. The Network Server
then records the time and version. If a log file exists, it is overwritten, unless the property
der by. i nf ol 0og. append is setto t r ue.See "derby.infolog.append" in the Derby
Reference Manual for information on this property.

When the Network Server is logging connections, it also logs the Connection Number;
this log message is written both to the der by. | og file and to the Network Server
console.

« To turn on connection logging, use the following command (all on one line):

java org. apache. der by. dr da. Net wor kSer ver Cont r ol

49

Derby Server and Administration Guide

| ogconnecti ons on [-h hostnane] [-p portnunber]
» To turn off connection logging, use the following command (all on one line):

java org. apache. der by. dr da. Net wor kSer ver Cont r ol
| ogconnections of f [-h hostnane][-p portnunber]

See the Derby Developer's Guide for more information about the der by. | og file.

Controlling tracing by using the trace facility

Use the trace facility only if you are working with technical support and they require
tracing information.

Turning on the trace facility
Follow these steps to turn on the trace facility.

1. Turn on tracing for all sessions by specifying the following property:

derby. drda.traceAl | =true
See derby.drda.traceAll property for information on this property.

Alternatively, while the Network Server is running, you can use the following
command (all on one line) to turn on the trace facility:

java org. apache. der by. dr da. Net wor kSer ver Cont r ol
trace on [-s connection-nunber] [-h hostnane][-p portnunber]

If you specify a connection-number, tracing will be turned on only for that
connection.
2. Set the location of the tracing files by specifying the following property:

derby. drda.tracebDirectory=directory-for-tracing-files
See derby.drda.traceDirectory property for information on this property.

Alternatively, while the Network Server is running, use the following command (all
on one line) to set the trace directory:

java org. apache. der by. dr da. Net wor kServer Control traceDirectory
directory-for-tracing-files [-h hostnanme] [-p portnunber]

You need to specify only the directory where the tracing files will reside. The names
of the tracing files are determined by the system. If you do not set a trace directory,
the tracing files will be placed in der by. syst em hone.

The Network Server will attempt to create the trace directory (and any parent
directories) if they do not exist.
Turning off the trace facility

Enter the following command (all on one line) to turn off tracing.

java org. apache. der by. drda. Net wor kServer Control trace off
[-s connection nunber] [-h hostname] [-p portnunber]

The tracing files are named Ser ver X. t r ace, where X is a connection number.

Derby Network Server sample programs

Derby provides several sample programs for Network Server users.

The NsSample sample program

50

Derby Server and Administration Guide

The NsSanpl e demonstration program is a simple JDBC application that interacts with
the Network Server.

The NsSanpl e program performs the following tasks:

« Starts the Network Server.

« Checks that the Network Server is running.

« Creates the NsSanpl edb database if it has not already been created.

» Checks to see if the schema is already created, and if not, creates the schema,
which includes the SAMPLETBL table and corresponding indexes.

» Connects to the database.

« Loads the schema by inserting data.

« Starts client threads to perform database related operations.

» Has each of the clients perform DML operations (select, insert, delete, update)
using JDBC calls. For example, one client thread establishes an embedded
connection to perform database operations, while another client thread establishes
a client connection to the Network Server to perform database operations.

» Waits for the client threads to finish the tasks.

» Shuts down the Network Server at the end of the demonstration.

You must install the following files in the “DERBY_HOVE% denp\ nser ver deno\
directory before you can run the sample program:
* NsSanpl e. j ava

This is the entry point into the sample program. The program starts up two client
threads. The first client establishes an embedded connection to perform database
operations, and the second client establishes a client connection to the Network
Server to perform database operations.

You can change the following constants to modify the sample program:

NUM_ROWS
The number of rows that must be initially loaded into the schema.
ITERATIONS
The number of iterations for which each client thread does database related work.
NUM_CLIENT_THREADS
The number of clients that you want to run the program against.
NETWORKSERVER_PORT
The port on which the Network Server is running.
 NsSanpl eCl i ent Thread. j ava
This file contains two Java classes:

« The NsSanpl ed i ent Thr ead class extends Thr ead and instantiates a
Ns Sanpl eWbr k instance.

« The NsSanpl eWbr k class contains everything that is required to perform DML
operations using JDBC calls. The doWor k method in the NsSanpl eWor k
class represents all the work done as part of this sample program.

 NetworkServerUtil.java

This file contains helper methods to start the Network Server and to shut down the
server.
The compiled class files for the NsSanpl e program are:
* NsSanpl e. cl ass
 NsSanpl ed i ent Thr ead. cl ass
* NsSanpl eVWor k. cl ass
e NetworkServerUWil.class

Running the NsSample sample program

To run the NsSanpl e program, follow these steps.

51

Derby Server and Administration Guide

1.

2.

Open a command prompt and change to the YDERBY _HOVE% deno\ directory,
where YDERBY_HOVME%is the directory where you installed Derby.

Set the CLASSPATH to the current directory ("."), and also include the following jar
files in order to use the Network Server and the network client driver:

der bynet . jar
The Network Server jar file. It must be in your CLASSPATH to use any of the
Network Server functions.
derbyclient.jar
This jar file must be in your CLASSPATH to use the Network Client driver.
derby. jar
The Derby database engine jar file.
der byshared. j ar
Code shared by all Derby configurations.
der byt ool s.j ar
Derby DataSources and tools.
Test the CLASSPATH settings by running the following Java command:

java org. apache. derby. tool s. sysi nfo

This command shows the Derby jar files that are in the classpath as well as their
respective versions.

After you set up your environment correctly, run the Ns Sanpl e program from the
same directory:

java nserver deno. NsSanpl e

If the program runs successfully, you will receive output similar to the following:

Usi ng JDBC driver: org.apache. derby.jdbc.dientDriver

Der by Network Server created

Apache Derby Network Server started

and ready to accept connections on port 1621

[NsSanpl e] Derby Network Server started.

[NsSanpl e] Sanpl e Derby Network Server program deno starting.
Please wait

Connecti on nunber: 2.

[NsSanpl eWor k] Begin creating table - SAVPLETBL and necessary
i ndexes.

NsSanpl ed i ent Thread] Thread id - 2; started.

NsSanpl eWork] Thread id - 2; requests database connection,
dbUrl =j dbc: derby://I ocal host: 1621/ NSSanpl edb; cr eat e=t r ue;
NsSanpl eCl i ent Thread] Thread id - 1; started.

NsSanpl eWwork] Thread id - 1; requests database connecti on,
dbUr| =j dbc: der by: NSSanpl edb;

[NsSanpl eWork] Thread id - 1; inserted 1 row.

NsSanpl eWwbrk] Thread id - 1; inserted 1 row.

NsSanpl eWwork] Thread id - 1; deleted 1 rowwith t_key = 9372
NsSanpl eWork] Thread id - 1 selected 1 row [920, Der by50

, 951. 7808, 9216]

[NsSanpl eWwork] Thread id - 1 selected 1 row [920, Der by50

, 951. 7808, 9216]

[NsSanpl eWork] Thread id - 1; inserted 1 row

[NsSanpl eWork] Thread id - 1 selected 1 row [920, Derby50
,951. 7808, 9216]

NsSanpl eWwork] Thread id - 1; deleted 1 rowwith t_key = 9216
NsSanpl eWork] Thread id - 1 selected 1 row [824, Derby26

, 8. 802546E22, 9155]

NsSanpl eWwbrk] Thread id - 1; updated 1 row with t_key = 9155
NsSanpl eWwork] Thread id - 1; closed connection to the database.
NsSanpl eCl i ent Thr ead] Thread id- 1; finished all tasks.

[NsSanpl eWork] Thread id - 2; updated O row with t_key = 9372
NsSanpl eWbrk] Thread id - 2; updated 1 row with t_key = 9155
NsSanpl eWork] Thread id - 2 selected 1 row [56, Derby26

, 8. 802546E22, 9155]

52

Derby Server and Administration Guide

[NsSanpl eWork] Thread id - 2; inserted 1 row.

[NsSanpl eWork] Thread id - 2; updated 1 row with t_key = 9155
[NsSanpl eWork] Thread id - 2; deleted 1 row with t_key = 9155
[NsSanpl eWwork] Thread id - 2 selected 1 row [785, Der by2

, 0.30170244, 8280]
[NsSanpl eWork] Thread id - 2 selected 1 row [785, Derby2
, 0.30170244, 8280]
[NsSanpl eWwork] Thread id - 2; updated 1 row with t_key = 8280
[NsSanpl eWork] Thread id - 2 selected 1 row [59, Derby2
,0.30170244, 8280]
[NsSanpl eWork] Thread id - 2; closed connection to the database.
[NsSanpl ed i ent Thread] Thread id - 2; finished all tasks.
[NsSanpl e] Shutting down network server.
Apache Derby Network Server - shutdown
[NsSanpl e] End of Network server denp.

Running the NsSanpl e program also creates the following new directory and file:
NSSanpl edb

This directory makes up the NSSanpl edb database.
der by. | og

This log file contains Derby progress and error messages.

Network Server sample programs for embedded and client connections

This Derby Network Server sample program demonstrates how to obtain an embedded
connection and client connections to the same database by using the Network Server.
This program shows how to use either the Dri ver Manager or a DataSource to obtain
client connections.

For a database to be consistent, only one JVM can access it at a time. The embedded
driver is loaded when the Network Server is started. The JVM that starts the Network
Server can obtain an embedded connection to the same database that the Network
Server is accessing to serve clients from other JVMs. This solution provides the
performance benefits of the embedded driver and also allows client connections from
other JVMs to connect to the same database.

Overview of the SimpleNetworkServerSample program

The Si npl eNet wor kSer ver Sanpl e program starts the Derby Network Server, as well
as the embedded driver, and waits for clients to connect.

The program performs the following tasks.
1. Starts the Derby Network Server by using a property and also loads the embedded
driver
Determines if the Network Server is running
Creates the NSSi npl eDB database if it is not already created
Obtains an embedded database connection
Tests the database connection by executing a sample query
Allows client connections to connect to the server until you decide to stop the server
and exit the program
Closes the connection
8. Shuts down the Network Server before exiting the program

ok w

~

To run the sample program, you need the following files in the
YOERBY_HOVE% deno\ nser ver deno\ directory:

* The source file: Si npl eNet wor kSer ver Sanpl e. j ava

* The compiled class file: Si npl eNet wor kSer ver Sanpl e. cl ass

Running the SimpleNetworkServerSample program

To run the Derby Network Server sample program, follow these steps.

53

Derby Server and Administration Guide

1. Open a command prompt and change directories to the
YOERBY_HOVE% denp\ nser ver deno directory, where ¥OERBY _HOVE%is the
directory where you installed Derby.

2. Set the classpath to include the current directory (".") and the following jar files:

der bynet . jar
The Network Server jar file. It must be in your CLASSPATH because you start the
Network Server in this program.

derby. jar
The database engine jar file.

derbtools.jar
DataSources.

der byshared. j ar
Common utility methods.

3. Test the CLASSPATH settings by running the following Java command:

java org. apache. derby. tool s. sysinfo

This command displays the Derby jar files that are in the classpath.
4. After you set up your environment correctly, run the
Si npl eNet wor kSer ver Sanpl e program from the same directory:

java Si npl eNet wor kSer ver Sanpl e

If the program runs successfully, you will receive output that is similar to that shown
in the following example:

Starting Network Server

Testing if Network Server is up and running!

Der by Network Server now running

Got an enbedded connecti on.

Testing enbedded connection by executing a sanple query

nunber of rows in sys.systables = 16

Wiile my app is busy with enbedded work, ij mght connect like this:

$ java -Dij.user=ne -Dij.password=pw -Dij. protocol =
jdbc: derby:\\ 1l ocal host: 1527\ org. apache. derby.tool s.ij
i j> connect ' NSSinpl eDB';

Clients can continue to connect:
Press [Enter] to stop Server

Do not press Enter at this time. Leave the server running while you run the
Si npl eNet wor kCl i ent Sanpl e program.

Running the Si npl eNet wor kSer ver Sanpl e program also creates the following new
directory and file:
NSSi mpl eDB
This directory makes up the NSSi npl eDB database.
der by. | og
This log file contains Derby progress and error messages.

Connecting a client to the Network Server with the SimpleNetworkClientSample program

The Si npl eNet wor kC i ent Sanpl e program is a client program that interacts with the
Derby Network Server from another JVM.

The program performs the following tasks:
1. Obtains a client connection by using the Dri ver Manager .
2. Obtains a client connection by using a DataSource.
3. Tests the database connections by running a sample query.
4. Closes the connections and then exits the program.

54

Derby Server and Administration Guide

To run the sample program, use the following files in the
YDERBY_HOVE% denp\ nser ver deno\ directory:

» The source file: Si npl eNet wor kCl i ent Sanpl e. j ava

» The compiled class file: Si npl eNet wor kCl i ent Sanpl e. cl ass

Running the SimpleNetworkClientSample program

To connect to the Network Server that has been started with the
Si npl eNet wor kSer ver Sanpl e program, follow these steps.

1. Open a command prompt and change directories to the
YOERBY_HOVE% denp\ nser ver deno directory, where ¥OERBY _HOVE%is the
directory where you installed Derby.

2. Set the classpath to include the following jar files:

« The current directory (".")
e derbyclient.jar
e derbyshared. jar
e derbytools.jar
3. After you set up your environment correctly, run the
Si npl eNet wor kCl i ent Sanpl e program from the same directory:

java Sinpl eNet wor kC i ent Sanpl e

If the program runs successfully, you will receive output similar to that shown in the
following example:

Starting Sanple client program
CGot a client connection via the DriverMnager.
connecti on from dat asource; getDriverNanme = Apache Der by Network
Client JDBC Driver
Got a client connection via a DataSource.
Testing the connection obtained via DriverManager by executing a
sanpl e query
nunber of rows in sys.systables = 23
Testing the connection obtained via a DataSource by executing a
sanpl e query
nunber of rows in sys.systables = 23
Goodbye!
4. After running the program, return to the command prompt where you ran the

Si npl eNet wor kSer ver Sanpl e program and press Enter.

55

Derby Server and Administration Guide

Part Two: Derby Administration Guide

This section of the guide is divided into several administrative tasks.

Maintaining database integrity

One of the most important responsibilities of a database administrator is to maintain the
integrity of the database and prevent it from becoming corrupted.

Derby must be able to sync to disk. Some machine, disk, or operating system settings
can prevent a proper sync and cause unrecoverable database corruption in the event of a
power failure, system crash, or software crash. To avoid database corruption, you can do
the following:

< Do not touch any files or directories in the database directory, including the | og
and segO directories and the ser vi ce. properti es file. Editing, adding, or
deleting files in this directory may cause data corruption and leave the database in a
non-recoverable state.

< Do not enable disk write caching on the hard drive that holds the database. Disable
write caching if it is turned on (it is enabled by default on many Windows systems).
Disk write caching can increase operating system performance. However, it can
also result in the loss of information if a power failure, equipment failure, or software
failure occurs. Consult your operating system support documentation for information
on how to disable disk write caching.

* Run Derby on a local drive rather than on an NFS mounted, SMB mounted, or other
network mounted disk.

« Disable any other settings or options that might prevent a proper sync to disk when
Derby is writing its transaction logs or other data.

Many corruption issues can arise from improper backups or restores. Back up your
database in a way that prevents it from becoming corrupted:

« Always make sure the database is shut down or frozen before using operating
system commands to back it up.

« Always back up the database to a fresh location rather than overwriting any existing
data.

After you perform a backup, check the consistency of the database. See Checking
database consistency for details.

See Backing up and restoring databases for more information.

Checking database consistency

After you perform a backup, or if you experience hardware or operating system failure,
you can use the SYSCS_UTI L. SYSCS_CHECK TABLE system function to verify that the
database is still consistent.

It is recommended that you run SYSCS_UTI L. SYSCS_CHECK_TABLE on all the tables in
a database offline after you back it up. Do not discard the previous backup until you have
verified the consistency of the current one. Otherwise, check consistency only if there are
indications that such a check is needed, because a consistency check can take a long
time on a large database.

See the Derby Reference Manual for details about this system function.

56

Derby Server and Administration Guide

The SYSCS_CHECK_TABLE function

The SYSCS_UTI L. SYSCS_CHECK_ TABLE function checks the consistency of a Derby
table.

In particular, the SYSCS_UTI L. SYSCS_CHECK TABLE function verifies the following
conditions:

« Base tables are internally consistent

» Base tables and all associated indexes contain the same number of rows

« The values and row locations in each index match those of the base table

« All BTREE indexes are internally consistent
You run this function in an SQL statement, as follows:

VALUES SYSCS_UTI L. SYSCS_CHECK_TABLE(SchemaNane, Tabl eNane)

where SchemaName and TableName are expressions that evaluate to a string data type.
If you created a schema or table name as a non-delimited identifier, you must present
their names in all upper case. For example:

VALUES SYSCS_UTI L. SYSCS_CHECK_TABLE(' APP', 'CITIES)

The SYSCS_UTI L. SYSCS CHECK TABLE function returns a SMALLINT. If the

table is consistent (or if you run SYSCS_UTI L. SYSCS_CHECK_TABLE on a view),
SYSCS_UTI L. SYSCS_CHECK TABLE returns a non-zero value. Otherwise, the function
throws an exception on the first inconsistency that it finds.

For a consistent table, the following result is displayed:

1 row sel ected

Sample SYSCS_CHECK_TABLE error messages

This section provides examples of error messages that the
SYSCS_UTI L. SYSCS_CHECK TABLE function can return.

If the row counts of the base table and an index differ, error message X0Y55 is issued:

ERROR X0Y55: The nunber of rows in the base table does not match
the nunber of rows in at least 1 of the indexes on the table. |ndex
"T1 1" on table 'APP.T1' has 4 rows, but the base table has 5 rows.
The suggested corrective action is to recreate the index.

If the index refers to a row that does not exist in the base table, error message X0X62 is
issued:

ERROR X0X62: | nconsistency found between table ' APP. T1' and i ndex
"T1_I1'. Error when trying to retrieve row location '(1,6)' fromthe
table. The full index key,including the row location, is '{ 1, (1,6) }'.
The suggested corrective action is to recreate the index.

If a key column value differs between the base table and the index, error message X0X61
is issued:

ERROR X0X61: The val ues for columm 'C10' in index 'T1 C10' and

table ' APP. T1' do not nmatch for row | ocation (1,7). The value in the
index is '2 2 ', while the value in the base table is 'NULL'. The full
i ndex key, including the row location, is '{ 2 2 , (1,7) }'. The
suggested corrective action is to recreate the index.

57

Derby Server and Administration Guide

Sample SYSCS_CHECK_TABLE queries

This section provides examples that illustrate how to use the
SYSCS_UTI L. SYSCS_CHECK TABLE function in queries.

To check the consistency of a single table, run a query that is similar to the one shown in
the following example:

VALUES SYSCS_UTI L. SYSCS_CHECK_TABLE(' APP', ' FLI GHTS')

To check the consistency of all of the tables in a schema, stopping at the first failure, run
a query that is similar to the one shown in the following example:

SELECT t abl ename, SYSCS_UTI L. SYSCS_CHECK_TABLE(
' SAMP' |, t abl enane)
FROM sys. sysschemas s, sys.systables t
VWHERE s. schemanane = ' SAMP AND s. schenaid = t.schemuid

To check the consistency of an entire database, stopping at the first failure, run a query
that is similar to the one shown in the following example::

SELECT schenmanane, tabl enaneg,

SYSCS_UTI L. SYSCS_CHECK _TABLE(schemanane, tabl enane)
FROM sys. sysschemas s, sys.systables t

VWHERE s. schemaid = t.schemaid

Backing up and restoring databases

Derby provides a way to back up a database while it is either offline or online. You can
also restore a full backup from a specified location.

To back up a database, you can do any of the following:

< Shut down the database and use operating system commands to copy it to a
backup location, as described in Offline backups.

« Leave the database running and call one of four system backup procedures to copy
it to a backup location, as described in Using the backup procedures to perform an
online backup.

« Leave the database running, but call a system procedure to freeze the database,
use operating system commands to copy it to a backup location, then call a system
procedure to unfreeze the database, as described in Using operating system
commands with the freeze and unfreeze system procedures to perform an online
backup.

To restore a database from a backup copy, you must use one of three connection URL
attributes:

e restoreFromepat h, described in Restoring a database from a backup copy
e creat eFr om=pat h, described in Creating a database from a backup copy
e rol | Forwar dRecover yFr om=pat h, described in Roll-forward recovery

Backing up a database

You can back up a database either offline (when it is shut down) or online (when it is
running).

After you back up a database, make sure the backup copy is not corrupt. To do this, run
the SYSCS_UTI L. SYSCS CHECK TABLE system function on all the tables in the backup
copy. Do not discard the previous backup until you have verified the consistency of the
current one. See Checking database consistency for more information.

The topics in this section describe how to back up a database.

58

Derby Server and Administration Guide
Offline backups

To perform an offline backup of a database, use operating system commands to copy the
database directory.

> Important: You must shut down the database before you perform an offline backup.

For example, on Windows systems, the following operating system command backs up
a (closed) database that is named sanpl e and that is located in d: \ nydat abases by
copying it to the directory c: \ nybackups\ 2012- 04- 01:

xcopy d:\ nydat abases\ sanpl e c:\ nybackups\2012-04-01\sanple /s /i

If you are not using Windows, substitute the appropriate operating system command for
copying a directory and all contents to a new location.

Note: On Windows systems, do not attempt to update a database while it is being
backed up in this way. Attempting to update a database during an offline backup will
generate a j ava. i 0. | OExcept i on. Using online backups prevents this from occurring.

For large systems, shutting down the database might not be convenient. To back up a
database without having to shut it down, you can use an online backup.

After you back up a database, make sure the backup copy is not corrupt. To do this, run
the SYSCS_UTI L. SYSCS CHECK TABLE system function on all the tables in the backup
copy. Do not discard the previous backup until you have verified the consistency of the
current one. See Checking database consistency for more information.

Online backups

Use online backups to back up a database while it is running, without blocking
transactions.

You can perform online backups by using several types of backup procedures or by using
operating system commands with the freeze and unfreeze system procedures.

Using the backup procedures to perform an online backup:

Use the SYSCS_UTI L. SYSCS BACKUP_DATABASE procedure or one of the other system
backup procedures to perform an online backup of a database to a specified location.

The backup procedures are as follows:

« SYSCS_UTI L. SYSCS_BACKUP_DATABASE

« SYSCS_UTI L. SYSCS_BACKUP_DATABASE_NOWAI T

« SYSCS_UTI L. SYSCS_BACKUP_DATABASE_AND ENABLE_LOG ARCHI VE_MODE

« SYSCS_UTI L. SYSCS_BACKUP_DATABASE_AND ENABLE_LOG ARCHI VE_MODE_NOWAI T

Use the

SYSCS_UTI L. SYSCS_BACKUP_DATABASE_AND ENABLE LOG ARCHI VE_MODE

or

SYSCS_UTI L. SYSCS_BACKUP_DATABASE_AND ENABLE_LOG ARCHI VE_MODE_NOMI T
procedure if you want to make it possible to perform a roll-forward recovery of a damaged
database. See Roll-forward recovery for details.

The NOWMAI T versions of the procedures do not wait for transactions in progress with
unlogged operations to complete before proceeding with the backup; instead, they return
an error immediately.

See the Derby Reference Manual for details about these system procedures.

All four of these system procedures take a string argument that represents the location
in which to back up the database. Typically, you provide the full path to the backup
directory. (Relative paths are interpreted as relative to the current directory, not to the
der by. syst em hone directory.)

59

Derby Server and Administration Guide

For example, to specify a backup location of ¢: / nybackups/ 2012- 04- 01 for a
database that is currently open, use the following statement (forward slashes are used as
path separators in SQL commands):

CALL SYSCS_UTI L. SYSCS_BACKUP_DATABASE(' c: / mybackups/ 2012- 04-01')

The SYSCS_UTI L. SYSCS_BACKUP_DATABASE or

SYSCS_UTI L. SYSCS BACKUP_DATABASE NOWAI T procedure puts the database into

a state in which it can be safely copied. The procedure then copies the entire original
database directory (including data files, online transaction log files, and jar files) to the
specified backup directory. Files that are not within the original database directory (for
example, der by. properti es) are not copied. With the exception of a few cases
mentioned in Unlogged Operations, the procedure does not block concurrent transactions
at any time.

A backup made with the

SYSCS_UTI L. SYSCS_BACKUP_DATABASE_AND ENABLE LOG ARCHI VE_MODE

or

SYSCS_UTI L. SYSCS_BACKUP_DATABASE_AND ENABLE_LOG ARCHI VE_MODE_NOMI T
procedure is not a full copy of the database, but depends on the log files created in the
database since the backup. An attempt to access the backup directly will invalidate the
backup. The result could include a corrupted database, missing data, errors during a
subsequent attempt at restoring the database, or database corruption errors encountered
only once the restored database is being used. The only supported way to access this

kind of backup is to restore the database as documented in Roll-forward recovery.

The following example shows how to back up a database to a directory with a name that
reflects the current date:

public static void backUpDat abase(Connecti on conn)
throws SQLException {
/1 Cet today's date as a string:
j ava. text. Si npl eDat eFor mat t odaysDate =
new j ava. t ext. Si npl eDat eFor mat ("yyyy- M dd") ;
String backupdirectory = "c:/mybackups/" +
t odaysDat e. format ((j ava. util. Cal endar. getl nstance()).getTinme());

Cal | abl eSt atenent cs =
conn. prepareCal | ("CALL SYSCS_UTI L. SYSCS_BACKUP_DATABASE(?) ") ;

cs.setString(1l, backupdirectory);

cs. execute();

cs.close();

System out . printl n("backed up database to

+ backupdirectory);

}

For a database that was backed up on 2012-04-01, the previous commands copy the
current database to a directory of the same name in c: / nybackups/ 2012- 04- 01.

Uncommitted transactions do not appear in the backed-up database.

Note: Do not back up different databases with the same name to the same backup
directory. If a database of the same name already exists in the backup directory, it is
assumed to be an older version and is overwritten.

Unlogged Operations

For some operations, Derby does not log because it can keep the database consistent
without logging the data.

The SYSCS_UTI L. SYSCS_BACKUP_DATABASE procedure will issue an error if there are
any unlogged operations in the same transaction as the backup procedure.

60

Derby Server and Administration Guide

If any unlogged operations are in progress in other transactions in the system when
the backup starts, this procedure will block until those transactions are complete before
performing the backup.

Derby automatically converts unlogged operations to logged mode if they are started
while the backup is in progress (except operations that maintain application jar files in the
database). Procedures to install, replace, and remove jar files in a database are blocked
while the backup is in progress.

If you do not want backup to block until unlogged operations in other transactions are
complete, use the SYSCS_UTI L. SYSCS_BACKUP_DATABASE NOWAI T procedure.
This procedure issues an error immediately at the start of the backup if there are

any transactions in progress with unlogged operations, instead of waiting for those
transactions to complete.

Unlogged operations include:
* Index creation.

Only CREATE INDEX is logged, not all the data inserts into the index. The reason
inserts into the index are not logged is that if there is a failure, it will just drop the
index.

If you create an index when the backup is in progress, it will be slower, because it
has to be logged.

Foreign keys and primary keys create backing indexes. Adding those keys to an
existing table with data will also run slower.
 Importing to an empty table or replacing all the data in a table.

In this case also, data inserts into the table are not logged. Internally, Derby creates
a new table for the import, changes the catalogs to point to the new table, and drops
the original table when the import completes.

If you perform such an import operation when backup is in progress, it will be slower
because data is logged.
Using operating system commands with the freeze and unfreeze system
procedures to perform an online backup:

Typically, these procedures are used to speed up the copy operation involved in an
online backup.

In this scenario, Derby does not perform the copy operation for you. You use the
SYSCS_UTI L. SYSCS FREEZE DATABASE procedure to lock the database, and then you
explicitly copy the database directory by using operating system commands.

For example, because the UNIX t ar command uses operating system file-copying
routines, and the SYSCS_UTI L. SYSCS BACKUP_DATABASE procedure uses
Java 1/O calls with additional internal synchronization that allow updates

during the backup, the t ar command might provide faster backups than the
SYSCS_UTI L. SYSCS_BACKUP_DATABASE procedure.

To use operating system commands for online database backups, call

the SYSCS_UTI L. SYSCS FREEZE DATABASE system procedure. The

SYSCS_UTI L. SYSCS FREEZE DATABASE system procedure puts the database into
a state in which it can be safely copied. After the database has been copied, use the
SYSCS_UTI L. SYSCS UNFREEZE DATABASE system procedure to continue working
with the database. Only after SYSCS_UTI L. SYSCS UNFREEZE DATABASE has been
specified can transactions once again write to the database. Read operations can
proceed while the database is frozen.

61

Derby Server and Administration Guide

Note: To ensure a consistent backup of the database, Derby might block applications
that attempt to write to a frozen database until the backup is completed and the
SYSCS_UTI L. SYSCS UNFREEZE DATABASE system procedure is called.

The following example demonstrates how the freeze and unfreeze procedures are used
to surround an operating system copy command:

public static void backUpDat abaseW t hFreeze(Connecti on conn)
throws SQ.Exception {
Statenent s = conn.createStatenent();
S. execut eUpdat e(
"CALL SYSCS_UTI L. SYSCS_FREEZE DATABASE()");
// copy the database directory during this interval
s. execut eUpdat e(
"CALL SYSCS UTI L. SYSCS _UNFREEZE_DATABASE()");
s.close();

}

When the log is in a non-default location

If you put the database log in a non-default location prior to backing up the database, be
aware of the following requirements.

« If you are using an operating system command to back up the database, you must
explicitly copy the log file as well, as shown in the following example:

xcopy d:\nydat abases\ sanpl e c:\nmybackups\ 2012-04-01\sanple /s /i
xcopy h:\janet\tourslog\log c:\mybackups\2012-04-01\sanple\log /s /i

If you are not using Windows, substitute the appropriate operating system
command for copying a directory and all of its contents to a new location.

« Editthe | ogDevi ce entry inthe servi ce. properti es file of the database
backup so that it points to the correct location for the log. In the previous example,
the log was moved to the default location for a log, so you can remove the
| ogDevi ce entry entirely, or leave the | ogDevi ce entry as is and wait until the
database is restored to edit the entry.

See Logging on a separate device for information about the default location of the
database log and about putting the log in a non-default location.

Backing up encrypted databases

When you back up an encrypted database, both the backup and the log files remain
encrypted.

To restore an encrypted database, you must know the boot password.

Restoring a database from a backup copy

To restore a database by using a full backup from a specified location, specify the
r est or eFr ome=pat h attribute in the boot-time connection URL.

If a database with the same name exists in the der by. syst em hone location, the
system will delete the database, copy it from the backup location, and then restart it.

The log files are copied to the same location they were in when the backup was taken.
You can use the | ogDevi ce attribute in conjunction with the r est or eFr onkpat h
attribute to store logs in a different location.

For example, to restore the sample database by using a backup copy in
c: \ mybackups\ sanpl e, the connection URL should be:

j dbc: der by: sanpl e; r est or eFr on¥c: \ mybackups\ sanpl e

For more information, see "restoreFrom=path attribute" in the Derby Reference Manual.

62

Derby Server and Administration Guide

Creating a database from a backup copy

To create a database from a full backup copy at a specified location, specify the
cr eat eFr onepat h attribute in the boot-time connection URL.

If there is already a database with the same name in der by. syst em hone, an error will
occur and the existing database will be left intact. If there is not an existing database with
the same name in the current der by. syst em hone location, the system will copy the
whole database from the backup location to der by. syst em hone and start it.

The log files are also copied to the default location. You can use the | ogDevi ce attribute
in conjunction with the cr eat eFr om=pat h attribute to store logs in a different location.
With the cr eat eFr omepat h attribute, you do not need to copy the individual log files to
the log directory.

For example, to create the sample database from a backup copy in
c: \ mybackups\ sanpl e, the connection URL should be:

j dbc: der by: sanpl e; cr eat eFr onrc: \ nybackups\ sanpl e

For more information, see "createFrom=path attribute" in the Derby Reference Manual.

Roll-forward recovery

Derby supports roll-forward recovery to restore a damaged database to the most recent
state before a failure occurred.

Derby restores a database from full backup and replays all the transactions after the
backup. All the log files after a backup are required to replay the transactions after the
backup. By default, the database keeps only logs that are required for crash recovery.
For roll-forward recovery to be successful, all log files must be archived after a backup.
Log files can be archived using the backup function calls that enable log archiving.

In roll-forward recovery, the log archival mode ensures that all old log files are available.
The log files are available only from the time that the log archival mode is enabled.

Derby uses the following information to restore the database:
« The backup copy of the database
* The set of archived logs
e The current online active log

You cannot use roll-forward recovery to restore individual tables. Roll-forward recovery
recovers the entire database.

To restore a database by using roll-forward recovery, you must already have a backup
copy of the database, all the archived logs since the backup was created, and the active
log files. All the log files should be in the database log directory.

There are two types of log files in Derby: active logs and online archived logs.

Active logs
Active logs are used during crash recovery to prevent a failure that might leave a
database in an inconsistent state. Roll-forward recovery can also use the active logs
to recover to the end of the log files. Active logs are located in the database log path
directory.

Online archived logs
Log files that are stored for roll-forward recovery use when they are no longer needed
for crash recovery. Online archived logs are also kept in the database log path
directory.

Enabling log archival mode

63

Derby Server and Administration Guide

Online archive logs are available only if the database is enabled for log archival mode.
You can use the following system procedure to enable the database for log archival
mode:

SYSCS_UTI L. SYSCS_BACKUP_DATABASE_AND_ENABLE_LOG ARCHI VE_MODE
(I'N BACKUPDI R VARCHAR(32672), | N SMALLI NT DELETE_ARCH VED LOG FI LES)

The input parameters for this procedure specify the location where the backup should

be stored and specify whether or not the database should keep online archived logs for
the backup. Existing online archived log files that were created before this backup will be
deleted if the input parameter value for the DELETE_ARCHI VED _LOG _FI LES parameter
is non-zero. The log files are deleted only after a successful backup.

Note: Make sure to store the backup database in a safe place when you choose the log
file removal option.

The SYSCS_UTI L. SYSCS_BACKUP_DATABASE AND ENABLE LOG ARCHI VE_MODE
procedure will issue an error if there are any unlogged operations in the same transaction
as the backup procedure.

If any unlogged operations are in progress in other transactions in the system when

the backup starts, this procedure will block until those transactions are complete before
performing the backup. Derby automatically converts unlogged operations to logged
mode if they are started while the backup is in progress (except operations that maintain
application jar files in the database). Procedures to install, replace, and remove jar files in
a database are blocked while the backup is in progress.

If you do not want backup to block until unlogged operations

in other transactions are complete, use the

SYSCS_UTI L. SYSCS_BACKUP_DATABASE _AND ENABLE LOG ARCHI VE_MODE NOWAI T
procedure. This procedure issues an error immediately at the start of the backup if there
are any transactions in progress with unlogged operations, instead of waiting for those
transactions to complete.

Disabling log archival mode

After you enable log archival mode, the database will always have the log archival mode
enabled even if it is subsequently booted or backed up. The only way to disable the log
archive mode is to run the following procedure:

SYSCS_UTI L. SYSCS_DI SABLE_LOG ARCHI VE_MODE
(I'N SMVALLI NT DELETE_ARCHI VED LOG FI LES)

This system procedure disables the log archive mode and deletes any existing online
archived log files if the input parameter DELETE_ARCHI VED LOG FI LES is non-zero.

Performing roll-forward recovery

If you have a backup made by using

SYSCS_UTI L. SYSCS_BACKUP_DATABASE_AND ENABLE LOG_ARCHI VE_MODE

or

SYSCS_UTI L. SYSCS_BACKUP_DATABASE_AND ENABLE LOG ARCHI VE_MODE_NOWAI T,
you can restore it to its most recent state by using the full backup copy, archived logs,

and active logs. You perform a roll-forward recovery by specifying the connection URL
attribute r ol | For war dRecover yFr om=pat h at boot time. All the log files should be in
the database log path directory.

The steps involved are as follows. They do not show the commands to starti j .
1. Back up the database with log archive mode enabled.

For example, you could back up a database named worrbat to the / backup
directory as follows. After many operations, the database crashes.

64

Derby Server and Administration Guide

ij> connect 'jdbc:derby: wonbat; create=true';
ij>create table t1(a int not null prinmary key);
0 rows inserted/ updated/del eted
------------------ DM/ DDL Oper ati ons
ij> CALL
SYSCS_UTI L. SYSCS_BACKUP_DATABASE_AND_ENABLE_LOG ARCH VE_MODE
(' /backup', 0);
0 rows inserted/ updated/del et ed
ij>insert into tl1 val ues(19);
1 row i nserted/ updat ed/ del et ed
ij>create table t2(a int);
0 rows inserted/ updated/del et ed
----------------- DML/ DDL Oper ati ons
----------------- Dat abase Crashed (Media Corruption on data di sks)

2. Prepare the database for restoration.

Before you restore the database, shut down the original database and rename
the original database directory. For example, after shutdown, you could issue the
following commands in a Linux shell:

nmv / dat abases/ wonbat /dat abases/ br okenwonbat
cd / dat abases

3. Restore the database using roll-forward recovery.

Since you moved the database, you need to specify the

| ogDevi ce=l ogDi r ect or yPat h attribute in addition to the

rol | Forwar dRecover yFr omrepat h attribute when you restore the database
using roll-forward recovery. Use commands like the following (the connection URL
must be all on one line):

i j> connect

' j dbc: der by: wonbat ; r ol | For war dRecover yFr om=/ backup/ wonbat ;
| ogDevi ce=/ dat abases/ br okenwonbat ' ;
ij> select * fromti,;

1 row sel ected
............... DML/ DDL Qper ati ons

After a database is restored from full backup, transactions from the online
archived logs and active logs are replayed. This brings the database to its
most recent state. All the log files should be in the directory specified by the
| ogDevi ce=l ogDi r ect or yPat h attribute.

For more information, see "rollIForwardRecoveryFrom=path attribute" and
"logDevice=logDirectoryPath attribute" in the Derby Reference Manual.

Importing and exporting data

You can import and export large amounts of data between files and the Derby database.
Instead of having to use INSERT and SELECT statements, you can use Derby system
procedures to import data directly from files into tables and to export data from tables into
files.

The Derby system procedures import and export data in delimited data file format.

» Use the export system procedures to write data from a database to one or more
files that are stored outside of the database. You can use a procedure to export
data from a table into a file or export data from a SELECT statement result into a
file.

65

Derby Server and Administration Guide

« Use the import system procedures to import data from a file into a table. If the target
table already contains data, you can replace or append to the existing data.

Methods for running the import and export procedures

You can run the import and export procedures from within an SQL statement using i j or
any Java application.

The import and export procedures read and write text files, and if you use an external file
when you import or export data, you can also import and export blob data. The import
procedures do not support read-once streams (live data feeds), because the procedures
read the first line of the file to determine the number of columns, then read the file again
to import the data.

Note: The import and export procedures are server-side utilities that exhibit different
behavior in client/server mode. Typically, you use these procedures to import data into
and export data from a locally running Derby database. However, you can use the import
and export procedures when Derby is running in a server framework if you specify import
and export files that are accessible to the server.

Bulk import and export requirements and considerations

There are requirements and limitations that you must consider before you use the Derby
import and export procedures.

Database transactions
Derby issues a COMMIT or a ROLLBACK statement after each import and export
procedure is run (a COMMIT if the procedure completes successfully, a ROLLBACK if
it fails). For this reason, you should issue either a COMMIT or ROLLBACK statement
to complete all transactions and release all table-level locks before you invoke an
import or export procedure. An error in an import or export procedure and the ensuing
ROLLBACK would throw away any changes performed before the procedure was
called, and vice versa: any unsound changes before the import or export procedure
call that should not be committed could be committed automatically.

Database connections
To invoke a Derby import or export procedure, you must be connected to the
database into which the data is imported or from which the data is exported. Other
user applications that access the table with a separate connection do not need to
disconnect.

Classpath
You must have the der byt ool s. j ar file in your classpath before you can use the
import or export procedures fromi j .

The table must exist
To import data into a table, the table must already exist in Derby. The table does not
have to be empty. If the table is not empty, bulk import performs single row inserts,
which result in slower performance.

Create indexes, keys, and unique constraints before you import
To avoid a separate step, create the indexes, keys (primary and foreign), and unique
constraints on tables before you import data. However, if your memory and disk
space resources are limited, you can build the indexes and primary keys after
importing data.

Data types
Derby implicitly converts the strings to the data type of the receiving column. If any of
the implicit conversions fail, the whole import is aborted. For example, "3+7" cannot
be converted into an integer. An export that encounters a runtime error stops.
Note: You cannot import or export the XML data type.

Locking during import

66

Derby Server and Administration Guide

Import procedures use the same isolation level as the connection in which they are
executed to insert data into tables. During import, the entire table is exclusively locked
irrespective of the isolation level.

Locking during export
Export procedures use the same isolation level as the connection in which they are
executed to fetch data from tables.

Import behavior on tables with triggers
The import procedures enable INSERT triggers when data is appended to the table.
The REPLACE parameter is not allowed when triggers are enabled on the table.

Restrictions on the REPLACE parameter
If you import data into a table that already contains data, you can either replace
or append to the existing data. You can use the REPLACE parameter on tables
that have dependent tables. The replaced data must maintain referential integrity;
otherwise, the import operation will be rolled back. You cannot use the REPLACE
parameter if the table has triggers enabled.

Restrictions on tables
You cannot use import procedures to import data into a system table or a declared
temporary table.

Bulk import and export of large objects
You can import and export large objects (LOBs) using the Derby system procedures.
Importing and exporting CLOB and BLOB data

CLOB and BLOB data can be exported to the same file as the rest of the column data, or
the LOB column data can be exported to a separate external file. When the LOB column
data is exported to a separate external file, reference to the location of the LOB data is
placed in the LOB column in the main export file.

Importing and exporting LOB data using a separate external file might be faster than
storing the LOB data in the same file as the rest of the column data:

+ The CLOB data does not have to be scanned for the delimiters inside the data
+ The BLOB data does not need to be converted to hexadecimal format

Importing and exporting other binary data

When you export columns that contain the data types CHAR FOR BIT DATA, VARCHAR
FOR BIT DATA, and LONG VARCHAR FOR BIT DATA, the column data is always
exported to the main export file. The data is written in hexadecimal format. To import
data into a table that has columns of these data types, the data in the import file for those
columns must be in hexadecimal format.

Importing LOB data from a file that contains all of the data

You can use the SYSCS_UTI L. SYSCS | MPORT_TABLE and

SYSCS_UTI L. SYSCS | MPORT_DATA procedures to import data into a table that contains
a LOB column. The LOB data must be stored in the same file as the other column data
that you are importing. If you are importing data from a file that was exported from a
non-Derby source, the binary data must be in hexadecimal format.

Importing LOB data from a separate external file

You can use the SYSCS_UTI L. SYSCS_| MPORT_TABLE_LOBS_FROM _EXTFI LE and
SYSCS_UTI L. SYSCS | MPORT_DATA LOBS_ FROM EXTFI LE procedures to import LOB
data that is stored in a file that is separate from the main import file. These procedures
read the LOB data using the reference that is stored in the main import file. If you are
importing data from a non-Derby source, the references to the LOB data must be in the
main import file in the format | obsFi | eNane. O f set . | engt h/ . This is the same

67

Derby Server and Administration Guide

method that the Derby export procedures use to export the LOB data to a separate
external file.

Exporting LOB data to the same file as the other column data

You can use the SYSCS_UTI L. SYSCS_EXPORT_TABLE and
SYSCS_UTI L. SYSCS EXPORT_QUERY procedures to write LOB data, along with the rest
of the column data, to a single export file.

CLOB column data is treated same as other character data. Character delimiters are
allowed inside the CLOB data. The export procedures write the delimiter inside the data
as a double-delimiter.

BLOB column data is written to the export file in hexadecimal format. For each byte of
BLOB data, two characters are generated. The first character represents the high nibble
(4 bits) in hexadecimal and the second character represents the low nibble.

Exporting LOB data to a separate external file from the other column data

You can use the SYSCS_UTI L. SYSCS_EXPORT_TABLE_LOBS_TO _EXTFI LE and
SYSCS_UTI L. SYSCS_EXPORT_QUERY_LOBS_TO_EXTFI LE procedures to write
LOB data to a separate external file. These procedures include the LOBSFI LENAMVE
parameter, which specifies the name of the external file for the LOB data.

When you use these procedures, the location of the LOB data is written to the main
export file. The format of the reference to the LOB stored in the main export file is
| obsFi |l eNane. O fset. | ength/.

 Offset is the position in the external file in bytes
« length is the size of the LOB column data in bytes

If a LOB column value is NULL, length is written as -1. No data conversion is performed
when you export LOB data to an external file. BLOB data is written in binary format, and
CLOB data is written using the codeset that you specify.

See Examples of bulk import and export for examples using each of the import and
export procedures.

File format for input and output

There are specific requirements for the format of the input and output files when you
import and export data.

The default file format is a delimited text file with the following characteristics:

* Rows are separated by a newline

 Fields are separated by a comma (,)

» Character-based fields are delimited with double quotes (")
Restriction: Before you perform import or export operations, you must ensure that
the chosen delimiter character is not contained in the data to be imported or exported.
If you chose a delimiter character that is part of the data to be imported or exported,
unexpected errors might occur. The following restrictions apply to column and character
delimiters:

 Delimiters are mutually exclusive

« A delimiter cannot be a line-feed character, a carriage return, or a blank space

» The default decimal point (.) cannot be a character delimiter

 Delimiters cannot be hexadecimal characters (0-9, a-f, A-F).

The record delimiter is assumed to be a newline character. The record delimiter should
not be used as any other delimiter.

68

Derby Server and Administration Guide

Character delimiters are permitted with the character-based fields (CHAR, VARCHAR,
and LONG VARCHAR) of a file during import. Any pair of character delimiters found
between the enclosing character delimiters is imported into the database. For example,
suppose that you have the following character string:

"What a ""great"" day!"

The preceding character string gets imported into the database as:

What a "great" day!

During export, the rule applies in reverse. For example, suppose you have the following
character string:

"The boot has a 3" heel."

The preceding character string gets exported to a file as:

"The boot has a 3""heel."

The following example file shows four rows and four columns in the default file format:

1, abc, 22, def

22,,,"ais a zero-length string, bis null"
13, "hel | 0", 454, "wor | d"

4. b and ¢ are both null,,

The export procedure outputs the following values:

1, "abc", 22, "def "

22,,,"ais a zero-length string, bis null"
13, "hel | 0", 454, "wor | d"

4,"b and ¢ are both null",,

Importing data using the built-in procedures

You can use the Derby import procedures to import all of the data from a table or query,
or to import LOB data separately from the other data.

1. Use the following table to choose the correct procedure for the type of import that
you want to perform. For examples of these procedures, see Examples of bulk
import and export.

Table 9. Using the built-in import procedures

Type of Import Procedure to Use
To import all the data to SYISCS_UTI L. SYSCS_| MPORT_TABLE
|
|
I
|
|
|

: (1N SCHEMANAVE VARCHAR(128) ,
S ElelE, e e igent N TABLENAVE VARCHAR(128),
file contains the LOB data N FI LENAVE VARCHAR(32672),
N COLUMNDELI M TER CHAR(1) |
N CHARACTERDELI M TER CHAR(1),
N CODESET VARCHAR(128),
N

REPLACE SMALLI NT)
To import the data SYSCS_UTI L. SYSCS_| MPORT_TABLE_LOBS_FROM EXTFI LE

I

I

I

|

I

I

I

to a table, where the (I'N SCHEMANAVE VARCHAR(128) ,

LOB data is stored in

a separate file and the
main import file contains
all of the other data with

N
N TABLENAME VARCHAR(128),

N FI LENAVE VARCHAR(32672),

N COLUVNDELI M TER CHAR(1),

N CHARACTERDELI M TER CHAR(1),
N CODESET VARCHAR(128),

N REPLACE SMALLI NT)

69

Derby Server and Administration Guide

Type of Import Procedure to Use

a reference to the LOB The import utility looks in the main import file for a
data reference to the location of the LOB data. The format
of the reference to the LOB stored in the main import
file must be | obsFi | eNane. O f set . | engt h/ .

To import data from a file SYSCSégTH:Ek/AEX SI\/ES_/I NPG?T(_ngSA

to a subset of columns in T ABLENANE VAARCt—|AJ o I‘Rd(2128) ’

a table, where the import | NSERTCOLUWNS VARCHAR(32672) ,
file contains the LOB data COLUMNI NDEXES VARCHAR(32672) ,
FI LENAME VARCHAR(32672),
COLUMNDELI M TER CHAR(1),
CHARACTERDELI M TER CHAR(1),
CODESET VARCHAR(128) ,

REPLACE SMALLI NT)

You must specify the | NSERTCOLUMNS parameter on
the table into which data will be imported. You must
specify the COLUVMNI NDEXES parameter to import data
fields from a file to a column in a table.

To import data to a SYSCS_UTI L. SYSCS_| MPORT_DATA LOBS_FROM EXTFI L

—~
Z

22Z2Z2Z2ZZZ22

(1IN SCHEMANANE VARCHAR(128),
slleeei e Gl | N TABLENAVE VARCHAR(128),
in a table, where the I N | NSERTCOLUWNS VARCHAR(32672) ,
LOB data is stored in I N COLUWNI NDEXES VARCHAR(32672),
a separate file and the : “ E&E%&LYQR%R(326(73 ,
IELT (I 9e0l TS EemiEs | N CHARACTERDELI M TER CHAR(1),
all of the other data with | N CODESET VARCHAR(128),
a reference to the LOB I N REPLACE SMALLI NT)

data The import utility looks in the main import file for a

reference to the location of the LOB data. The format
of the reference to the LOB stored in the main import
file must be | obsFi | eNane. O f set . | engt h/ .

Parameters for the import procedures

The Derby import procedures use specific parameters.

SCHEVANAME
Specifies the schema of the table. You can specify a NULL value to use the default
schema name. The SCHEMANAME parameter takes an input argument that is a
VARCHAR(128) data type.

TABLENAME
Specifies the name of the table into which the data is to be imported. This table
cannot be a system table or a declared temporary table. The string must exactly
match the case of the table name. Specifying a NULL value results in an error. The
TABLENAME parameter takes an input argument that is a VARCHAR(128) data type.

| NSERTCOLUMNS
Specifies the comma-separated column names of the table into which the data will be
imported. You can specify a NULL value to import into all columns of the table. The
I NSERTCOLUMNS parameter takes an input argument that is a VARCHAR(32672)
data type.

COLUMNI NDEXES
Specifies the comma-separated column indexes (numbered from one) of the input
data fields that will be imported. You can specify a NULL value to use all input data
fields in the file. The COLUMNI NDEXES parameter takes an input argument that is a
VARCHAR(32672) data type.

FI LENAMVE

70

Derby Server and Administration Guide

Specifies the name of the file that contains the data to be imported. If the path is
omitted, the current working directory is used. The specified location of the file should
refer to the server side location if you are using the Network Server. Specifying a
NULL value results in an error. The FI LENAME parameter takes an input argument
that is a VARCHAR(32672) data type.

COLUWMNDELI M TER
Specifies a column delimiter. The specified character is used in place of a comma to
signify the end of a column. You can specify a NULL value to use the default value
of a comma. The COLUVNDELI M TER parameter takes an input argument that is a
CHAR(1) data type.

CHARACTERDELI M TER
Specifies a character delimiter. The specified character is used in place of double
quotation marks to enclose a character string. You can specify a NULL value to use
the default value of a double quotation mark. The CHARACTERDELI M TER parameter
takes an input argument that is a CHAR(1) data type.

CODESET
Specifies the code set of the data in the input file. The code set name should be one
of the Java supported character encoding sets. Data is converted from the specified
code set to the database code set (UTF-8). You can specify a NULL value to interpret
the data file in the same code set as the JVM in which it is being executed. The
CODESET parameter takes an input argument that is a VARCHAR(128) data type.

REPLACE
A non-zero value for the REPLACE parameter will import in REPLACE mode, while
a zero value will import in INSERT mode. REPLACE mode deletes all existing
data from the table by truncating the table and inserts the imported data. The table
definition and the index definitions are not changed. You can import with REPLACE
mode only if the table already exists. INSERT mode adds the imported data to the
table without changing the existing table data. Specifying a NULL value results in an
error. The REPLACE parameter takes an input argument that is a SMALLINT data

type.

If you create a schema, table, or column name as a non-delimited identifier, you must
pass the name to the import procedure using all uppercase characters. If you created a
schema, table, or column name as a delimited identifier, you must pass the name to the
import procedure using the same case that was used when it was created.

Import into tables that contain identity columns

You can use the either the SYSCS_UTI L. SYSCS_| MPORT_DATA procedure or the
SYSCS_UTI L. SYSCS | MPORT_DATA LOBS_FROM EXTFI LE procedure to import data
into a table that contains an identity column. The approach that you take depends on
whether the identity column is GENERATED ALWAYS or GENERATED BY DEFAULT.

Identity columns and the REPLACE parameter

If the REPLACE parameter is used during import, Derby resets its internal counter of the
last identity value for a column to the initial value defined for the identity column.

Identity column is GENERATED ALWAYS

If the identity column is defined as GENERATED ALWAYS, an identity value is always
generated for a table row. When a corresponding row in the input file already contains

a value for the identity column, the row cannot be inserted into the table and the import
operation will fail.

To prevent such failure, the following examples show how to specify

parameters in the SYSCS_UTI L. SYSCS_| MPORT_DATA and

SYSCS_UTI L. SYSCS | MPORT_DATA LOBS FROM EXTFI LE procedures to ignore data
for the identity column from the file, and omit the column name from the insert column list.

71

Derby Server and Administration Guide

The following table definition contains an identity column, c2, and is used in the
examples below:

CREATE TABLE tabl (cl CHAR(30), c2 | NT GENERATED ALWAYS AS | DENTI TY,
c3 REAL, c4 CHAR(1))

» Suppose that you want to import data into t ab1 from afile, nyfi | e. del , that does
not have identity column information. The nyfi | e. del file contains three fields
with the following data:

Robert, 45.2,J
M ke, 76. 9, K
Leo, 23. 4, |

To import the data, you must explicitly list the column names in the t ab1 table,
except for the identity column c2, when you call the procedure. For example:

CALL SYSCS_UTI L. SYSCS_| MPORT_DATA (NULL, 'TABl', 'C1,C3,C4',
null, "nmyfile.del',null, null, null, 0)

« Suppose that you want to import data into t ab1 from a file, enpfi | e. del , that
also has identity column information. The file contains three fields with the following
data:

Robert, 1,45.2,J
M ke, 2, 23. 4, |
Leo, 3, 23. 4,1

To import the data, you must explicitly specify an insert column list without the
identity column ¢2 and specify the column indexes without identity column data
when you call the procedure. For example:

CALL SYSCS_UTI L. SYSCS_| MPORT_DATA (NULL, 'TAB1', 'C1,C3,C4',
'1,3,4", 'enpfile.del',null, null, null, 0)

Identity column is GENERATED BY DEFAULT

If the identity column is defined as GENERATED BY DEFAULT, an identity value is
generated for a table row only if no explicit value is given. This means that you have
several options, depending on the contents of your input file and the desired outcome of
the import processing:

* You may omit the identity column from the insert column list, in which case Derby
will generate a new value for the identity column for each input row. You may use
this option whether or not the input file contains values for the identity column, but
note that if the input file contains values for the identity column, you must also then
omit the identity column from the column indexes when you call the procedure.

* You may include the identity column in the insert column list, in which case Derby
will use the column values from the input file. Of course, this option is available only
if the input file actually contains values for the identity column.

The following table definition contains an identity column, c2, and is used in the
examples below:

CREATE TABLE tabl (c1 CHAR(30),
c2 | NT GENERATED BY DEFAULT AS | DENTI TY,
c3 REAL, c4 CHAR(1))

* Suppose that you want to import data into t ab1 from a file, nyfi | e. del , that does
not have identity column information. The nyfi | e. del file contains three fields
with the following data:

Robert, 45.2,J
M ke, 76. 9, K

72

Derby Server and Administration Guide
Leo, 23. 4,1

To import the data, you must explicitly list the column names in the t ab1 table,
except for the identity column c2, when you call the procedure. For example:

CALL SYSCS_UTI L. SYSCS_| MPORT_DATA (NULL, 'TABl', 'C1,C3,C4',
null, "nmyfile.del',null, null, null, 0)

» Suppose that you want to import data into t ab1 from a file, enpfi | e. del , that
also has identity column information. The file contains three fields with the following
data:

Robert, 1, 45.2,J
M ke, 2, 23. 4, |
Leo, 3, 23. 4,1

In this case, suppose that you wish to use the existing identity column values from
the input file. To import the data, you may simply pass nul | for the insert column
list and column indexes parameters when you call the procedure. For example:

CALL SYSCS _UTI L. SYSCS_| MPORT_DATA (NULL, 'TAB1', NULL,
NULL, 'enpfile.del',null, null, null, 0)

« Suppose (again) that you want to import data into t ab1 from a file, enpfi | e. del ,
that also has identity column information, but in this case, suppose that you do
not wish to use the identity column values from the input file, but would prefer to
allow Derby to generate new identity column values instead. In this case, to import
the data, you must specify an insert column list without the identity column c2
and specify the column indexes without identity column data when you call the
procedure. For example:

CALL SYSCS_UTI L. SYSCS_| MPORT_DATA (NULL, 'TABl', 'Cl,C3,C4',
'1,3,4", 'enpfile.del',null, null, null, 0)
Exporting data using the built-in procedures

You can use the Derby export procedures to export all of the data from table or query, or
to export LOB data separately from the other data.

1. Use the following table to choose the correct procedure for the type of export that
you want to perform. For examples of these procedures, see Examples of bulk
import and export.

Table 10. Using the built-in export procedures

Type of Export Procedure to Use

To export all the data SYSCS_UTI L. SYSCS_EXPORT_TABLE
- (I'N SCHEVANAVE VARCHAR(128),

VI IDERE]IS | N TABLENAVE VARCHAR(128),

export file, including the N FI LENAVE VARCHAR(32672),

|
LOB data I N COLUMNDELI M TER CHAR(1),
| N CHARACTERDEL| M TER CHAR(1),
| N CODESET VARCHAR(128))
To export all the data SYSCS_UTI L. SYSCS_EXPORT_TABLE _LOBS_TO_EXTFI LE
(I'N SCHEMANANE VARCHAR(128),
from a table, and place I N TABLENAVE VARCHAR(128) ,
the LOB data into a I N FI LENAVE VARCHAR(32672)
separate export file I N COLUMNDELI M TER CHAR(1),
| N CHARACTERDEL| M TER CHAR(1),
| N CODESET VARCHAR(128),
| N LOBSFI LENAMVE VARCHAR(32672))

A reference to the location of the LOB data is placed
in the LOB column in the main export file.

73

Derby Server and Administration Guide

Type of Export Procedure to Use

To export the result of a S{?ﬁ%ﬁ&&?ﬁ%ﬁ VAﬁCH,EEZ(32672)
SELEGC T SiEislie 1o & I N FI LENAVE VARCHAR(32672) ’
single file, including the N COLUMNDELI M TER CHAR(1),

|
LOB data | N CHARACTERDELI M TER CHAR(1),
| N CODESET VARCHAR(128))
To export the result of SYSCS_UTI L. SYSCS_EXPORT_QUERY_LOBS_TO_EXTFI LE
(1IN SELECTSTATENENT VARCHAR(32672),
A SlEL 20T Sl i I N FI LENAVE VARCHAR(32672),
a main export file, and I N COLUMNDELI M TER CHAR(1),
place the LOB data into a I N CHARACTERDELI M TER CHAR(1),
|

N CODESET VARCHAR(128),

separate export file
I N LOBSFI LENAME VARCHAR(32672))

A reference to the LOB data is written to the main
export file.

Parameters for the export procedures

The Derby export procedures use specific parameters.

SCHEMVANANMVE
Specifies the schema of the table. You can specify a NULL value to use the default
schema name. The SCHEMANANME parameter takes an input argument that is a
VARCHAR(128) data type.

SELECTSTATEMENT
Specifies the SELECT statement query that returns the data to be exported.
Specifying a NULL value will result in an error. The SELECTSTATEMENT parameter
takes an input argument that is a VARCHAR(32672) data type.

TABLENANMVE
Specifies the table name of the table or view from which the data is to be exported.
This table cannot be a system table or a declared temporary table. The string must
exactly match the case of the table name. Specifying a NULL value results in an
error. The TABLENAME parameter takes an input argument that is a VARCHAR(128)
data type.

FI LENAME
Specifies the file to which the data is to be exported. If the path is omitted, the current
working directory is used. If the name of a file that already exists is specified, the
export utility overwrites the contents of the file; it does not append the information.
The specified location of the file should refer to the server-side location if you
are using the Network Server. Specifying a NULL value results in an error. The
FI LENAME parameter takes an input argument that is a VARCHAR(32672) data type.

COLUWMNDELI M TER
Specifies a column delimiter. The specified character is used in place of a comma to
signify the end of a column. You can specify a NULL value to use the default value of
a comma. The COLUVNDELI M TER parameter must be a CHAR(1) data type.

CHARACTERDELI M TER
Specifies a character delimiter. The specified character is used in place of double
quotation marks to enclose a character string. You can specify a NULL value to use
the default value of a double quotation mark. The CHARACTERDELI M TER parameter
takes an input argument that is a CHAR(1) data type.

CODESET
Specifies the code set of the data in the export file. The code set name should be one
of the Java supported character encoding sets. Data is converted from the database
code page to the specified code page before writing to the file. You can specify a
NULL value to write the data in the same code page as the JVM in which it is being
executed. The CODESET parameter takes an input argument that is a VARCHAR(128)
data type.

74

Derby Server and Administration Guide

LOBSFI LENAVE
Specifies the file that the large object data is exported to. If the path is omitted, the
LOB file is created in the same directory as the main export file. If you specify the
name of an existing file, the export utility overwrites the contents of the file. The data
is not appended to the file. If you are using the Network Server, the file should be in a
server-side location. Specifying a NULL value results in an error. The LOBSFI LENAVE
parameter takes an input argument that is a VARCHAR(32672) data type.

If you create a schema, table, or column name as a non-delimited identifier, you must
pass the name to the export procedure using all uppercase characters. If you created a
schema or table name as a delimited identifier, you must pass the name to the export
procedure using the same case that was used when it was created.

Examples of bulk import and export
All of the examples in this section are run using the i j utility.
Example: Importing all data from afile

The following example shows how to import data into the STAFF table in a sample
database from the nyfi | e. del file. The data will be appended to the existing data in the
table.

CALL SYSCS_UTI L. SYSCS | MPORT_TABLE(
null,' STAFF' ,'nyfile.del',null,null,null,0);

Example: Importing all data from a delimited file

The following example shows how to import data into the STAFF table in a sample
database from a delimited data file, nyfi | e. del . This example defines the percentage
character (%) as the string delimiter, and a semicolon as the column delimiter. The data
will be appended to the existing data in the table.

CALL SYSCS_UTI L. SYSCS_| MPORT_TABLE(
null,' STAFF' ,'c:\output\nyfile.del"',";"',"%,null,0);

Example: Importing all data from a table, using a separate import file for the LOB
data

The following example shows how to import data into the STAFF table in a sample
database from a delimited data file, st af f . del . The import file st af f . del is the
main import file and contains references that point to a separate file which contains the
LOB data. This example specifies a comma as the column delimiter. The data will be
appended to the existing data in the table.

CALL SYSCS_UTI L. SYSCS | MPORT_TABLE_LOBS_FROM EXTFI LE(
null,'STAFF' ,'c:\data\staff.del',',"',"'"","UF-8",0);

Example: Importing data into specific columns, using a separate import file for the
LOB data

The following example shows how to import data into several columns of the STAFF
table. The STAFF table includes a LOB column in a sample database. The import file,
st af f. del , is a delimited data file. The st af f . del file contains references that point
to a separate file which contains the LOB data. The data in the import file is formatted
using double quotation marks (") as the string delimiter and a comma (,) as the column
delimiter. The data will be appended to the existing data in the STAFF table.

CALL SYSCS_UTI L. SYSCS_| MPORT DATA LOBS_FROM EXTFI LE(

nul |, 'STAFF', ' NAME, DEPT, SALARY, PICTURE' , '2,3,4,6',
'c:\data\staff.del', ",",""","UF-8, 0);

75

Derby Server and Administration Guide
Example: Exporting all data from a table to a single export file

The following example shows how to export data from the STAFF table in a sample
database to the file myfi | e. del .

CALL SYSCS_UTI L. SYSCS_EXPORT_TABLE(
null,' STAFF' ,"'nyfile.del',null,null,null);

Example: Exporting data from a table to a single delimited export file

The following example shows how to export data from the STAFF table to a delimited
data file, myfi | e. del , with the percentage character (%) as the character delimiter, and
a semicolon as the column delimiter from the STAFF table.

CALL SYSCS_UTI L. SYSCS_EXPORT_TABLE(
null,' STAFF' ,"'c:\output\nyfile.del',"';"'," % ,null);

Example: Exporting all data from a table, using a separate export file for the LOB
data

The following example shows how to export data from the STAFF table in a sample
database to the main file, st af f . del , and the LOB export file, pi ct ur es. dat .

CALL SYSCS_UTI L. SYSCS_EXPORT_TABLE_LOBS_TO EXTFI LE(nul | , ' STAFF',
‘c:\data\staff.del',",",""","UTF-8", 'c:\data\pictures.dat');

Example: Exporting data from a query to a single export file

The following example shows how to export employee data in department 20 from the
STAFF table in a sample database to the file awar ds. del .

CALL SYSCS_UTI L. SYSCS_EXPORT_QUERY(
' SELECT * FROM STAFF WHERE dept =20',
"c:\output\awards.del ', null,null,null);

Example: Exporting data from a query, using a separate export file for the LOB
data

The following example shows how to export employee data in department 20 from the
STAFF table in a sample database to the main file, st af f . del , and the LOB data to the
file pi ctures. dat.

CALL SYSCS_UTI L. SYSCS_EXPORT_QUERY_LOBS _TO_EXTFI LE(
' SELECT * FROM STAFF WHERE dept =20',
‘c:\data\staff.del*, ", ,""",
"UTF-8','c:\data\pictures.dat');

Running import and export procedures from JDBC
You can run import and export procedures from a JDBC program.

The following code fragment shows how you might call the

SYSCS_UTI L. SYSCS_EXPORT_TABLE procedure from a Java program. In this
example, the procedure exports the data in the st af f table in the default schema to the
st af f. dat file. A percentage (% character is used to specify the column delimiter.

Prepar edSt at enent ps = conn. pr epar eSt at enent (
"CALL SYSCS_UTI L. SYSCS_EXPORT_TABLE (?,?,?,?2,?2,?2)");
ps.setString(1, null);
ps.set String(2," STAFF");
ps.setString(3,"staff.dat");
ps.setString(4,"%);
ps.setString(5,null);
ps.setString(6, null);
ps. execute();

76

Derby Server and Administration Guide

How the import and export procedures process NULL values
In a delimited file, a NULL value is exported as an empty field.

The following example shows the export of a four-column row where the third column is
empty:

7,95, , Happy Birthday

The import procedures work the same way; an empty field is imported as a NULL value.

CODESET values for import and export procedures

Import and export procedures accept arguments to specify codeset values. You can
specify the codeset (character encoding) for import and export procedures to override the
system default.

For a table that shows a sample of the character encodings supported by the Java
Development Kit, see "derby.ui.codeset property" in the Derby Tools and Utilities Guide.
To review the complete list of character encodings, refer to your Java documentation.

Examples: Specifying the codeset in import and export procedures

The following example shows how to specify UTF-8 encoding to export to the
st af f. dat table:

CALL SYSCS_UTI L. SYSCS_EXPORT_TABLE(
NULL, ' STAFF' ,'staff.dat', NULL, NULL, ' UTF-8")

The following example shows how to specify UTF-8 encoding to import from the
staff. dat table:

CALL SYSCS_UTI L. SYSCS_| MPORT_TABLE(
NULL, ' STAFF' , ' staff.dat', NULL, NULL, ' UTF-8', 0)

Replicating databases

Replication is an important feature of a robust database management system. In Derby,
you start database replication by using connection URL attributes.

The replication capability of Derby has the following features:

« One master, one slave: A replicated database resides in two locations and is
managed by two different Derby instances. One of these Derby instances has the
master role for this database, and the other has the slave role. Typically, the master
and slave run on different nodes, but this is not a requirement. Together, the master
and its associated slave represent a replication pair.

* Roll-forward shipped log: Replication is based on shipping the Derby transaction
log from the master to the slave, and then rolling forward the operations described
in the log to the slave database.

* Asymmetry: Only the master processes transactions. The slave processes no
transactions, not even read operations.

» Asynchronicity: Transactions are committed on the master without waiting for the
slave. The shipping of the transaction log to the slave is performed regularly, and is
completely decoupled from the transaction execution at the master. This may lead
to a few lost transactions if the master crashes.

» Shared nothing: Apart from the network line, no hardware is assumed to be
shared.

77

Derby Server and Administration Guide

Starting and

« Replication granularity: The granularity for replication is exactly one database.
However, one Derby instance may have different roles for different databases. For
example, one Derby instance may have the following roles, all at the same time:

« The master role for one database D1 replicated to one node
* The slave role for a database D2 replicated from another node
« The normal, non-replicated, role for a database D3

Replication builds on Derby's ability to recover from a crash by starting with a backup and
rolling forward Derby's transaction log files. The master sends log records to the slave
using a network connection. The slave then writes these log records to its local log and
redoes them.

If the master fails, the slave completes the recovery by redoing the log that has not
already been processed. The state of the slave after this recovery is close to the state
the master had when it crashed. However, some of the last transactions performed on
the master may not have been sent to the slave and may therefore not be reflected.
When the slave has completed the recovery work, it is transformed into a normal Derby
instance that is ready to process transactions. For more details, see Forcing a failover.

Several Derby properties allow you to specify the size of the replication log buffers
and the intervals between log shipments, as well as whether replication messages are
logged. See the Derby Reference Manual for details.

You can perform replication on a database that runs in either embedded mode or
Network Server mode.

running replication
Each replicated database is replicated from a master to a slave version of that database.

Initially there is no replication; a master database must be created before it can be
replicated. The database may, of course, be empty when replication starts. On the other
hand, replication does not need to be specified immediately after the database is created;
it can be initiated at any time after the database is created.

Before you start replication, you must shut down the master database and then copy the
database to the slave location. Follow these steps to start replication:

1. Make sure that the database on the master system is shut down cleanly.

2. Copy the database to the slave location.

3. Start slave replication mode on the Derby instance that is acting as the slave for
the database. To start slave replication, use the st art Sl ave=t r ue attribute
and, optionally, the sl aveHost =host nane and sl avePor t =port Val ue
attributes. For example, for a database named wonbat , you might use the following
connection URL:

j dbc: der by: wonbat ; start Sl ave=true

4. Start master replication mode on the Derby instance that is acting as the
master for the database. To start replication, connect to the database on the
master system using the st art Mast er =t r ue attribute in conjunction with the
sl aveHost =host nane attribute (and, optionally, the sl avePor t =port Val ue
attribute). For example, you might use the following connection URL:

j dbc: der by: wonbat ; st art Mast er =t r ue; sl aveHost =nyr enpt esyst em
A successful use of the st art Mast er =t r ue attribute will also start the database.
See the Derby Reference Manual for details about these attributes.

After replication has been started, the slave is ready to receive logged operations from
the master. The master can now continue to process transactions. From this point on, the

78

Derby Server and Administration Guide

master forwards all logged operations to the slave in chunks. The slave repeats these
operations by applying the contents of the Derby transaction log, but does not process
any other operations. Attempts to connect to the slave database are refused. In case of
failure, the slave can recover to the state the master was in at the time the last chunk of
the transaction log was sent.

While replication is running, neither the slave or the master database is permitted to be
shut down. Replication must be stopped before you can shut down either the slave or the
master database. There is one exception to this rule: if the entire system is shut down,
the peer that is shut down notifies the other replication peer that replication is stopped.

If you install jar files on the master system while replication is running, the same jars are
not automatically installed on the slave. But because the transaction log information sent
to the slave system includes the jar file installation, the slave database has a record of
the jar files, even though they are not actually there. Therefore, you must install the jar
files on the former slave after a failover by calling either SQLJ. r enove_j ar followed by
SQLJ.install _jar,orSQ.J.replace_j ar. (For information on installing jar files,
see "Loading classes from a database" in the Derby Developer's Guide and "System
procedures for storing jar files in a database" in the Derby Reference Manual.)

If the jar files must be available to clients immediately after a failover, you must stop
replication and then start replication over again from the beginning, so that the slave
database will have the same jar files as the master.

Stopping replication

To stop replication of a database, connect to the master database using the
st opMast er =t r ue connection URL attribute.

The master sends the remaining log records that await shipment, and then sends a
stop replication command to the slave. The slave then writes all logs to disk and shuts
down the database. For example, for a database named wonbat , you might specify the
following connection URL:

j dbc: der by: wonbat ; st opMast er =t r ue

To stop replication on the slave system if the connection to the master is lost, use the
st opSl ave=t r ue connection URL attribute.

See the Derby Reference Manual for details about these attributes.

You cannot resume replication after it has been stopped. You need to start replication
over again from the beginning using the st art Mast er =t r ue attribute, as described in
Starting and running replication.

Forcing a failover

At any time, you can transform the Derby database that has the slave role into a normal
Derby database that can process transactions. This transformation from being a slave to
becoming an active Derby database is called failover.

During failover, the slave applies the parts of the transaction log that have not yet been
processed. It then undoes operations that belong to uncommitted transactions, resulting
in a transaction-consistent state that includes all transactions whose commit log record
has been sent to the slave.

You perform failover from the master system. To do so, you connect to the database on
the master system using the f ai | over =t r ue connection URL attribute. For example,
for a database named wonbat , you might specify the following connection URL:

79

Derby Server and Administration Guide
j dbc: der by: wonbat ; f ai | over =t rue

If the network connection between the master system and the slave system is lost, you
can perform failover from the slave system.

See the Derby Reference Manual for details about the f ai | over =t r ue attribute.

There is no automatic failover or restart of replication after one of the instances has
failed.

Replication failure handling

Replication can encounter several failure situations. The following table lists these
situations and describes the actions that Derby takes as a result.

Table 11. Replication failure handling

Failure Situation Action Taken

Master loses connection | Transactions are allowed to continue processing while

with slave. the master tries to reconnect with the slave. Log records
generated while the connection is down are buffered

in main memory. If the log buffer reaches its size limit
before the connection can be reestablished, the master
replication functionality is stopped. You can use the property
derby. replication. | ogBufferSize to configure the
size limit of the buffer; see the Derby Reference Manual for
details.

Slave loses connection | The slave tries to reestablish the connection with the master
with master. by listening on the specified host and port. It will not give

up until it is explicitly requested to do so by either the

fail over=true orstopSl ave=t r ue connection URL
attribute. If a failover is requested, the slave applies all
received log records and boots the database as described
in Forcing a failover. If the st opSl ave=t r ue attribute is
specified, the slave database is shut down without further

actions.
Two different masters The slave will only accept the connection from the first
of database D try to master attempting to connect. Note that authentication is
replicate to the same required to start both the slave and the master.

slave.

The master and slave An exception is raised and replication does not start.
Derby instances are
not at the same Derby

version.

The master Derby Replication must be restarted, as described in Starting and
instance crashes, then running replication.

restarts.

The master Derby The master notices that the main memory log buffer is
instance is not able to filling up. It first tries to increase the speed of the log

send log data to the shipment to keep the amount of log in the buffer below

slave at the same pace | the maximum. If that is not enough to keep the buffer

as the log is generated. | from getting full, the response time of transactions may
The main memory log increase for as long as log shipment has trouble keeping
buffer gradually fills up up with the amount of generated log records. You can

80

Derby Server and Administration Guide

Failure Situation Action Taken

and eventually becomes | use properties to tune both the log buffer size and the
full. minimum and maximum interval between consecutive
log shipments. See "derby.replication.logBufferSize",
"derby.replication.maxLogShippinginterval®, and
"derby.replication.minLogShippinginterval” in the Derby
Reference Manual for details.

The slave Derby The master sees this as a lost connection to the slave. The
instance crashes. master tries to reestablish the connection until the replication
log buffer is full. Replication is then stopped on the master.
Replication must be restarted, as described in Starting and
running replication.

An unexpected failure is | Replication is stopped. The other Derby instance of the
encountered. replication pair is notified of the decision if the network
connection is still alive.

Logging on a separate device

You can improve the performance of update-intensive, large databases by putting a
database's log on a separate device, which reduces I/O contention.

By default, the transaction log is in the | og subdirectory of the database directory. Use
either of the following methods to store this | og subdirectory in another location:

 Specify the non-default location by using the | ogDevi ce=l ogDi r ect oryPat h
attribute on the database connection URL when you create the database.

- If the database is already created, move the log manually and update the
servi ce. properti es file.

Using the logDevice=logDirectoryPath attribute

To specify a non-default location for the log directory, set the
| ogDevi ce=l ogDi r ect or yPat h attribute on the database connection URL.

This attribute is meaningful when you are creating a database or when

you are restoring a database using roll-forward recovery. You can specify

| ogDevi ce=l ogDi r ect or yPat h as either an absolute path or as a path that is relative
to the directory where the JVM is executed.

Setting | ogDevi ce=l ogDi r ect or yPat h on the database connection URL when
you create the database adds an entry to the ser vi ce. properti es file. If you ever
move the log manually, you will need to alter the entry in ser vi ce. properti es. If
you move the log back to the default location, remove the | ogDevi ce entry from the
servi ce. properti es file.

To check the log location for an existing database, you can retrieve the
| ogDevi ce=l ogDi r ect or yPat h attribute as a database property by using the
following statement:

VALUES SYSCS_UTI L. SYSCS_GET_DATABASE_PROPERTY(' | ogDevi ce')
For more information, see Roll-forward recovery in this manual and
"logDevice=logDirectoryPath attribute" in the Derby Reference Manual.

Example of creating a log in a non-default location

81

Derby Server and Administration Guide

The following database connection URL creates a database in the directory
d: / mydat abases, but puts the database log directory in h: / j anet s/ t our sl og.

j dbc: der by: d: / nydat abases/ t our sDB;
create=true; | ogDevi ce=h:/janets/toursl og

Example of moving a log manually

If you want to move the log to g: / bi gdi sk/ t our sl og, move the log with operating
system commands.

For example, you could use the following command:

move h:\janets\tourslog\log*.* g:\bigdi sk\toursl og\l og

Then, alter the | ogDevi ce entry in servi ce. properti es to read as follows:

| ogDevi ce=g: / bi gdi sk/t our sLog

Note: You can use either a single forward slash or double back slashes for a path
separator.

If you later want to move the log back to its default location (in this case,
d:\ nydat abases\ t our sDB\ | 0g), move the log manually as follows:

nmove g:\bi gdi sk\tourslog\l og*.* d:\nydatabases\toursDB\I og
Then, delete the | ogDevi ce entry from ser vi ce. properti es.

Note: This example uses commands that are specific to the Windows operating system.
Use commands appropriate to your operating system to copy a directory and all of its
contents to a new location.

Issues for logging in a non-default location

When the log is not in the default location, backing up and restoring a database can
require extra steps.

See Backing up and restoring databases for details.

Obtaining locking information
Derby provides a tool to monitor and display locking information.

This tool can help you create applications that minimize deadlock. It can also help you
locate the cause of deadlock when it does occur.

To diagnose locking problems, constantly monitor locking traffic by logging all deadlocks
by using the der by. | ocks. noni t or property, which is described in the Derby
Reference Manual.

Monitoring deadlocks

The derby. stream error. | ogSeverityLevel property determines the level of
error that you are informed about.

By default, der by. st ream error. | ogSeverityLevel is setto 40000. If

derby. streamerror.| ogSeveritylLevel is setto display transaction-level
errors (that is, if it is set to a value less than 40000), deadlock errors are logged to the
der by. | og file. If it is set to a value of 40000 or higher, deadlock errors are not logged
to the der by. | og file.

82

Derby Server and Administration Guide

The der by. | ocks. noni t or property ensures that deadlock errors are logged
regardless of the value of der by. stream error. | ogSeveritylLevel . When
der by. | ocks. noni t or is set to true, all locks that are involved in deadlocks are
written to der by. | og along with a uniqgue number that identifies the lock.

To see a thread's stack trace when a lock is requested, set
der by. | ocks. deadl ockTrace totrue. This property is ignored if
der by. | ocks. noni t or is set to false.

Note: Use der by. | ocks. deadl ockTr ace with care. Setting this property can alter
the timing of the application, severely affect performance, and produce a very large
der by. | og file.

For information about working with properties, see the Derby Developer's Guide. For
information about the specific properties that are mentioned in this topic, see the Derby
Reference Manual.

Here is an example of an error message when Derby aborts a transaction because of a
deadlock:

- - SQLExcepti on Caught - -

SQ.State: 40001 =

Error Code: 30000

Message: A lock could not be obtained due to a deadl ock,

cycle of locks and waiters is: Lock : ROW DEPARTMENT, (1,14)
Waiting XID : {752, X} , APP, update departnent set |ocation='Boise'
wher e dept no=" E21'

Ganted XID : {758, X} Lock : RON EMPLOYEE, (2,8)

Waiting XID: {758, U , APP, update enpl oyee set bonus=150 where
sal ary=23840

Ganted XID : {752, X} The selected victimis XID: 752

Note: You can use the der by. | ocks. wai t Ti neout and

der by. | ocks. deadl ockTi neout properties to configure how long Derby waits for
a lock to be released, or when to begin deadlock checking. For more information about
these properties, see "Controlling Derby application behavior" in the Derby Developer's
Guide.

Reclaiming unused space

A Derby table or index (sometimes called a conglomerate) can contain unused space
after large amounts of data have been deleted or updated.

This happens because, by default, Derby does not return unused space to the operating
system. After a page has been allocated to a table or index, Derby does not automatically
return the page to the operating system until the table or index is dropped, even if the
space is no longer needed. However, Derby does provide a way to reclaim unused space
in tables and associated indexes.

If you determine that a table and its indexes have a significant amount of

unused space, use either the SYSCS_UTI L. SYSCS_COWVPRESS TABLE or

SYSCS_UTI L. SYSCS | NPLACE COVPRESS TABLE procedure to reclaim

that space. SYSCS_UTI L. SYSCS_COWPRESS TABLE is guaranteed to

recover the maximum amount of free space, at the cost of temporarily

creating new tables and indexes before the statement is committed.

SYSCS_UTI L. SYSCS | NPLACE _COVPRESS TABLE attempts to reclaim space within
the same table, but cannot guarantee it will recover all available space. The difference
between the two procedures is that unlike SYSCS_UTI L. SYSCS_COWPRESS TABLE, the
SYSCS_UTI L. SYSCS | NPLACE _COVPRESS TABLE procedure uses no temporary files
and moves rows around within the same conglomerate.

83

Derby Server and Administration Guide

You can use the SYSCS DI AG. SPACE_TABLE diagnostic table to estimate the amount
of unused space in a table or index by examining, in particular, the values of the
NUMFREEPAGES and ESTIMSPACESAVING columns. For example:

SELECT * FROM TABLE(SYSCS_DI AG. SPACE_TABLE(' APP' , ' FLI GHTAVAI LABI LI TY"))
AS T

For more information about SYSCS_DI AG. SPACE_TABLE see "SYSCS_DIAG diagnostic
tables and functions" in the Derby Reference Manual.

As an example, after you have determined that the FI i ght Avai | abi | i ty table and
its related indexes have too much unused space, you could reclaim that space with the
following command:

cal | SYSCS_UTI L. SYSCS_COVPRESS TABLE(' APP', ' FLI GHTAVAI LABI LI TY', 0);

The third parameter in the SYSCS_UTI L. SYSCS_| NPLACE_COMPRESS TABLE
procedure determines whether the operation will run in sequential or non-sequential
mode. If you specify 0 for the third argument in the procedure, the operation will run in
non-sequential mode. In sequential mode, Derby compresses the table and indexes
sequentially, one at a time. Sequential compression uses less memory and disk space
but is slower. To force the operation to run in sequential mode, substitute a non-zero
SMALLINT value for the third argument. The following example shows how to force the
procedure to run in sequential mode:

cal | SYSCS_UTI L. SYSCS_COWRESS_TABLE(' APP', ' FLI GHTAVAI LABI LI TY', 1);

For more information about this command, see the Derby Reference Manual.

84

Derby Server and Administration Guide

Trademarks

The following terms are trademarks or registered trademarks of other companies and
have been used in at least one of the documents in the Apache Derby documentation
library:

Cloudscape, DB2, DB2 Universal Database, DRDA, and IBM are trademarks of
International Business Machines Corporation in the United States, other countries, or
both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

85

	Cover
	Contents
	Copyright
	License
	About this guide
	Purpose of this guide
	Audience
	How this guide is organized

	Part One: Derby Server
Guide
	Derby in a multi-user
environment
	Derby in a server
framework
	Connectivity configurations
	Multiple-client features available in
Derby
	Row-level locking
	Multiple concurrency levels
	Multi-connection and multi-threading
	Administrative tools

	The Derby Network
Server
	Embedded servers
	How to start an embedded server from an application
	Embedded server example

	About this guide and the Network Server documentation

	Using the Network Server with preexisting
Derby applications
	The Network Server and Java Virtual Machines (JVMs)
	Installing required jar files and adding them to the classpath/modulepath
	Starting the Network Server
	Starting the Network Server from a Java application
	Starting the Network Server on IPv6/IPv4 dual stack Windows machines

	Shutting down the Network Server
	Shutting down by using the command line
	Shutting down by using the API

	Obtaining system information
	Obtaining system information by using the command line
	Obtaining system information by using the API
	Obtaining Network Server runtime information
	Obtaining Network Server properties by using the getCurrentProperties
method

	Accessing the Network Server by using the network client driver
	Network client tracing
	Network client driver examples

	Accessing the Network Server by using a DataSource object
	DataSource access examples

	XA and the Network Server
	Using XA with the network client driver

	Using the Derby tools
with the Network Server
	Using the Derby ij
tool with the Network Server
	Using the Derby dblook
tool with the Network Server

	Differences between running
Derby in embedded mode and
using the Network Server
	Differences between the embedded client and the network client driver
	Updatable result sets
	Differences in JDBC methods
	Differences using the Connection.setReadOnly method

	Setting port numbers

	Managing the Derby
Network Server
	Overview of Derby
Network Server management
	Using the NetworkServerControl API

	Setting Network Server properties
	derby.drda.host property
	derby.drda.keepAlive property
	derby.drda.logConnections property
	derby.drda.maxThreads property
	derby.drda.minThreads property
	derby.drda.portNumber property
	derby.drda.securityMechanism property
	derby.drda.sslMode property
	derby.drda.startNetworkServer property
	derby.drda.streamOutBufferSize property
	derby.drda.timeSlice property
	derby.drda.traceAll property
	derby.drda.traceDirectory property

	Verifying startup

	Using Java Management Extensions (JMX) technology
	Introduction to the
Derby MBeans
	Enabling and disabling JMX
	Enabling remote JMX with no authentication or SSL
	Enabling remote JMX with password authentication only
	Enabling remote JMX with password authentication and SSL
	Simple authorization using an access file
	Disabling access to MBeans

	Using JConsole to access the
Derby MBeans
	Using custom Java code to access the
Derby MBeans
	Troubleshooting JMX connection issues

	Managing the Derby
Network Server remotely by using the servlet interface
	Start-up page
	Running page
	Trace session page
	Trace directory page
	Set Network Server parameters

	Derby Network Server
advanced topics
	Configuring the Network Server to handle connections
	Controlling logging by using the log file
	Controlling tracing by using the trace facility
	Turning on the trace facility
	Turning off the trace facility

	Derby Network Server
sample programs
	The NsSample sample program
	Running the NsSample sample program

	Network Server sample programs for embedded and client connections
	Overview of the SimpleNetworkServerSample program
	Running the SimpleNetworkServerSample program
	Connecting a client to the Network Server with the SimpleNetworkClientSample
program
	Running the SimpleNetworkClientSample program

	Part Two: Derby
Administration Guide
	Maintaining database integrity
	Checking database consistency
	The SYSCS_CHECK_TABLE function
	Sample SYSCS_CHECK_TABLE error messages
	Sample SYSCS_CHECK_TABLE queries

	Backing up and restoring databases
	Backing up a database
	Offline backups
	Online backups
	Using the backup procedures to perform an online backup
	Using operating system commands with the freeze and unfreeze system
procedures to perform an online backup

	When the log is in a non-default location
	Backing up encrypted databases

	Restoring a database from a backup copy
	Creating a database from a backup copy
	Roll-forward recovery

	Importing and exporting data
	Methods for running the import and export procedures
	Bulk import and export requirements and considerations
	Bulk import and export of large objects
	File format for input and output
	Importing data using the built-in procedures
	Parameters for the import procedures
	Import into tables that contain identity columns

	Exporting data using the built-in procedures
	Parameters for the export procedures

	Examples of bulk import and export
	Running import and export procedures from JDBC
	How the import and export procedures process NULL values
	CODESET values for import and export procedures

	Replicating databases
	Starting and running replication
	Stopping replication
	Forcing a failover
	Replication failure handling

	Logging on a separate device
	Using the logDevice=logDirectoryPath attribute
	Example of creating a log in a non-default location
	Example of moving a log manually
	Issues for logging in a non-default location

	Obtaining locking information
	Monitoring deadlocks

	Reclaiming unused space

	Trademarks

