
Derby Reference Manual
Version 10.11

Derby Document build:
August 7, 2014, 10:16:58 AM (PDT)

Version 10.11 Derby Reference Manual

i

Contents
Copyright..11

License... 12

About this guide..16
Purpose of this document.. 16
Audience... 16
How this guide is organized...16
SQL syntax used in this manual..17

SQL language reference...18
Capitalization and special characters..18
SQL identifiers .. 18

Rules for SQL identifiers... 19
SQLIdentifier.. 19
aggregateName... 20
authorizationIdentifier...20
columnName..20
constraintName..21
correlationName...21
cursorName... 21
functionName...22
indexName...22
newTableName..22
procedureName... 23
roleName... 23
schemaName...23
sequenceName..24
simpleColumnName...24
synonymName... 24
tableName..24
triggerName... 25
typeName...25
viewName.. 25

Statements.. 26
Interaction with the dependency system...26
ALTER TABLE statement..27
CALL (PROCEDURE) statement.. 32
CREATE statements... 32
DECLARE GLOBAL TEMPORARY TABLE statement....................................... 56
DELETE statement..59
DROP statements..59
GRANT statement... 64
INSERT statement...67
LOCK TABLE statement... 68
MERGE statement ... 69
RENAME statements...72
REVOKE statement ..73
SELECT statement..78
SET statements... 80
TRUNCATE TABLE statement..83
UPDATE statement... 83

SQL clauses... 85

Version 10.11 Derby Reference Manual

ii

CONSTRAINT clause..85
EXTERNAL NAME clause...93
FOR UPDATE clause..93
FROM clause...94
GROUP BY clause..95
HAVING clause... 95
WINDOW clause... 96
ORDER BY clause.. 96
The result offset and fetch first clauses.. 98
USING clause..99
WHERE clause..100
WHERE CURRENT OF clause...101

SQL expressions..101
selectExpression..104
tableExpression... 107
NEXT VALUE FOR expression...108
VALUES expression.. 109
Expression precedence... 110
Boolean expressions... 110
CASE expression.. 113
Dynamic parameters... 114

JOIN operations... 117
INNER JOIN operation.. 117
LEFT OUTER JOIN operation...119
RIGHT OUTER JOIN operation.. 120
CROSS JOIN operation.. 120
NATURAL JOIN operation.. 121

SQL queries..122
query.. 122
scalarSubquery.. 124
tableSubquery..125

Built-in functions..125
Standard built-in functions...126
Aggregates (set functions).. 127
ABS or ABSVAL function.. 128
ACOS function...128
ASIN function...128
ATAN function... 129
ATAN2 function... 129
AVG function... 129
BIGINT function... 130
CAST function... 131
CEIL or CEILING function...134
CHAR function...135
COALESCE function... 136
Concatenation operator... 137
COS function... 138
COSH function...138
COT function... 138
COUNT function.. 138
COUNT(*) function.. 139
CURRENT DATE function...139
CURRENT_DATE function..139
CURRENT ISOLATION function... 140
CURRENT_ROLE function..140
CURRENT SCHEMA function...140

Version 10.11 Derby Reference Manual

iii

CURRENT TIME function..140
CURRENT_TIME function...141
CURRENT TIMESTAMP function... 141
CURRENT_TIMESTAMP function...141
CURRENT_USER function..141
DATE function... 142
DAY function..142
DEGREES function... 143
DOUBLE function.. 143
EXP function..144
FLOOR function...144
HOUR function.. 144
IDENTITY_VAL_LOCAL function.. 144
INTEGER function... 146
LCASE or LOWER function.. 146
LENGTH function.. 147
LN or LOG function... 147
LOG10 function... 147
LOCATE function...148
LTRIM function.. 148
MAX function... 149
MIN function.. 150
MINUTE function... 150
MOD function...151
MONTH function..151
NULLIF function...151
PI function..152
RADIANS function... 152
RANDOM function... 152
RAND function...152
ROW_NUMBER function...152
RTRIM function..153
SECOND function..153
SESSION_USER function... 154
SIGN function.. 154
SIN function... 154
SINH function.. 155
SMALLINT function... 155
SQRT function... 155
SUBSTR function.. 156
SUM function... 157
TAN function..157
TANH function... 157
TIME function.. 158
TIMESTAMP function.. 158
TRIM function.. 159
UCASE or UPPER function...160
USER function... 160
VARCHAR function... 161
XMLEXISTS operator.. 161
XMLPARSE operator...162
XMLQUERY operator.. 163
XMLSERIALIZE operator.. 165
YEAR function... 166

Built-in system functions..166
SYSCS_UTIL.SYSCS_CHECK_TABLE system function..................................166

Version 10.11 Derby Reference Manual

iv

SYSCS_UTIL.SYSCS_GET_DATABASE_PROPERTY system function......... 167
SYSCS_UTIL.SYSCS_GET_RUNTIMESTATISTICS system function............. 168
SYSCS_UTIL.SYSCS_GET_USER_ACCESS system function....................... 168
SYSCS_UTIL.SYSCS_GET_XPLAIN_MODE system function.........................169
SYSCS_UTIL.SYSCS_GET_XPLAIN_SCHEMA system function.................... 169
SYSCS_UTIL.SYSCS_PEEK_AT_IDENTITY system function......................... 169
SYSCS_UTIL.SYSCS_PEEK_AT_SEQUENCE system function..................... 170

Built-in system procedures.. 171
SYSCS_UTIL.SYSCS_BACKUP_DATABASE system procedure.................... 171
SYSCS_UTIL.SYSCS_BACKUP_DATABASE_AND_ENABLE_LOG_ARCHIVE_MODE
system procedure.. 171
SYSCS_UTIL.SYSCS_BACKUP_DATABASE_AND_ENABLE_LOG_ARCHIVE_MODE_NOWAIT
system procedure.. 172
SYSCS_UTIL.SYSCS_BACKUP_DATABASE_NOWAIT system procedure....173
SYSCS_UTIL.SYSCS_CHECKPOINT_DATABASE system procedure........... 174
SYSCS_UTIL.SYSCS_COMPRESS_TABLE system procedure...................... 174
SYSCS_UTIL.SYSCS_CREATE_USER system procedure............................. 176
SYSCS_UTIL.SYSCS_DISABLE_LOG_ARCHIVE_MODE system
procedure...177
SYSCS_UTIL.SYSCS_DROP_STATISTICS system procedure.......................178
SYSCS_UTIL.SYSCS_DROP_USER system procedure..................................178
SYSCS_UTIL.SYSCS_EMPTY_STATEMENT_CACHE system procedure..... 179
SYSCS_UTIL.SYSCS_EXPORT_QUERY system procedure.......................... 180
SYSCS_UTIL.SYSCS_EXPORT_QUERY_LOBS_TO_EXTFILE system
procedure...181
SYSCS_UTIL.SYSCS_EXPORT_TABLE system procedure............................182
SYSCS_UTIL.SYSCS_EXPORT_TABLE_LOBS_TO_EXTFILE system
procedure...184
SYSCS_UTIL.SYSCS_FREEZE_DATABASE system procedure.....................185
SYSCS_UTIL.SYSCS_IMPORT_DATA system procedure.............................. 186
SYSCS_UTIL.SYSCS_IMPORT_DATA_LOBS_FROM_EXTFILE system
procedure...187
SYSCS_UTIL.SYSCS_IMPORT_TABLE system procedure.............................189
SYSCS_UTIL.SYSCS_IMPORT_TABLE_LOBS_FROM_EXTFILE system
procedure...191
SYSCS_UTIL.SYSCS_INPLACE_COMPRESS_TABLE system procedure.....192
SYSCS_UTIL.SYSCS_INVALIDATE_STORED_STATEMENTS system
procedure...194
SYSCS_UTIL.SYSCS_MODIFY_PASSWORD system procedure................... 195
SYSCS_UTIL.SYSCS_REGISTER_TOOL system procedure..........................195
SYSCS_UTIL.SYSCS_RELOAD_SECURITY_POLICY system procedure...... 197
SYSCS_UTIL.SYSCS_RESET_PASSWORD system procedure..................... 197
SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY system procedure...... 198
SYSCS_UTIL.SYSCS_SET_RUNTIMESTATISTICS system procedure.......... 199
SYSCS_UTIL.SYSCS_SET_STATISTICS_TIMING system procedure............199
SYSCS_UTIL.SYSCS_SET_USER_ACCESS system procedure.................... 200
SYSCS_UTIL.SYSCS_SET_XPLAIN_MODE system procedure......................200
SYSCS_UTIL.SYSCS_SET_XPLAIN_SCHEMA system procedure.................201
SYSCS_UTIL.SYSCS_UNFREEZE_DATABASE system procedure................202
SYSCS_UTIL.SYSCS_UPDATE_STATISTICS system procedure...................202
System procedures for storing jar files in a database.......................................203

SYSCS_DIAG diagnostic tables and functions...206
SYSCS_DIAG.CONTAINED_ROLES diagnostic table function........................206
SYSCS_DIAG.ERROR_LOG_READER diagnostic table function....................207
SYSCS_DIAG.ERROR_MESSAGES diagnostic table......................................208
SYSCS_DIAG.LOCK_TABLE diagnostic table... 208

Version 10.11 Derby Reference Manual

v

SYSCS_DIAG.SPACE_TABLE diagnostic table function................................. 210
SYSCS_DIAG.STATEMENT_CACHE diagnostic table.................................... 212
SYSCS_DIAG.STATEMENT_DURATION diagnostic table function.................212
SYSCS_DIAG.TRANSACTION_TABLE diagnostic table..................................213

Data types...215
Built-in type overview.. 215
Numeric types..215
Data type assignments and comparison, sorting, and ordering........................ 217
BIGINT data type.. 221
BLOB data type...222
BOOLEAN data type... 223
CHAR data type.. 224
CHAR FOR BIT DATA data type..224
CLOB data type...225
DATE data type...226
DECIMAL data type...226
DOUBLE data type..227
DOUBLE PRECISION data type...228
FLOAT data type...229
INTEGER data type...229
LONG VARCHAR data type..229
LONG VARCHAR FOR BIT DATA data type... 230
NUMERIC data type..230
REAL data type... 230
SMALLINT data type...231
TIME data type..232
TIMESTAMP data type..232
User-defined types.. 233
VARCHAR data type...233
VARCHAR FOR BIT DATA data type...234
XML data type... 234

Argument matching.. 236

SQL reserved words... 238

Derby support for SQL:2011 features...242
SQL:2011 features not supported by Derby... 255

Derby system tables... 259
SYSALIASES system table... 259
SYSCHECKS system table..260
SYSCOLPERMS system table...260
SYSCOLUMNS system table...261
SYSCONGLOMERATES system table..263
SYSCONSTRAINTS system table... 264
SYSDEPENDS system table..264
SYSFILES system table...265
SYSFOREIGNKEYS system table...266
SYSKEYS system table... 266
SYSPERMS system table.. 267
SYSROLES system table.. 268
SYSROUTINEPERMS system table.. 270
SYSSCHEMAS system table...271
SYSSEQUENCES system table.. 271
SYSSTATEMENTS system table...273
SYSSTATISTICS system table..274
SYSTABLEPERMS system table.. 274

Version 10.11 Derby Reference Manual

vi

SYSTABLES system table.. 276
SYSTRIGGERS system table.. 277
SYSUSERS system table.. 278
SYSVIEWS system table... 279

XPLAIN style tables.. 280
SYSXPLAIN_STATEMENTS system table... 280
SYSXPLAIN_STATEMENT_TIMINGS system table... 282
SYSXPLAIN_RESULTSETS system table.. 284
SYSXPLAIN_RESULTSET_TIMINGS system table..289
SYSXPLAIN_SCAN_PROPS system table... 291
SYSXPLAIN_SORT_PROPS system table... 295

Derby exception messages and SQL states.. 298
SQL error messages and exceptions.. 298

JDBC reference... 346
java.sql.Driver interface...346

java.sql.Driver.getPropertyInfo method... 347
java.sql.DriverManager.getConnection method..347

Derby database connection URL syntax...347
Syntax of database connection URLs for applications with embedded
databases.. 348
Additional SQL syntax...348
Attributes of the Derby database connection URL ...349

java.sql.Connection interface... 349
java.sql.Connection.setTransactionIsolation method.. 350
java.sql.Connection.setReadOnly method...350
java.sql.Connection.isReadOnly method...350
Connection functionality not supported... 351

java.sql.DatabaseMetaData interface... 351
DatabaseMetaData result sets.. 351
Columns in the ResultSets returned by getFunctionColumns and
getProcedureColumns... 351
java.sql.DatabaseMetaData.getBestRowIdentifier method................................352

java.sql.Statement interface..353
ResultSet objects ... 353
Autogenerated keys...354

java.sql.CallableStatement interface..355
CallableStatements and OUT Parameters ...355
CallableStatements and INOUT parameters ..355

java.sql.PreparedStatement interface.. 356
Prepared statements and streaming columns ..357

java.sql.ResultSet interface.. 358
ResultSets and streaming columns ... 359

java.sql.ResultSetMetaData interface.. 359
java.sql.SQLException class.. 360
java.sql.SQLWarning class... 360
java.sql.SQLXML interface.. 360
java.sql.Savepoint interface..361
Mapping of java.sql.Types to SQL types.. 361

Mapping of java.sql.Blob and java.sql.Clob interfaces......................................362
Features supported on JDBC 4.1 and above..364

java.sql.Connection interface: JDBC 4.1 features...364
JDBC 4.2-only features... 364

JDBC support for Java SE 8 Compact Profiles.. 364
java.sql.DatabaseMetaData interface: JDBC 4.2 features................................ 365

Version 10.11 Derby Reference Manual

vii

java.sql.SQLType interface..365
JDBC escape syntax .. 365

JDBC escape keyword for call statements... 366
JDBC escape syntax for LIKE clauses... 366
JDBC escape syntax for limit/offset clauses... 366
JDBC escape syntax for fn keyword...367
JDBC escape syntax for outer joins..373
JDBC escape syntax for time formats.. 374
JDBC escape syntax for date formats.. 374
JDBC escape syntax for timestamp formats...374

Setting attributes for the database connection URL ..376
bootPassword=key attribute...376
collation=collation attribute.. 377
create=true attribute.. 377
createFrom=path attribute.. 378
databaseName=nameOfDatabase attribute... 379
dataEncryption=true attribute...379
decryptDatabase=true attribute..380
deregister=false attribute.. 381
drop=true attribute...382
encryptionKey=key attribute...382
encryptionKeyLength=length attribute.. 383
encryptionProvider=providerName attribute...383
encryptionAlgorithm=algorithm attribute.. 384
failover=true attribute.. 385
logDevice=logDirectoryPath attribute..385
newBootPassword=newPassword attribute..386
newEncryptionKey=key attribute... 386
password=userPassword attribute.. 387
restoreFrom=path attribute...387
retrieveMessageText=false attribute.. 387
rollForwardRecoveryFrom=path attribute... 388
securityMechanism=value attribute... 388
shutdown=true attribute..388
slaveHost=hostname attribute..389
slavePort=portValue attribute...390
ssl=sslMode attribute.. 390
startMaster=true attribute... 390
startSlave=true attribute..391
stopMaster=true attribute..392
stopSlave=true attribute..392
territory=ll_CC attribute...393
traceDirectory=path attribute..394
traceFile=path attribute... 394
traceFileAppend=true attribute...395
traceLevel=value attribute...395
upgrade=true attribute...396
user=userName attribute...397
Creating a connection without specifying attributes... 397

Derby property reference... 398
Scope of Derby properties..398
Dynamic and static properties... 398
Derby properties.. 398

derby.authentication.builtin.algorithm.. 401
derby.authentication.builtin.iterations...402

Version 10.11 Derby Reference Manual

viii

derby.authentication.builtin.saltLength...402
derby.authentication.ldap.searchAuthDN.. 403
derby.authentication.ldap.searchAuthPW..404
derby.authentication.ldap.searchBase...404
derby.authentication.ldap.searchFilter... 405
derby.authentication.native.passwordLifetimeMillis... 405
derby.authentication.native.passwordLifetimeThreshold................................... 406
derby.authentication.provider...407
derby.authentication.server..408
derby.connection.requireAuthentication...409
derby.database.classpath.. 410
derby.database.defaultConnectionMode... 410
derby.database.forceDatabaseLock.. 411
derby.database.fullAccessUsers..412
derby.database.noAutoBoot.. 412
derby.database.propertiesOnly..413
derby.database.readOnlyAccessUsers..413
derby.database.sqlAuthorization..414
derby.infolog.append... 414
derby.jdbc.xaTransactionTimeout..415
derby.language.logQueryPlan... 415
derby.language.logStatementText... 416
derby.language.sequence.preallocator..416
derby.language.statementCacheSize.. 417
derby.locks.deadlockTimeout.. 417
derby.locks.deadlockTrace.. 418
derby.locks.escalationThreshold..418
derby.locks.monitor..419
derby.locks.waitTimeout.. 419
derby.replication.logBufferSize.. 420
derby.replication.maxLogShippingInterval... 421
derby.replication.minLogShippingInterval.. 421
derby.replication.verbose...421
derby.storage.indexStats.auto... 422
derby.storage.indexStats.log... 422
derby.storage.indexStats.trace.. 423
derby.storage.initialPages..424
derby.storage.minimumRecordSize...424
derby.storage.pageCacheSize...425
derby.storage.pageReservedSpace.. 426
derby.storage.pageSize... 426
derby.storage.rowLocking..427
derby.storage.tempDirectory..428
derby.storage.useDefaultFilePermissions... 428
derby.stream.error.extendedDiagSeverityLevel...430
derby.stream.error.field..431
derby.stream.error.file..431
derby.stream.error.logBootTrace... 431
derby.stream.error.logSeverityLevel.. 432
derby.stream.error.method.. 433
derby.stream.error.rollingFile.count... 433
derby.stream.error.rollingFile.limit..434
derby.stream.error.rollingFile.pattern...434
derby.stream.error.style... 436
derby.system.bootAll..436
derby.system.durability.. 437

Version 10.11 Derby Reference Manual

ix

derby.system.home..438
derby.user.UserName..438
DataDictionaryVersion... 439

Java EE compliance: Java Transaction API and javax.sql interfaces......................... 440
The JTA API... 441

Recovered global transactions.. 441
XAConnections, user names and passwords... 441
XA transactions and deferred constraints... 441

javax.sql: JDBC interfaces..442

Derby API... 443
Stand-alone tools and utilities... 443
JDBC implementation classes..443

JDBC drivers... 443
DataSource classes...443

Miscellaneous utilities and interfaces... 444

Supported locales... 445

Derby limitations... 446
Limitations for database values...446
DATE, TIME, and TIMESTAMP limitations...446
Limitations on identifier length ...447
Numeric limitations..447
String limitations..448
XML limitations...448

Trademarks.. 450

Derby Reference Manual

10

Apache Software FoundationDerby Reference ManualApache Derby

Derby Reference Manual

11

Copyright

Copyright 2004-2014 The Apache Software Foundation

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this
file except in compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0.

Related information

License

http://www.apache.org/licenses/LICENSE-2.0

Derby Reference Manual

12

License

The Apache License, Version 2.0

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use,
 reproduction, and distribution as defined by Sections 1 through
 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized
 by the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under
 common control with that entity. For the purposes of this
 definition, "control" means (i) the power, direct or indirect,
 to cause the direction or management of such entity, whether by
 contract or otherwise, or (ii) ownership of fifty percent (50%)
 or more of the outstanding shares, or (iii) beneficial ownership
 of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making
 modifications, including but not limited to software source code,
 documentation source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or
 Object form, that is based on (or derived from) the Work and
 for which the editorial revisions, annotations, elaborations,
 or other modifications represent, as a whole, an original work
 of authorship. For the purposes of this License, Derivative
 Works shall not include works that remain separable from, or
 merely link (or bind by name) to the interfaces of, the Work
 and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or
 additions to that Work or Derivative Works thereof, that is
 intentionally submitted to Licensor for inclusion in the Work
 by the copyright owner or by an individual or Legal Entity
 authorized to submit on behalf of the copyright owner. For the
 purposes of this definition,
 "submitted" means any form of electronic, verbal, or written
 communication sent to the Licensor or its representatives,
 including but not limited to communication on electronic mailing
 lists, source code control systems, and issue tracking systems

Derby Reference Manual

13

 that are managed by, or on behalf of, the Licensor for the
 purpose of discussing and improving the Work, but excluding
 communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a
 Contribution."

 "Contributor" shall mean Licensor and any individual or Legal
 Entity on behalf of whom a Contribution has been received by
 Licensor and subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions
 of this License, each Contributor hereby grants to You a
 perpetual, worldwide, non-exclusive, no-charge, royalty-free,
 irrevocable copyright license to reproduce, prepare Derivative
 Works of, publicly display, publicly perform, sublicense, and
 distribute the Work and such Derivative Works in Source or
 Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have
 made, use, offer to sell, sell, import, and otherwise transfer
 the Work, where such license applies only to those patent claims
 licensable by such Contributor that are necessarily infringed by
 their Contribution(s) alone or by combination of their
 Contribution(s) with the Work to which such Contribution(s) was
 submitted. If You institute patent litigation against any entity
 (including a cross-claim or counterclaim in a lawsuit) alleging
 that the Work or a Contribution incorporated within the Work
 constitutes direct or contributory patent infringement, then any
 patent licenses granted to You under this License for that Work
 shall terminate as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute
 must include a readable copy of the attribution notices
 contained within such NOTICE file, excluding those notices
 that do not pertain to any part of the Derivative Works, in
 at least one of the following places: within a NOTICE text
 file distributed as part of the Derivative Works; within the
 Source form or documentation, if provided along with the
 Derivative Works; or, within a display generated by the
 Derivative Works, if and wherever such third-party notices
 normally appear. The contents of the NOTICE file are for
 informational purposes only and do not modify the License.
 You may add Your own attribution notices within Derivative
 Works that You distribute, alongside or as an addendum to
 the NOTICE text from the Work, provided that such additional
 attribution notices cannot be construed as modifying the
 License.

 You may add Your own copyright statement to Your modifications

Derby Reference Manual

14

 and may provide additional or different license terms and
 conditions for use, reproduction, or distribution of Your
 modifications, or for any such Derivative Works as a whole,
 provided Your use, reproduction, and distribution of the Work
 otherwise complies with the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state
 otherwise, any Contribution intentionally submitted for
 inclusion in the Work by You to the Licensor shall be under the
 terms and conditions of this License, without any additional
 terms or conditions. Notwithstanding the above, nothing herein
 shall supersede or modify the terms of any separate license
 agreement you may have executed with Licensor regarding such
 Contributions.

 6. Trademarks. This License does not grant permission to use the
 trade names, trademarks, service marks, or product names of the
 Licensor, except as required for reasonable and customary use
 in describing the origin of the Work and reproducing the content
 of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or
 conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or
 FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for
 determining the appropriateness of using or redistributing the
 Work and assume any risks associated with Your exercise of
 permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and
 grossly negligent acts) or agreed to in writing, shall any
 Contributor be liable to You for damages, including any direct,
 indirect, special, incidental, or consequential damages of any
 character arising as a result of this License or out of the use
 or inability to use the Work (including but not limited to
 damages for loss of goodwill, work stoppage, computer failure or
 malfunction, or any and all other commercial damages or losses),
 even if such Contributor has been advised of the possibility of
 such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by
 reason of your accepting any such warranty or additional
 liability.

 END OF TERMS AND CONDITIONS

 APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following
 boilerplate notice, with the fields enclosed by brackets "[]"
 replaced with your own identifying information. (Don't include
 the brackets!) The text should be enclosed in the appropriate
 comment syntax for the file format. We also recommend that a
 file or class name and description of purpose be included on the
 same "printed page" as the copyright notice for easier
 identification within third-party archives.

Derby Reference Manual

15

 Copyright [yyyy] [name of copyright owner]

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied. See the License for the specific language governing
 permissions and limitations under the License.

Derby Reference Manual

16

About this guide

For general information about the Derby documentation, such as a complete list of books,
conventions, and further reading, see Getting Started with Derby.

For more information about Derby, visit the Derby website at http://db.apache.org/derby.
The website provides pointers to the Derby Wiki and other resources, such as the
derby-users mailing list, where you can ask questions about issues not covered in the
documentation.

Purpose of this document
This document, the Derby Reference Manual, provides reference information about
Derby.

It covers Derby's SQL language, the Derby implementation of JDBC, Derby system
catalogs, Derby error messages, Derby properties, and SQL keywords.

Audience
This document is a reference for Derby users, typically application developers.

Derby users who are not familiar with the SQL standard or the Java programming
language will benefit from consulting documentation on those topics.

Derby users who want a how-to approach to working with Derby or an introduction to
Derby concepts should read the Derby Developer's Guide.

How this guide is organized
This guide includes the following sections.

• SQL language reference

Reference information about Derby's SQL language, including manual pages for
statements, functions, and other syntax elements.

• Argument matching

Information about argument matching in Java functions and procedures.
• SQL reserved words

SQL keywords beyond the standard keywords.
• Derby support for SQL:2011 features

Lists of SQL:2011 features that Derby does and does not support.
• Derby system tables

Reference information about the Derby system catalogs.
• XPLAIN style tables

Information about the optional XPLAIN style system tables.
• Derby exception messages and SQL states

Information about Derby exception messages.
• JDBC reference

Information about Derby's implementation of the Java Database Connectivity
(JDBC) API.

• Setting attributes for the database connection URL

http://db.apache.org/derby/

Derby Reference Manual

17

Information about the supported attributes to Derby's JDBC database connection
URL.

• Derby property reference

Information about Derby properties.
• Java EE compliance: Java Transaction API and javax.sql interfaces

Information about Derby's support for the Java EE platform, in particular support for
the Java Transaction API and the JDBC API.

• Derby API

Notes about proprietary APIs for Derby.
• Supported locales

Locales supported by Derby.
• Derby limitations

Limitations of Derby.

SQL syntax used in this manual
SQL syntax is presented in modified BNF notation.

The meta-symbols of BNF are listed in the following table.

Table 1. BNF meta-symbols

Symbol Meaning

| Or. Choose one of the items.

[] Encloses optional items.

* Flags items that you can repeat 0 or more times. Has a
special meaning in some SQL statements.

{ } Groups required items so that they can be marked with the
symbol |. Has a special meaning in JDBC escape syntax
(see JDBC escape syntax).

() . , Other punctuation that is part of the syntax.

The following example shows how SQL syntax is presented:

CREATE [UNIQUE] INDEX indexName
 ON tableName (simpleColumnName [, simpleColumnName]*)

Derby Reference Manual

18

SQL language reference

Derby implements a subset of the SQL standard.

This section provides an overview of the current SQL language by describing the
statements, built-in functions, data types, expressions, and special characters it contains.

Capitalization and special characters
Using the classes and methods of JDBC, you submit SQL statements to Derby as
strings. The character set permitted for strings containing SQL statements is Unicode.

Within these strings, the following rules apply:
• Double quotation marks delimit special identifiers referred to in SQL as delimited

identifiers.
• Single quotation marks delimit character strings.
• Within a character string, to represent a single quotation mark or apostrophe, use

two single quotation marks. (In other words, a single quotation mark is the escape
character for a single quotation mark.)

A double quotation mark does not need an escape character. To represent a double
quotation mark, simply use a double quotation mark. However, note that in a Java
program, a double quotation mark requires the backslash escape character.

Example:

-- a single quotation mark is the escape character
-- for a single quotation mark

VALUES 'Joe''s umbrella'
-- in ij, you don't need to escape the double quotation marks
VALUES 'He said, "hello!"'

n = stmt.executeUpdate(
 "UPDATE aTable setStringcol = 'He said, \"hello!\"'");

• SQL keywords are case-insensitive. For example, you can type the keyword
SELECT as SELECT, Select, select, or sELECT.

• SQL-style identifiers are case-insensitive (see SQLIdentifier), unless they are
delimited.

• Java-style identifiers are always case-sensitive.
• * is a wildcard within a selectExpression. See The * wildcard. It can also be the

multiplication operator. In all other cases, it is a syntactical metasymbol that flags
items you can repeat 0 or more times.

• % and _ are character wildcards when used within character strings following a
LIKE operator (except when escaped with an escape character). See Boolean
expressions.

• Comments can be either single-line or multiline as per the SQL standard. Single-line
comments start with two dashes (--) and end with the newline character. Multiline
comments are bracketed, start with forward slash star (/*), and end with star forward
slash (*/). Note that bracketed comments may be nested. Any text between the
starting and ending comment character sequence is ignored.

SQL identifiers
An identifier is the representation within the language of items created by the user, as
opposed to language keywords or commands.

Derby Reference Manual

19

Some identifiers stand for dictionary objects, which are the objects you create -- such as
tables, views, indexes, columns, and constraints -- that are stored in a database. They
are called dictionary objects because Derby stores information about them in the system
tables, sometimes known as a data dictionary. SQL also defines ways to alias these
objects within certain statements.

Each kind of identifier must conform to a different set of rules. Identifiers representing
dictionary objects must conform to SQL identifier rules and are thus called SQLIdentifiers.

Rules for SQL identifiers

Ordinary identifiers are identifiers not surrounded by double quotation marks. Delimited
identifiers are identifiers surrounded by double quotation marks.

An ordinary identifier must begin with a letter and contain only letters, underscore
characters (_), and digits. The permitted letters and digits include all Unicode letters and
digits, but Derby does not attempt to ensure that the characters in identifiers are valid in
the database's locale.

A delimited identifier can contain any characters within the double quotation marks.
The enclosing double quotation marks are not part of the identifier; they serve only to
mark its beginning and end. Spaces at the end of a delimited identifier are insignificant
(truncated). Derby translates two consecutive double quotation marks within a delimited
identifier as one double quotation mark-that is, the "translated" double quotation mark
becomes a character in the delimited identifier.

Periods within delimited identifiers are not separators but are part of the identifier (the
name of the dictionary object being represented).

So, in the following example:

"A.B"

is a dictionary object, while

"A"."B"

is a dictionary object qualified by another dictionary object (such as a column named "B"
within the table "A").

SQLIdentifier

An SQLIdentifier is a dictionary object identifier that conforms to the rules of SQL.
SQL states that identifiers for dictionary objects are limited to 128 characters and are
case-insensitive (unless delimited by double quotes), because they are automatically
translated into uppercase by the system. You cannot use reserved words as identifiers
for dictionary objects unless they are delimited. If you attempt to use a name longer than
128 characters, SQLException X0X11 is raised.

Derby defines keywords beyond those specified by the SQL standard (see SQL reserved
words).

Example

-- the view name is stored in the
-- system catalogs as ANIDENTIFIER
CREATE VIEW AnIdentifier (RECEIVED) AS VALUES 1
-- the view name is stored in the system
-- catalogs with case intact
CREATE VIEW "ACaseSensitiveIdentifier" (RECEIVED) AS VALUES 1

Derby Reference Manual

20

This section describes the rules for using SQLIdentifiers to represent the following
dictionary objects.

Qualifying dictionary objects

Since some dictionary objects can be contained within other objects, you can qualify
those dictionary object names. Each component is separated from the next by a period.
An SQLIdentifier is "dot-separated." You qualify a dictionary object name in order to avoid
ambiguity.

aggregateName

An aggregateName represents a user-defined aggregate (UDA). To create a UDA, use
the CREATE DERBY AGGREGATE statement.

Syntax

[schemaName.] SQLIdentifier

You can qualify an aggregate name with a schemaName. If a qualified aggregate name
is specified, the schema name cannot begin with SYS.

Example

-- types.maxPrice is an aggregateName that includes a schemaName
CREATE DERBY AGGREGATE types.maxPrice FOR PRICE
EXTERNAL NAME 'com.example.myapp.types.PriceMaxer';

authorizationIdentifier

User names within the Derby system are known as authorization identifiers. The
authorization identifier represents the name of the user, if one has been provided in the
connection request. The default schema for a user is equal to its authorization identifier.
User names can be case-sensitive within the authentication system, but they are always
case-insensitive within Derby's authorization system unless they are delimited. For more
information, see "Users and authorization identifiers" in the Derby Security Guide.

Syntax

SQLIdentifier

Example

CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.database.fullAccessUsers', 'Amber,FRED')

columnName

In many places in the SQL syntax, you can represent the name of a column by qualifying
it with a tableName or correlationName.

In some situations, you cannot qualify a columnName with a tableName or a
correlationName, but must use a simpleColumnName instead. Those situations are:

• Creating a table (CREATE TABLE statement)
• Specifying updatable columns in a cursor
• In a column's correlation name in a SELECT expression (see selectExpression)
• In a column's correlation name in a tableExpression (see tableExpression)

You cannot use correlationNames for updatable columns; using correlationNames in this
way will cause an SQL exception. For example:

Derby Reference Manual

21

SELECT c11 AS col1, c12 AS col2, c13 FROM t1 FOR UPDATE of c11,c13

In this example, the correlationNamecol1 FOR c11 is not permitted because c11 is
listed in the FOR UPDATE list of columns. You can use the correlationNameFOR c12
because it is not in the FOR UPDATE list.

Syntax

[{ tableName | correlationName } .] SQLIdentifier

Example

-- C.Country is a columnName qualified with a correlationName.
SELECT C.Country
FROM APP.Countries C

constraintName

A constraintName represents a constraint (see CONSTRAINT clause).

Syntax

[schemaName.] SQLIdentifier

You can qualify a constraintName with a schemaName, but the schemaName of the
constraint must be the same as the schemaName of the table on which the constraint is
placed.

Example

-- country_fk2 is a constraint name
CREATE TABLE DETAILED_MAPS (COUNTRY_ISO_CODE CHAR(2)
CONSTRAINT country_fk2 REFERENCES COUNTRIES)

-- s1.c1 is a schema-qualified constraint; the schema name
-- is not required here, but if specified must match that of the table
CREATE SCHEMA s1;
CREATE TABLE s1.t1 (a INT, CONSTRAINT s1.c1 CHECK (a > 0));

correlationName

A correlationName is given to a table expression in a FROM clause as a new name or
alias for that table. You cannot qualify a correlationName with a schemaName.

You cannot use correlationNames for updatable columns; using correlationNames in this
way will cause an SQL exception. For example:

SELECT c11 AS col1, c12 AS col2, c13 FROM t1 FOR UPDATE of c11,c13

In this example, the correlationNamecol1 FOR c11 is not permitted because c11 is
listed in the FOR UPDATE list of columns. You can use the correlationNameFOR c12
because it is not in the FOR UPDATE list.

Syntax

SQLIdentifier

Example

-- C is a correlationName
SELECT C.NAME
FROM SAMP.STAFF C

Derby Reference Manual

22

cursorName

A cursorName refers to a cursor. No SQL language command exists to assign a name
to a cursor. Instead, you use the JDBC API to assign names to cursors or to retrieve
system-generated names. For more information, see the Derby Developer's Guide. If you
assign a name to a cursor, you can refer to that name from within SQL statements.

You cannot qualify a cursorName.

Syntax

SQLIdentifier

Example

stmt.executeUpdate("UPDATE SAMP.STAFF SET COMM = " +
"COMM + 20 " + "WHERE CURRENT OF " + ResultSet.getCursorName());

functionName

A functionName represents a Java function. To create a function, use the CREATE
FUNCTION statement.

Syntax

[schemaName.] SQLIdentifier

You can qualify a function name with a schemaName. If a qualified function name is
specified, the schema name cannot begin with SYS.

Example

-- Declaring a scalar function
CREATE FUNCTION TO_DEGREES
(RADIANS DOUBLE)
RETURNS DOUBLE
PARAMETER STYLE JAVA
NO SQL LANGUAGE JAVA
EXTERNAL NAME 'java.lang.Math.toDegrees';

indexName

An indexName represents an index. To create an index, use the CREATE INDEX
statement.

Syntax

[schemaName .] SQLIdentifier

You can qualify an index name with a schemaName. If a qualified index name is
specified, the schema name cannot begin with SYS.

Example

DROP INDEX APP.ORIGINDEX;
-- OrigIndex is an indexName without a schemaName
CREATE INDEX ORIGINDEX ON FLIGHTS (ORIG_AIRPORT)

newTableName

A newTableName represents a renamed table (see RENAME TABLE statement). You
cannot qualify a newTableName with a schemaName.

Derby Reference Manual

23

Syntax

SQLIdentifier

Example

-- FLIGHTAVAILABLE is a newTableName
RENAME TABLE FLIGHTAVAILABILITY TO FLIGHTAVAILABLE

procedureName

A procedureName represents a Java stored procedure. To create a procedure, use the
CREATE PROCEDURE statement.

Syntax

[schemaName.] SQLIdentifier

You can qualify a procedure name with a schemaName. If a qualified procedure name is
specified, the schema name cannot begin with SYS.

Example

-- SALES.TOTAL_REVENUE is a procedureName that includes a schemaName
CREATE PROCEDURE SALES.TOTAL_REVENUE(IN S_MONTH INTEGER,
 IN S_YEAR INTEGER,
 OUT TOTAL DECIMAL(10,2))
PARAMETER STYLE JAVA READS SQL DATA LANGUAGE JAVA EXTERNAL NAME
'com.example.sales.calculateRevenueByMonth'

roleName

A roleName refers to an SQL role. A role in a database is uniquely identified by its role
name.

Syntax

SQLIdentifier

In terms of SQL, a role name is also technically an authorizationIdentifier, but that term is
often used for user names in Derby for historical reasons.

Example

DROP ROLE reader

schemaName

A schemaName represents a schema. Schemas contain other dictionary objects, such
as tables and indexes. Schemas provide a way to name a subset of tables and other
dictionary objects within a database.

You can explicitly create or drop a schema. The default user schema is the APP schema
(if no user name is specified at connection time). You cannot create objects in schemas
starting with SYS.

Thus, you can qualify references to tables with the schema name. When a schemaName
is not specified, the default schema name is implicitly inserted. System tables are placed
in the SYS schema. You must qualify all references to system tables with the SYS
schema identifier. For more information about system tables, see Derby system tables.

Derby Reference Manual

24

A schema is hierarchically the highest level of dictionary object, so you cannot qualify a
schemaName.

Syntax

SQLIdentifier

Example

-- SAMP.EMPLOYEE is a tableName qualified by a schemaName
SELECT COUNT(*) FROM SAMP.EMPLOYEE
-- You must qualify system table names with their schema, SYS
SELECT COUNT(*) FROM SYS.SysColumns

sequenceName

A sequenceName represents a sequence generator. To create a sequence generator,
use the CREATE SEQUENCE statement.

Syntax

[schemaName.] SQLIdentifier

You can qualify a sequence name with a schemaName. If a qualified sequence name is
specified, the schema name cannot begin with SYS.

Example

DROP SEQUENCE order_id RESTRICT

simpleColumnName

A simpleColumnName is used to represent a column when it cannot be qualified by a
tableName orbcorrelationName. This is the case when the qualification is fixed, as it is in
a column definition within a CREATE TABLE statement.

Syntax

SQLIdentifier

Example

-- country is a simpleColumnName
CREATE TABLE CONTINENT (COUNTRY VARCHAR(26) NOT NULL PRIMARY KEY,
COUNTRY_ISO_CODE CHAR(2), REGION VARCHAR(26))

synonymName

A synonymName represents a synonym for a table or a view. To create a synonym, use
the CREATE SYNONYM statement.

Syntax

[schemaName.] SQLIdentifier

You can qualify a synonym name with a schemaName. If a qualified synonym name is
specified, the schema name cannot begin with SYS.

tableName

A tableName represents a table. To create a table, use the CREATE TABLE statement.

Derby Reference Manual

25

Syntax

[schemaName.] SQLIdentifier

You can qualify a table name with a schemaName. If a qualified table name is specified,
the schema name cannot begin with SYS.

Example

-- SAMP.PROJECT is a tableName that includes a schemaName
SELECT COUNT(*) FROM SAMP.PROJECT

triggerName

A triggerName refers to a trigger created by a user. To create a trigger, use the CREATE
TRIGGER statement.

Syntax

[schemaName .] SQLIdentifier

You can qualify a trigger name with a schemaName. If a qualified trigger name is
specified, the schema name cannot begin with SYS.

Example

DROP TRIGGER TRIG1

typeName

A typeName represents a user-defined type (UDT). To create a UDT, use the CREATE
TYPE statement.

Syntax

[schemaName.] SQLIdentifier

You can qualify a type name with a schemaName. If a qualified type name is specified,
the schema name cannot begin with SYS.

Example

CREATE TYPE price
EXTERNAL NAME 'com.example.types.Price'
LANGUAGE JAVA

viewName

A viewName represents a table or a view. To create a view, use the CREATE VIEW
statement.

Syntax

[schemaName.] SQLIdentifier

You can qualify a view name with a schemaName. If a qualified view name is specified,
the schema name cannot begin with SYS.

Example

-- This is a view qualified by a schemaName
SELECT COUNT(*) FROM SAMP.EMP_RESUME

Derby Reference Manual

26

Statements
This section provides manual pages for both high-level language constructs and parts
thereof. For example, the CREATE INDEX statement is a high-level statement that you
can execute directly via the JDBC interface. This section also includes clauses, which
are not high-level statements and which you cannot execute directly but only as part
of a high-level statement. The ORDER BY and WHERE clauses are examples of this
kind of clause. Finally, this section also includes some syntactically complex portions of
statements called expressions, for example selectExpression and tableSubquery. These
clauses and expressions receive their own manual pages for ease of reference.

Unless it is explicitly stated otherwise, you can execute or prepare and then execute
all the high-level statements, which are all marked with the word statement, via the
interfaces provided by JDBC. This manual indicates whether an expression can be
executed as a high-level statement.

The sections provide general information about statement use, and descriptions of the
specific statements.

Interaction with the dependency system

Derby internally tracks the dependencies of prepared statements, which are SQL
statements that are precompiled before being executed. Typically they are prepared
(precompiled) once and executed multiple times.

Prepared statements depend on the dictionary objects and statements they reference.
(Dictionary objects include tables, columns, constraints, indexes, views, and triggers.)
Removing or modifying the dictionary objects or statements on which they depend
invalidates them internally, which means that Derby will automatically try to recompile
the statement when you execute it. If the statement fails to recompile, the execution
request fails. However, if you take some action to restore the broken dependency (such
as restoring the missing table), you can execute the same prepared statement, because
Derby will recompile it automatically at the next execute request.

Statements depend on one another-an UPDATE WHERE CURRENT statement depends
on the statement it references. Removing the statement on which it depends invalidates
the UPDATE WHERE CURRENT statement.

In addition, prepared statements prevent execution of certain DDL statements if there are
open results sets on them.

Manual pages for each statement detail what actions would invalidate that statement, if
prepared.

Here is an example using the Derby tool ij:

ij> CREATE TABLE mytable (mycol INT);
0 rows inserted/updated/deleted
ij> INSERT INTO mytable VALUES (1), (2), (3);
3 rows inserted/updated/deleted
-- this example uses the ij command prepare,
-- which prepares a statement
ij> prepare p1 AS 'INSERT INTO MyTable VALUES (4)';
-- p1 depends on mytable;
ij> execute p1;
1 row inserted/updated/deleted
-- Derby executes it without recompiling
ij> CREATE INDEX i1 ON mytable(mycol);
0 rows inserted/updated/deleted
-- p1 is temporarily invalidated because of new index
ij> execute p1;

Derby Reference Manual

27

1 row inserted/updated/deleted
-- Derby automatically recompiles p1 and executes it
ij> DROP TABLE mytable;
0 rows inserted/updated/deleted
-- Derby permits you to drop table
-- because result set of p1 is closed
-- however, the statement p1 is temporarily invalidated
ij> CREATE TABLE mytable (mycol INT);
0 rows inserted/updated/deleted
ij> INSERT INTO mytable VALUES (1), (2), (3);
3 rows inserted/updated/deleted
ij> execute p1;
1 row inserted/updated/deleted
-- Because p1 is invalid, Derby tries to recompile it
-- before executing.
-- It is successful and executes.
ij> DROP TABLE mytable;
0 rows inserted/updated/deleted
-- statement p1 is now invalid,
-- and this time the attempt to recompile it
-- upon execution will fail
ij> execute p1;
ERROR 42X05: Table/View 'MYTABLE' does not exist.

ALTER TABLE statement

The ALTER TABLE statement modifies a table.

The ALTER TABLE statement allows you to:
• Add a column to a table
• Add a constraint to a table
• Drop a column from a table
• Drop an existing constraint from a table
• Increase the width of a BLOB, CLOB, VARCHAR, or VARCHAR FOR BIT DATA

column
• Override row-level locking for the table (or drop the override)
• Change the increment value and start value of the identity column
• Change the nullability constraint for a column
• Change the default value for a column

Syntax

ALTER TABLE tableName
{
 ADD COLUMN columnDefinition |
 ADD CONSTRAINT clause |
 DROP [COLUMN] columnName [CASCADE | RESTRICT] |
 DROP { PRIMARY KEY |
 FOREIGN KEY constraintName |
 UNIQUE constraintName |
 CHECK constraintName |
 CONSTRAINT constraintName } |
 ALTER [COLUMN] columnAlteration |
 LOCKSIZE { ROW | TABLE }
}

columnDefinition

simpleColumnName [dataType]
[columnLevelConstraint]*
[[WITH] DEFAULT defaultConstantExpression
 | generationClause
]

The syntax for the columnDefinition for a new column is a subset of the syntax for a
column in a CREATE TABLE statement.

Derby Reference Manual

28

The syntax of DataType is described in Data types. The DataType can be omitted only
if you specify a generationClause. If you omit the DataType, the type of the generated
column is the type of the generationClause. If you specify both a DataType and a
generationClause, the type of the generationClause must be assignable to DataType.

For details on defaultConstantExpression, see Column default.

columnAlteration

columnName SET DATA TYPE BLOB(integer
)
 |
columnName SET DATA TYPE CLOB(integer
)
 |
columnName SET DATA TYPE VARCHAR(integer
)
 |
columnName SET DATA TYPE VARCHAR(integer
) FOR BIT DATA
 |
columnName SET INCREMENT BY integerConstant |
columnName RESTART WITH integerConstant |
columnName { SET | DROP } NOT NULL
 |
columnName [NOT] NULL
 |
columnName [WITH | SET] DEFAULT defaultValue |
columnName DROP DEFAULT

In the columnAlteration, SET INCREMENT BY integerConstant specifies the interval
between consecutive values of the identity column. The next value to be generated for
the identity column will be determined from the last assigned value with the increment
applied. The column must already be defined with the IDENTITY attribute.

RESTART WITH integerConstant specifies the next value to be generated for the
identity column. RESTART WITH is useful for a table that has an identity column that
was defined as GENERATED BY DEFAULT and that has a unique key defined on that
identity column. Because GENERATED BY DEFAULT allows both manual inserts and
system generated values, it is possible that manually inserted values can conflict with
system generated values. To work around such conflicts, use the RESTART WITH
syntax to specify the next value that will be generated for the identity column. Consider
the following example, which involves a combination of automatically generated data and
manually inserted data:

CREATE TABLE tauto(i INT GENERATED BY DEFAULT AS IDENTITY, k INT)
CREATE UNIQUE INDEX tautoInd ON tauto(i)
INSERT INTO tauto(k) values 1,2

The system will automatically generate values for the identity column. But now you need
to manually insert some data into the identity column:

INSERT INTO tauto VALUES (3,3)
INSERT INTO tauto VALUES (4,4)
INSERT INTO tauto VALUES (5,5)

The identity column has used values 1 through 5 at this point. If you now want the
system to generate a value, the system will generate a 3, which will result in a unique
key exception because the value 3 has already been manually inserted. To compensate
for the manual inserts, issue an ALTER TABLE statement for the identity column with
RESTART WITH 6:

ALTER TABLE tauto ALTER COLUMN i RESTART WITH 6

Derby Reference Manual

29

ALTER TABLE does not affect any view that references the table being altered. This
includes views that have an "*" in their SELECT list. You must drop and re-create those
views if you wish them to return the new columns.

Derby raises an error if you try to change the DataType of a generated column to a type
which is not assignable from the type of the generationClause. Derby also raises an error
if you try to add a DEFAULT clause to a generated column.

Adding columns

The syntax for the columnDefinition for a new column is almost the same as for a column
in a CREATE TABLE statement. This syntax allows a column constraint to be placed on
the new column within the ALTER TABLE ADD COLUMN statement. However, a column
with a NOT NULL constraint can be added to an existing table if you give a default value;
otherwise, an exception is thrown when the ALTER TABLE statement is executed.

Just as in CREATE TABLE, if the column definition includes a primary key constraint,
the column cannot contain null values, so the NOT NULL attribute must also be specified
(SQLSTATE 42831).

Note: If a table has an UPDATE trigger without an explicit column list, adding a column
to that table in effect adds that column to the implicit update column list upon which the
trigger is defined, and all references to transition variables are invalidated so that they
pick up the new column.

If you add a generated column to a table, Derby computes the generated values for all
existing rows in the table.

ALTER TABLE ADD COLUMN adds the new column at the end of the table row. If you
need to change a column in a way not permitted by ALTER TABLE ALTER COLUMN (for
example, if you need to change its data type), the only way to do so is to drop the column
and add a new one, and this changes the ordering of the columns.

Adding constraints
ALTER TABLE ADD CONSTRAINT adds a table-level constraint to an existing table.
Any supported table-level constraint type can be added via ALTER TABLE. The following
limitations exist on adding a constraint to an existing table:

• When adding a foreign key or check constraint to an existing table, Derby checks
the table to make sure existing rows satisfy the constraint. If any row is invalid,
Derby throws a statement exception and the constraint is not added.

• All columns included in a primary key must contain non null data and be unique.

ALTER TABLE ADD UNIQUE or PRIMARY KEY provide a shorthand method of
defining a primary key composed of a single column. If PRIMARY KEY is specified
in the definition of column C, the effect is the same as if the PRIMARY KEY(C)
clause were specified as a separate clause. The column cannot contain null values,
so the NOT NULL attribute must also be specified.

For information on the syntax of constraints, see CONSTRAINT clause. Use the
syntax for table-level constraint when adding a constraint with the ADD TABLE ADD
CONSTRAINT syntax.

Dropping columns

ALTER TABLE DROP COLUMN allows you to drop a column from a table.

The keyword COLUMN is optional.

The keywords CASCADE and RESTRICT are also optional. If you specify neither
CASCADE nor RESTRICT, the default is CASCADE.

If you specify RESTRICT, then the column drop will be rejected if it would cause a
dependent schema object to become invalid.

Derby Reference Manual

30

If you specify CASCADE, then the column drop should additionally drop other schema
objects which have become invalid.

The schema objects which can cause a DROP COLUMN RESTRICT to be rejected
include: views, triggers, primary key constraints, foreign key constraints, unique key
constraints, check constraints, and column privileges. If one of these types of objects
depends on the column being dropped, DROP COLUMN RESTRICT will reject the
statement.

Derby also raises an error if you specify RESTRICT when you drop a column referenced
by the generationClause of a generated column. However, if you specify CASCADE, the
generated column is also dropped with CASCADE semantics.

You may not drop the last (only) column in a table.

CASCADE/RESTRICT doesn't consider whether the column being dropped is used in
any indexes. When a column is dropped, it is removed from any indexes which contain it.
If that column was the only column in the index, the entire index is dropped.

Dropping constraints

ALTER TABLE DROP CONSTRAINT drops a constraint on an existing table. To drop
an unnamed constraint, you must specify the generated constraint name stored in
SYS.SYSCONSTRAINTS as a delimited identifier.

Dropping a primary key, unique, or foreign key constraint drops the physical index that
enforces the constraint (also known as a backing index).

Modifying columns
The columnAlteration allows you to alter the named column in the following ways:

• Increasing the width of an existing VARCHAR or VARCHAR FOR BIT DATA
column. CHARACTER VARYING or CHAR VARYING can be used as synonyms for
the VARCHAR keyword.

To increase the width of a column of these types, specify the data type and new
size after the column name.

You are not allowed to decrease the width or to change the data type. You are not
allowed to increase the width of a column that is part of a primary or unique key
referenced by a foreign key constraint or that is part of a foreign key constraint.

• Specifying the interval between consecutive values of the identity column.

To set an interval between consecutive values of the identity column, specify
the integerConstant. You must previously define the column with the IDENTITY
attribute (SQLSTATE 42837). If there are existing rows in the table, the values in
the column for which the SET INCREMENT default was added do not change.

• Modifying the nullability constraint of a column.

You can add the NOT NULL constraint to an existing column. To do so there must
not be existing NULL values for the column in the table.

You can remove the NOT NULL constraint from an existing column. To do so the
column must not be used in a PRIMARY KEY constraint.

• Changing the default value for a column.

You can use DEFAULT default-value to change a column default. To disable a
previously set default, use DROP DEFAULT (alternatively, you can specify NULL as
the default-value).

Setting defaults

You can specify a default value for a new column. A default value is the value that is
inserted into a column if no other value is specified. If not explicitly specified, the default

Derby Reference Manual

31

value of a column is NULL. If you add a default to a new column, existing rows in the
table gain the default value in the new column.

For more information about defaults, see CREATE TABLE statement.

Changing the lock granularity for the table

The LOCKSIZE clause allows you to override row-level locking for the specific table,
if your system uses the default setting of row-level locking. (If your system is set for
table-level locking, you cannot change the locking granularity to row-level locking,
although Derby allows you to use the LOCKSIZE clause in such a situation without
throwing an exception.) To override row-level locking for the specific table, set locking
for the table to TABLE. If you created the table with table-level locking granularity, you
can change locking back to ROW with the LOCKSIZE clause in the ALTER TABLE
STATEMENT. For information about why this is sometimes useful, see Tuning Derby.

Examples

-- Add a new column with a column-level constraint
-- to an existing table
-- An exception will be thrown if the table
-- contains any rows
-- since the newcol will be initialized to NULL
-- in all existing rows in the table
ALTER TABLE CITIES ADD COLUMN REGION VARCHAR(26)
CONSTRAINT NEW_CONSTRAINT CHECK (REGION IS NOT NULL);

-- Add a new unique constraint to an existing table
-- An exception will be thrown if duplicate keys are found
ALTER TABLE SAMP.DEPARTMENT
ADD CONSTRAINT NEW_UNIQUE UNIQUE (DEPTNO);

-- add a new foreign key constraint to the
-- Cities table. Each row in Cities is checked
-- to make sure it satisfied the constraints.
-- if any rows don't satisfy the constraint, the
-- constraint is not added
ALTER TABLE CITIES ADD CONSTRAINT COUNTRY_FK
Foreign Key (COUNTRY) REFERENCES COUNTRIES (COUNTRY);

-- Add a primary key constraint to a table
-- First, create a new table
CREATE TABLE ACTIVITIES (CITY_ID INT NOT NULL,
SEASON CHAR(2), ACTIVITY VARCHAR(32) NOT NULL);
-- You will not be able to add this constraint if the
-- columns you are including in the primary key have
-- null data or duplicate values.
ALTER TABLE Activities ADD PRIMARY KEY (city_id, activity);

-- Drop the city_id column if there are no dependent objects:
ALTER TABLE Cities DROP COLUMN city_id RESTRICT;
-- Drop the city_id column, also dropping all dependent objects:
ALTER TABLE Cities DROP COLUMN city_id CASCADE;

-- Drop a primary key constraint from the CITIES table

ALTER TABLE Cities DROP CONSTRAINT Cities_PK;
-- Drop a foreign key constraint from the CITIES table
ALTER TABLE Cities DROP CONSTRAINT COUNTRIES_FK;
-- add a DEPTNO column with a default value of 1
ALTER TABLE SAMP.EMP_ACT ADD COLUMN DEPTNO INT DEFAULT 1;
-- increase the width of a VARCHAR column
ALTER TABLE SAMP.EMP_PHOTO ALTER PHOTO_FORMAT SET DATA TYPE VARCHAR(30);
-- change the lock granularity of a table
ALTER TABLE SAMP.SALES LOCKSIZE TABLE;

-- Remove the NOT NULL constraint from the MANAGER column
ALTER TABLE Employees ALTER COLUMN Manager NULL;

Derby Reference Manual

32

-- Add the NOT NULL constraint to the SSN column
ALTER TABLE Employees ALTER COLUMN ssn NOT NULL;

-- Change the default value for the SALARY column
ALTER TABLE Employees ALTER COLUMN Salary DEFAULT 1000.0
ALTER TABLE Employees ALTER COLUMN Salary DROP DEFAULT

Results

An ALTER TABLE statement causes all statements that are dependent on the table
being altered to be recompiled before their next execution. ALTER TABLE is not allowed
if there are any open cursors that reference the table being altered.

CALL (PROCEDURE) statement

The CALL (PROCEDURE) statement invokes a procedure. A call to a procedure does
not return any value.

When a procedure with definer's rights is called, the current default schema is set to the
eponymously named schema of the definer. For example, if the defining user is called
OWNER, the default schema will also be set to OWNER. The definer's rights include
the right to set the current role to a role for which the definer has privileges. When the
procedure is first invoked, no role is set; even if the invoker has set a current role, the
procedure running with definer's rights has no current role set initially.

When a procedure with invoker's rights is called, the current default schema and current
role are unchanged initially within the procedure. Similarly, if SQL authorization mode is
not enabled, the current default schema is unchanged initially within the procedure.

When the call returns, any changes made inside the procedure to the default current
schema (and current role, if relevant) are reset (popped).

For information about definer's rights, see EXTERNAL SECURITY.

Syntax

CALL procedureName ([expression [, expression]*])

Example

CREATE PROCEDURE SALES.TOTAL_REVENUE(IN S_MONTH INTEGER,
 IN S_YEAR INTEGER, OUT TOTAL DECIMAL(10,2))
 PARAMETER STYLE JAVA READS SQL DATA LANGUAGE JAVA EXTERNAL NAME
 'com.example.sales.calculateRevenueByMonth';
CALL SALES.TOTAL_REVENUE(?,?,?);

CREATE statements

Use the CREATE statements to create functions, indexes, procedures, roles, schemas,
synonyms, tables, triggers, and views.

CREATE DERBY AGGREGATE statement

The CREATE DERBY AGGREGATE statement creates a user-defined aggregate (UDA).
A UDA is a custom aggregate operator.

Syntax

CREATE DERBY AGGREGATE aggregateName FOR valueDataType
[RETURNS returnDataType
]
EXTERNAL NAMEsingleQuotedString

Derby Reference Manual

33

The aggregate name is composed of an optional schemaName and a SQLIdentifier. If
a schemaName is not provided, the current schema is the default schema. If a qualified
aggregate name is specified, the schema name cannot begin with SYS.

In general, UDAs live in the same namespace as one-argument user-defined functions
(see CREATE FUNCTION statement). A schema-qualified UDA name may not be the
schema-qualified name of a one-argument user-defined function.

An unqualified UDA name (that is, the UDA name without its schema name) may not be
the name of an aggregate defined in part 2 of the SQL Standard, section 10.9:

ANY
AVG
COLLECT
COUNT
EVERY
FUSION
INTERSECTION
MAX
MIN
SOME
STDDEV_POP
STDDEV_SAMP
SUM
VAR_POP
VAR_SAMP

In addition, an unqualified UDA name may not be the name of any of the Derby built-in
functions which take one argument.

The valueDataType can be any valid nullable Derby data type except for XML, including
user-defined types.

The returnDataType can be any valid nullable Derby data type except for XML. If the
returnDataType is omitted, it defaults to be the same as valueDataType.

The singleQuotedString specified by the EXTERNAL NAME clause is the full name of
a Java class which implements the org.apache.derby.agg.Aggregator interface. That
contract is not checked until a statement is compiled which invokes the UDA.

The org.apache.derby.agg.Aggregator interface extends java.io.Serializable, so you
must make sure that all of the state of your UDA is serializable. A UDA may be serialized
to disk when it performs grouped aggregation over a large number of groups. That is,
intermediate results may be serialized to disk for a query like the following:

SELECT a, myAggregate(b) FROM myTable GROUP BY a

The serialization will fail if the UDA contains non-serializable fields.

The owner of the schema where the UDA lives automatically gains the USAGE privilege
on the UDA and can grant this privilege to other users and roles. Only the database
owner and the owner of the UDA can grant these USAGE privileges. The USAGE
privilege cannot be revoked from the schema owner. See GRANT statement and
REVOKE statement for more information.

Examples

CREATE DERBY AGGREGATE mode FOR INT
EXTERNAL NAME 'com.example.myapp.aggs.Mode';

CREATE DERBY AGGREGATE types.maxPrice FOR PRICE
EXTERNAL NAME 'com.example.myapp.types.PriceMaxer';

CREATE DERBY AGGREGATE types.avgLength FOR VECTOR
RETURNS DOUBLE
EXTERNAL NAME 'com.example.myapp.types.VectorLength';

Derby Reference Manual

34

See "Programming user-defined aggregates" in the Derby Developer's Guide for more
details about creating and using user-defined aggregates.

CREATE FUNCTION statement

The CREATE FUNCTION statement creates a Java function, which you can then use in
an expression.

The function owner and the database owner automatically gain the EXECUTE privilege
on the function, and are able to grant this privilege to other users. The EXECUTE
privileges cannot be revoked from the function and database owners.

For details on how Derby matches procedures to Java methods, see Argument matching.
For information on how functions interact with deferrable constraints, see Deferrable
constraints.

Syntax

CREATE FUNCTION functionName ([functionParameter
 [, functionParameter]* [...]]) RETURNS returnDataType
[functionElement]*

An ellipsis (...) after the last parameter indicates that the Java method supports trailing
optional arguments, called varargs. The ellipsis indicates that the method may be invoked
with zero or more trailing values, all having the data type of the last argument.

functionParameter

[parameterName] dataType

A parameterName must be unique within a function.

The syntax of dataType is described in Data types.

Note: The data types BLOB, CLOB, LONG VARCHAR, LONG VARCHAR FOR BIT
DATA, and XML are not allowed as parameters in a CREATE FUNCTION statement.

returnDataType

tableType | dataType

The syntax of dataType is described in Data types.

tableType

TABLE(columnElement [, columnElement]*)

This is the return type of a table function. Currently, only Derby-style table functions are
supported. They are functions which return JDBC ResultSets. For more information, see
"Programming Derby-style table functions" in the Derby Developer's Guide.

At runtime, as values are read out of the user-supplied ResultSet, Derby coerces
those values to the data types declared in the CREATE FUNCTION statement.
This affects values typed as CHAR, VARCHAR, LONG VARCHAR, CHAR FOR
BIT DATA, VARCHAR FOR BIT DATA, LONG VARCHAR FOR BIT DATA, and
DECIMAL/NUMERIC. Values which are too long are truncated to the maximum length
declared in the CREATE FUNCTION statement. In addition, if a String value is returned
in the ResultSet for a column of CHAR type and the String is shorter than the declared
length of the CHAR column, Derby pads the end of the String with blanks in order to
stretch it out to the declared length.

columnElement

SQLIdentifierdataType

The syntax of dataType is described in Data types.

Derby Reference Manual

35

Note: XML is not allowed as the type of a column in the dataset returned by a table
function.

functionElement

{
 LANGUAGE JAVA |
 { DETERMINISTIC | NOT DETERMINISTIC } |
 EXTERNAL NAMEsingleQuotedString |
 PARAMETER STYLE { JAVA | DERBY_JDBC_RESULT_SET | DERBY } |
 EXTERNAL SECURITY { DEFINER | INVOKER } |
 { NO SQL | CONTAINS SQL | READS SQL DATA } |
 { RETURNS NULL ON NULL INPUT | CALLED ON NULL INPUT }
}

The function elements may appear in any order, but each type of element can only
appear once. A function definition must contain these elements:

• LANGUAGE
• EXTERNAL NAME
• PARAMETER STYLE

LANGUAGE JAVA

The database manager will call the function as a public static method in a Java class.

DETERMINISTIC, NOT DETERMINISTIC

DETERMINISTIC declares that the function is deterministic, meaning that with the
same set of input values, it always computes the same result. The default is NOT
DETERMINISTIC. Derby cannot recognize whether an operation is actually deterministic,
so you must take care to specify this element correctly.

EXTERNAL NAME singleQuotedString

The singleQuotedString specified by the EXTERNAL NAME clause describes the Java
method to be called when the function is executed.

PARAMETER STYLE
JAVA

The function will use a parameter-passing convention that conforms to the
Java language and SQL Routines specification. INOUT and OUT parameters
will be passed as single entry arrays to facilitate returning values. Result sets
can be returned through additional parameters to the Java method of type
java.sql.ResultSet[] that are passed single entry arrays.

Derby does not support long column types (for example, LONG VARCHAR, BLOB,
and so on). An error will occur if you try to use one of these long column types.

DERBY_JDBC_RESULT_SET
The PARAMETER STYLE is DERBY_JDBC_RESULT_SET if and only if this is a
Derby-style table function, that is, a function which returns tableType and which is
mapped to a method which returns a JDBC ResultSet.

DERBY
The PARAMETER STYLE must be DERBY if and only if an ellipsis (...) appears at
the end of the argument list.

EXTERNAL SECURITY

If SQL authorization mode is enabled, a function runs by default with the privileges
specified for the user who invokes the function (invoker's rights). To specify that the
function should run with the privileges specified for the user who defines the function
(definer's rights), create the function with EXTERNAL SECURITY DEFINER. Those
privileges include the right to set the current role to a role for which the definer has

Derby Reference Manual

36

privileges. When the function is first invoked, no role is set; even if the invoker has set a
current role, the function running with definer's rights has no current role set initially.

See derby.database.sqlAuthorization for details about setting SQL authorization mode.

When a function with definer's rights is invoked, the current default schema is set to the
eponymously named schema of the definer. For example, if the defining user is called
OWNER, the default schema will also be set to OWNER.

When a function with invoker's rights is called, the current default schema and current
role are unchanged initially within the function. Similarly, if SQL authorization mode is not
enabled, the current default schema is unchanged initially within the function.

When the call returns, any changes made inside the function to the default current
schema (and current role, if relevant) are reset (popped).

If SQL authorization mode is not enabled, an attempt to create a function with
EXTERNAL SECURITY will result in an error.

NO SQL, CONTAINS SQL, READS SQL DATA

Indicates whether the function issues any SQL statements and, if so, what type.

CONTAINS SQL
Indicates that SQL statements that neither read nor modify SQL data can be
executed by the function. Statements that are not supported in any function return a
different error.

NO SQL
Indicates that the function cannot execute any SQL statements

READS SQL DATA
Indicates that some SQL statements that do not modify SQL data can be included
in the function. Statements that are not supported in any stored function return a
different error. This is the default value.

RETURNS NULL ON NULL INPUT or CALLED ON NULL INPUT
Specifies whether the function is called if any of the input arguments is null. The result is
the null value.
RETURNS NULL ON NULL INPUT

Specifies that the function is not invoked if any of the input arguments is null. The
result is the null value.

CALLED ON NULL INPUT
Specifies that the function is invoked if any or all input arguments are null. This
specification means that the function must be coded to test for null argument values.
The function can return a null or non-null value. This is the default setting.

Example of declaring a scalar function

CREATE FUNCTION TO_DEGREES
(RADIANS DOUBLE)
RETURNS DOUBLE
PARAMETER STYLE JAVA
NO SQL LANGUAGE JAVA
EXTERNAL NAME 'java.lang.Math.toDegrees'

Example of declaring a table function

CREATE FUNCTION PROPERTY_FILE_READER
(FILENAME VARCHAR(32672))
RETURNS TABLE
 (
 KEY_COL VARCHAR(10),
 VALUE_COL VARCHAR(1000)

Derby Reference Manual

37

)
LANGUAGE JAVA
PARAMETER STYLE DERBY_JDBC_RESULT_SET
NO SQL
EXTERNAL NAME 'vtis.example.PropertyFileVTI.propertyFileVTI'

Example of declaring a function that takes varargs

CREATE FUNCTION maximum
(a INT ...)
RETURNS INT
LANGUAGE JAVA
PARAMETER STYLE DERBY
NO SQL
EXTERNAL NAME 'IntFunctions.maximum'

CREATE INDEX statement

A CREATE INDEX statement creates an index on a table. Indexes can be on one or
more columns in the table.

Syntax

CREATE [UNIQUE] INDEX indexName
ON tableName (simpleColumnName [ASC | DESC]
 [, simpleColumnName [ASC | DESC]]*)

The maximum number of columns for an index key in Derby is 16.

An index name cannot exceed 128 characters.

A column must not be named more than once in a single CREATE INDEX statement.
Different indexes can name the same column, however.

Derby does not support indexing on columns with user-defined data types or with the
data types LONG VARCHAR, BLOB, CLOB, or XML.

Derby can use indexes to improve the performance of data manipulation statements (see
Tuning Derby). In addition, UNIQUE indexes provide a form of data integrity checking.

Index names are unique within a schema. (Some database systems allow different tables
in a single schema to have indexes of the same name, but Derby does not.) Both index
and table are assumed to be in the same schema if a schema name is specified for one
of the names, but not the other. If schema names are specified for both index and table,
an exception will be thrown if the schema names are not the same. If no schema name is
specified for either table or index, the current schema is used.

By default, Derby uses the ascending order of each column to create the index.
Specifying ASC after the column name does not alter the default behavior. The DESC
keyword after the column name causes Derby to use descending order for the column
to create the index. Using the descending order for a column can help improve the
performance of queries that require the results in mixed sort order or descending order
and for queries that select the minimum or maximum value of an indexed column.

Sorting and ordering of character data is controlled by the collation specified for a
database when it is created, as well as the locale of the database. For details, see
collation=collation attribute and territory=ll_CC attribute, as well as the sections "Creating
a database with locale-based collation", "Creating a case-insensitive database", and
"Character-based collation in Derby" in the Derby Developer's Guide.

If a qualified index name is specified, the schema name cannot begin with SYS.

Indexes and constraints

Derby Reference Manual

38

Unique, primary key, and foreign key constraints generate indexes that enforce or "back"
the constraint (and are thus sometimes called backing indexes). If a column or set
of columns has a UNIQUE or PRIMARY KEY constraint on it, you can not create an
index on those columns. Derby has already created it for you with a system-generated
name. System-generated names for indexes that back up constraints are easy to find
by querying the system tables if you name your constraint. Adding a PRIMARY KEY or
UNIQUE constraint when an existing UNIQUE index exists on the same set of columns
will result in two physical indexes on the table for the same set of columns. One index is
the original UNIQUE index and one is the backing index for the new constraint.

To find out the name of the index that backs a constraint called FLIGHTS_PK:

SELECT CONGLOMERATENAME FROM SYS.SYSCONGLOMERATES,
SYS.SYSCONSTRAINTS WHERE
SYS.SYSCONGLOMERATES.TABLEID = SYSCONSTRAINTS.TABLEID
AND CONSTRAINTNAME = 'FLIGHTS_PK'

CREATE INDEX OrigIndex ON Flights(orig_airport);
-- money is usually ordered from greatest to least,
-- so create the index using the descending order
CREATE INDEX PAY_DESC ON SAMP.EMPLOYEE (SALARY);
-- use a larger page size for the index
call
 SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY('derby.storage.pageSize','8192');
CREATE INDEX IXSALE ON SAMP.SALES (SALES);
call
 SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY('derby.storage.pageSize',NULL);

Page size and key size
Note: The size of the key columns in an index must be equal to or smaller than half the
page size. If the length of the key columns in an existing row in a table is larger than
half the page size of the index, creating an index on those key columns for the table
will fail. This error only occurs when creating an index if an existing row in the table fails
the criteria. After an index is created, inserts may fail if the size of their associated key
exceeds the criteria.

Statement dependency system

Prepared statements that involve SELECT, INSERT, UPDATE, UPDATE WHERE
CURRENT, DELETE, and DELETE WHERE CURRENT on the table referenced by the
CREATE INDEX statement are invalidated when the index is created. Open cursors on
the table are not affected.

CREATE PROCEDURE statement

The CREATE PROCEDURE statement creates a Java stored procedure, which you can
then call using the CALL PROCEDURE statement.

The procedure owner and the database owner automatically gain the EXECUTE privilege
on the procedure, and are able to grant this privilege to other users. The EXECUTE
privileges cannot be revoked from the procedure and database owners.

For details on how Derby matches procedures to Java methods, see Argument matching.
For information on how stored procedures interact with deferrable constraints, see
Deferrable constraints.

Syntax

CREATE PROCEDURE procedureName ([procedureParameter
 [, procedureParameter]* [...]])
[procedureElement]*

Derby Reference Manual

39

An ellipsis (...) after the last parameter indicates that the Java method supports trailing
optional arguments, called varargs. The ellipsis indicates that the method may be invoked
with zero or more trailing values, all having the data type of the last argument.

procedureParameter

[{ IN | OUT | INOUT }] [parameterName] dataType

The default value for a parameter is IN. A parameterName must be unique within a
procedure.

The syntax of dataType is described in Data types.

Note: The data types BLOB, CLOB, LONG VARCHAR, LONG VARCHAR FOR BIT
DATA, and XML are not allowed as parameters in a CREATE PROCEDURE statement.

procedureElement

{
 [DYNAMIC] RESULT SETS integer |
 LANGUAGE JAVA |
 { DETERMINISTIC | NOT DETERMINISTIC } |
 EXTERNAL NAMEsingleQuotedString |
 PARAMETER STYLE { JAVA | DERBY } |
 EXTERNAL SECURITY { DEFINER | INVOKER } |
 { NO SQL | MODIFIES SQL DATA | CONTAINS SQL | READS SQL DATA }
}

The procedure elements may appear in any order, but each type of element can only
appear once. A procedure definition must contain these elements:

• LANGUAGE
• EXTERNAL NAME
• PARAMETER STYLE

DYNAMIC RESULT SETS integer

Indicates the estimated upper bound of returned result sets for the procedure. Default is
no (zero) dynamic result sets. If the procedure takes varargs, the value must be zero.

LANGUAGE JAVA

The database manager will call the procedure as a public static method in a Java class.

DETERMINISTIC, NOT DETERMINISTIC

DETERMINISTIC declares that the procedure is deterministic, meaning that with the
same set of input values, it always computes the same result. The default is NOT
DETERMINISTIC. Derby cannot recognize whether an operation is actually deterministic,
so you must take care to specify this element correctly.

EXTERNAL NAME singleQuotedString

The singleQuotedString specified by the EXTERNAL NAME clause describes the Java
method to be called when the procedure is executed.

PARAMETER STYLE
JAVA

The procedure will use a parameter-passing convention that conforms to the Java
language and SQL Routines specification. INOUT and OUT parameters will be
passed as single entry arrays to facilitate returning values. Result sets are returned
through additional parameters to the Java method of type java.sql.ResultSet[] that are
passed single entry arrays.

Derby does not support long column types (for example, LONG VARCHAR, BLOB,
and so on). An error will occur if you try to use one of these long column types.

Derby Reference Manual

40

DERBY
The PARAMETER STYLE must be DERBY if and only if an ellipsis (...) appears at
the end of the argument list.

EXTERNAL SECURITY

If SQL authorization mode is enabled, a procedure runs by default with the privileges
specified for the user who invokes the procedure (invoker's rights). To specify that the
procedure should run with the privileges specified for the user who defines the procedure
(definer's rights), create the procedure with EXTERNAL SECURITY DEFINER. Those
privileges include the right to set the current role to a role for which the definer has
privileges. When the procedure is first invoked, no role is set; even if the invoker has set
a current role, the procedure running with definer's rights has no current role set initially.

See derby.database.sqlAuthorization for details about setting SQL authorization mode.

When a procedure with definer's rights is called, the current default schema is set to the
eponymously named schema of the definer. For example, if the defining user is called
OWNER, the default schema will also be set to OWNER.

When a procedure with invoker's rights is called, the current default schema and current
role are unchanged initially within the procedure. Similarly, if SQL authorization mode is
not enabled, the current default schema is unchanged initially within the procedure.

When the call returns, any changes made inside the procedure to the default current
schema (and current role, if relevant) are reset (popped).

If SQL authorization mode is not enabled, an attempt to create a procedure with
EXTERNAL SECURITY will result in an error.

NO SQL, CONTAINS SQL, READS SQL DATA, MODIFIES SQL DATA

Indicates whether the stored procedure issues any SQL statements and, if so, what type.
MODIFIES SQL DATA is the default value. A stored procedure which issues a statement
which does not conform to the declared SQL statement level will cause Derby to throw an
exception.

NO SQL
Indicates that the stored procedure cannot execute any SQL statements

CONTAINS SQL
Indicates that SQL statements that neither read nor modify SQL data can be
executed by the stored procedure.

READS SQL DATA
Indicates that SQL statements that do not modify SQL data (for example, SELECT
statements) can be included in the stored procedure.

MODIFIES SQL DATA
Indicates that the stored procedure can execute any SQL statement.

Examples

CREATE PROCEDURE SALES.TOTAL_REVENUE(IN S_MONTH INTEGER,
IN S_YEAR INTEGER, OUT TOTAL DECIMAL(10,2))
PARAMETER STYLE JAVA READS SQL DATA LANGUAGE JAVA EXTERNAL NAME
'com.example.sales.calculateRevenueByMonth'

CREATE PROCEDURE VARARGPROC
(IN a INT, IN b INT, IN c BIGINT ...)
LANGUAGE JAVA
PARAMETER STYLE DERBY
READS SQL DATA
EXTERNAL NAME 'Procs.varargProc'

Derby Reference Manual

41

CREATE ROLE statement

The CREATE ROLE statement creates an SQL role. Roles are useful for administering
privileges when a database has many users.

Only the database owner can create a role.

For more information on roles, see "Using SQL roles" in the Derby Security Guide.

Syntax

CREATE ROLE roleName

Before you issue a CREATE ROLE statement, verify that the
derby.database.sqlAuthorization property is set to TRUE. The
derby.database.sqlAuthorization property enables SQL authorization mode.

You cannot create a role name if there is a user by that name. An attempt to create a role
name that conflicts with an existing user name raises the SQLException X0Y68.

If user names are not controlled by the database owner (or administrator), it may be a
good idea to use a naming convention for roles to reduce the possibility of collision with
user names.

Derby tries to avoid name collision between user names and role names, but this is not
always possible, because Derby has a pluggable authorization architecture. For example,
an externally defined user may exist who has never yet connected to the database,
created any schema objects, or been granted any privileges. If Derby knows about a user
name, it will forbid creating a role with that name. Correspondingly, a user who has the
same name as a role will not be allowed to connect. Derby built-in users are checked for
collision when a role is created.

A role name cannot start with the prefix SYS (after case normalization). The purpose of
this restriction is to reserve a name space for system-defined roles at a later point. Use of
the prefix SYS raises the SQLException 4293A.

You cannot create a role with the name PUBLIC (after case normalization). PUBLIC is
a reserved authorization identifier. An attempt to create a role with the name PUBLIC
raises SQLException 4251B.

Example of creating a role

CREATE ROLE purchases_reader;

Examples of invalid role names

CREATE ROLE public; -- throws SQLException;
CREATE ROLE "PUBLIC"; -- throws SQLException;
CREATE ROLE sysrole; -- throws SQLException;

Example of creating a role using a naming convention

The following example uses the convention of giving every role name the suffix _role.

CREATE ROLE purchases_reader_role;

CREATE SCHEMA statement

The CREATE SCHEMA statement creates a schema, which is a way to logically group
objects in a single collection and to provide a unique namespace for objects.

Syntax

CREATE SCHEMA
{

Derby Reference Manual

42

 [schemaName AUTHORIZATION userName] |
 [schemaName] |
 [AUTHORIZATION userName]
}

A schema name cannot exceed 128 characters. Schema names must be unique within
the database.

A schema name cannot start with the prefix SYS (after case normalization). Use of the
prefix SYS raises a SQLException.

The CREATE SCHEMA statement is subject to access control when the
derby.database.sqlAuthorization property is set to true for the database or system. Only
the database owner can create a schema with a name different from the current user
name, and only the the database owner can specify

AUTHORIZATION userName

with a user name other than the current user name.

Note: Although the SQL standard allows you to specify any authorizationIdentifier as an
AUTHORIZATION argument, Derby allows you to specify only a user, not a role.

CREATE SCHEMA examples
To create a schema for airline-related tables and give the authorization ID anita access
to all of the objects that use the schema, use the following syntax:

CREATE SCHEMA FLIGHTS AUTHORIZATION anita

To create a schema employee-related tables, use the following syntax:

CREATE SCHEMA EMP

To create a schema that uses the same name as the authorization ID takumi, use the
following syntax:

CREATE SCHEMA AUTHORIZATION takumi

To create a table called availability in the EMP and FLIGHTS schemas, use the
following syntax:

CREATE TABLE FLIGHTS.AVAILABILITY
 (FLIGHT_ID CHAR(6) NOT NULL, SEGMENT_NUMBER INT NOT NULL,
 FLIGHT_DATE DATE NOT NULL, ECONOMY_SEATS_TAKEN INT,
 BUSINESS_SEATS_TAKEN INT, FIRSTCLASS_SEATS_TAKEN INT,
 CONSTRAINT FLT_AVAIL_PK
 PRIMARY KEY (FLIGHT_ID, SEGMENT_NUMBER, FLIGHT_DATE))

CREATE TABLE EMP.AVAILABILITY
 (HOTEL_ID INT NOT NULL, BOOKING_DATE DATE NOT NULL, ROOMS_TAKEN INT,
 CONSTRAINT HOTELAVAIL_PK PRIMARY KEY (HOTEL_ID, BOOKING_DATE))

CREATE SEQUENCE statement

The CREATE SEQUENCE statement creates a sequence generator, which is a
mechanism for generating exact numeric values, one at a time.

The owner of the schema where the sequence generator lives automatically gains the
USAGE privilege on the sequence generator, and can grant this privilege to other users
and roles. Only the database owner and the owner of the sequence generator can grant
these USAGE privileges. The USAGE privilege cannot be revoked from the schema
owner. See GRANT statement and REVOKE statement for more information.

Syntax

CREATE SEQUENCE sequenceName [sequenceElement]*

Derby Reference Manual

43

The sequence name is composed of an optional schemaName and a SQLIdentifier. If
a schemaName is not provided, the current schema is the default schema. If a qualified
sequence name is specified, the schema name cannot begin with SYS.

sequenceElement

{
 AS dataType
 | START WITH signedInteger
 | INCREMENT BY signedInteger
 | MAXVALUE signedInteger | NO MAXVALUE
 | MINVALUE signedInteger | NO MINVALUE
 | CYCLE | NO CYCLE
}

If specified, the dataType must be an integer type (SMALLINT, INT, or BIGINT). If not
specified, the default data type is INT.

If specified, the INCREMENT value is a non-zero number which fits in a dataType value.
If not specified, the INCREMENT defaults to 1. INCREMENT is the step by which the
sequence generator advances. If INCREMENT is positive, the sequence numbers get
larger over time. If INCREMENT is negative, the sequence numbers get smaller.

If specified, MINVALUE must be an integer which fits in a dataType value. If MINVALUE
is not specified, or if NO MINVALUE is specified, MINVALUE defaults to the smallest
negative number which fits in a dataType value.

If specified, MAXVALUE may not be greater than the largest positive integer that fits
in a dataType value. If MAXVALUE is not specified, or if NO MAXVALUE is specified,
MAXVALUE defaults to the largest positive integer which fits in a dataType value.
MAXVALUE must be greater than MINVALUE.

The START WITH clause specifies the initial value of the sequence generator. This
value must fall between MINVALUE and MAXVALUE. If the START WITH clause is not
specified, the initial value defaults to be:

• MINVALUE if INCREMENT is positive
• MAXVALUE if INCREMENT is negative

The CYCLE clause controls what happens when the sequence generator exhausts its
range and wraps around. If CYCLE is specified, the wraparound behavior is to reinitialize
the sequence generator to its START value. If NO CYCLE is specified, Derby throws an
exception when the generator wraps around. The default behavior is NO CYCLE.

To retrieve the next value from a sequence generator, use a NEXT VALUE FOR
expression.

Performance

To boost performance and concurrency, Derby preallocates ranges of upcoming values
for sequences. The lengths of these ranges can be configured by adjusting the value of
the derby.language.sequence.preallocator property.

Examples

The following statement creates a sequence generator of type INT, with a start value
of -2147483648 (the smallest INT value). The value increases by 1, and the last legal
value is the largest possible INT. If NEXT VALUE FOR is invoked on the generator again,
Derby throws an exception.

CREATE SEQUENCE order_id;

The following statement creates a sequence of type BIGINT with a start value of
3,000,000,000. The value increases by 1, and the last legal value is the largest possible

Derby Reference Manual

44

BIGINT. If NEXT VALUE FOR is invoked on the generator again, Derby throws an
exception.

CREATE SEQUENCE order_entry_id
AS BIGINT
START WITH 3000000000;

CREATE SYNONYM statement

The CREATE SYNONYM statement provides an alternate name for a table or a view that
is present in the same schema or another schema.

You can also create synonyms for other synonyms, resulting in nested synonyms. A
synonym can be used instead of the original qualified table or view name in SELECT,
INSERT, UPDATE, DELETE or LOCK TABLE statements. You can create a synonym for
a table or a view that doesn't exist, but the target table or view must be present before
the synonym can be used.

Synonyms share the same namespace as tables or views. You cannot create a synonym
with the same name as a table that already exists in the same schema. Similarly, you
cannot create a table or view with a name that matches a synonym already present.

A synonym can be defined for a table/view that does not exist when you create
the synonym. If the table or view doesn't exist, you will receive a warning message
(SQLSTATE 01522). The referenced object must be present when you use a synonym in
a DML statement.

You can create a nested synonym (a synonym for another synonym), but any attempt
to create a synonym that results in a circular reference will return an error message
(SQLSTATE 42916).

Synonyms cannot be defined in system schemas. All schemas starting with 'SYS' are
considered system schemas and are reserved by Derby.

A synonym cannot be defined on a temporary table. Attempting to define a synonym on a
temporary table will return an error message (SQLSTATE XCL51).

Syntax

CREATE SYNONYM synonymName FOR { viewName | tableName }

The synonymName in the statement represents the synonym name you are giving the
target table or view, while the viewName or tableName represents the original name of
the target table or view.

Example

CREATE SYNONYM SAMP.T1 FOR SAMP.TABLEWITHLONGNAME

CREATE TABLE statement

The CREATE TABLE statement creates a table. Tables contain columns and constraints,
rules to which data must conform.

Table-level constraints specify a column or columns. Columns have a data type and can
specify column constraints (column-level constraints).

The table owner and the database owner automatically gain the following privileges on
the table and are able to grant these privileges to other users:

• INSERT
• SELECT
• REFERENCES
• TRIGGER
• UPDATE

Derby Reference Manual

45

These privileges cannot be revoked from the table and database owners.

For information about constraints, see CONSTRAINT clause.

You can specify a default value for a column. A default value is the value to be inserted
into a column if no other value is specified. If not explicitly specified, the default value of a
column is NULL. See Column default.

You can specify storage properties such as page size for a table by calling the
SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY system procedure.

If a qualified table name is specified, the schema name cannot begin with SYS.

Syntax

There are two different variants of the CREATE TABLE statement, depending on whether
you are specifying the column definitions and constraints, or whether you are modeling
the columns after the results of a query expression:

CREATE TABLE tableName
{
 ({ columnDefinition | tableLevelConstraint }
 [, { columnDefinition | tableLevelConstraint }] *)
 |
 [(simpleColumnName [, simpleColumnName] *)]
 AS queryExpression
 WITH NO DATA
}

Example

CREATE TABLE HOTELAVAILABILITY
 (HOTEL_ID INT NOT NULL, BOOKING_DATE DATE NOT NULL,
 ROOMS_TAKEN INT DEFAULT 0, PRIMARY KEY (HOTEL_ID, BOOKING_DATE));
-- the table-level primary key definition allows you to
-- include two columns in the primary key definition
PRIMARY KEY (hotel_id, booking_date))
-- assign an identity column attribute to an INTEGER
-- column, and also define a primary key constraint
-- on the column
CREATE TABLE PEOPLE
 (PERSON_ID INT NOT NULL GENERATED ALWAYS AS IDENTITY
 CONSTRAINT PEOPLE_PK PRIMARY KEY, PERSON VARCHAR(26));
-- assign an identity column attribute to a SMALLINT
-- column with an initial value of 5 and an increment value
-- of 5.
CREATE TABLE GROUPS
 (GROUP_ID SMALLINT NOT NULL GENERATED ALWAYS AS IDENTITY
 (START WITH 5, INCREMENT BY 5), ADDRESS VARCHAR(100), PHONE
 VARCHAR(15));

Note: For more examples of CREATE TABLE statements using the various constraints,
see CONSTRAINT clause.

CREATE TABLE ... AS ...

With the alternate form of the CREATE TABLE statement, the column names and/or the
column data types can be specified by providing a query. The columns in the query result
are used as a model for creating the columns in the new table.

If no column names are specified for the new table, then all the columns in the result of
the query expression are used to create same-named columns in the new table, of the
corresponding data type(s). If one or more column names are specified for the new table,
then the same number of columns must be present in the result of the query expression;
the data types of those columns are used for the corresponding columns of the new
table.

Derby Reference Manual

46

The WITH NO DATA clause specifies that the data rows which result from evaluating
the query expression are not used; only the names and data types of the columns in the
query result are used. The WITH NO DATA clause must be specified; in a future release,
Derby may be modified to allow the WITH DATA clause to be provided, which would
indicate that the results of the query expression should be inserted into the newly-created
table. In the current release, however, only the WITH NO DATA form of the statement is
accepted.

Example

-- create a new table using all the columns and data types
-- from an existing table:
CREATE TABLE T3 AS SELECT * FROM T1 WITH NO DATA;
-- create a new table, providing new names for the columns, but
-- using the data types from the columns of an existing table:
CREATE TABLE T3 (A,B,C,D,E) AS SELECT * FROM T1 WITH NO DATA;
-- create a new table, providing new names for the columns,
-- using the data types from the indicated columns of an existing table:
CREATE TABLE T3 (A,B,C) AS SELECT V,DP,I FROM T1 WITH NO DATA;
-- This example shows that the columns in the result of the
-- query expression may be unnamed expressions, but their data
-- types can still be used to provide the data types for the
-- corresponding named columns in the newly-created table:
CREATE TABLE T3 (X,Y) AS SELECT 2*I,2.0*F FROM T1 WITH NO DATA;

columnDefinition:

simpleColumnName [dataType]
 [columnLevelConstraint]*
 [[WITH] DEFAULT defaultConstantExpression
 | generatedColumnSpec
 | generationClause
]
 [columnLevelConstraint]*

The syntax of dataType is described in Data types. The dataType can be omitted only
if you specify a generationClause. If you omit the dataType, the type of the generated
column is the type of the generationClause. If you specify both a dataType and a
generationClause, the type of the generationClause must be assignable to dataType.

The syntaxes of columnLevelConstraint and tableLevelConstraint are described in
CONSTRAINT clause.

Column default

For the definition of a default value, a defaultConstantExpression is an expression that
does not refer to any table. It can include constants, date-time special registers, current
schemas, users, roles, and null:

defaultConstantExpression:
 NULL
 | CURRENT { SCHEMA | SQLID }
 | USER | CURRENT_USER | SESSION_USER | CURRENT_ROLE
 | DATE
 | TIME
 | TIMESTAMP
 | CURRENT DATE | CURRENT_DATE
 | CURRENT TIME | CURRENT_TIME
 | CURRENT TIMESTAMP | CURRENT_TIMESTAMP
 | literal

For details about Derby literal values, see Data types.

The values in a defaultConstantExpression must be compatible in type with the column,
but a defaultConstantExpression has the following additional type restrictions:

Derby Reference Manual

47

• If you specify USER, CURRENT_USER, SESSION_USER, or CURRENT_ROLE,
the column must be a character column whose length is at least 8.

• If you specify CURRENT SCHEMA or CURRENT SQLID, the column must be a
character column whose length is at least 128.

• If the column is an integer type, the default value must be an integer literal.
• If the column is a decimal type, the scale and precision of the default value must be

within those of the column.
generatedColumnSpec:

[GENERATED { ALWAYS | BY DEFAULT } AS IDENTITY
[(START WITH integerConstant
[, INCREMENT BY integerConstant])]]]

Identity column attributes

A table can have at most one identity column.

For SMALLINT, INT, and BIGINT columns with identity attributes, Derby automatically
assigns increasing integer values to the column. Identity column attributes behave like
other defaults in that when an insert statement does not specify a value for the column,
Derby automatically provides the value. However, the value is not a constant; Derby
automatically increments the default value at insertion time.

The IDENTITY keyword can only be specified if the data type associated with the column
is one of the following exact integer types.

• SMALLINT
• INT
• BIGINT

There are two kinds of identity columns in Derby: those which are GENERATED
ALWAYS and those which are GENERATED BY DEFAULT.
GENERATED ALWAYS

An identity column that is GENERATED ALWAYS will increment the default value
on every insertion and will store the incremented value into the column. Unlike other
defaults, you cannot insert a value directly into or update an identity column that
is GENERATED ALWAYS. Instead, either specify the DEFAULT keyword when
inserting into the identity column, or leave the identity column out of the insertion
column list altogether. For example:

create table greetings
 (i int generated always as identity, ch char(50));
insert into greetings values (DEFAULT, 'hello');
insert into greetings(ch) values ('bonjour');

Automatically generated values in a GENERATED ALWAYS identity column are
unique. Creating an identity column does not create an index on the column.

GENERATED BY DEFAULT

An identity column that is GENERATED BY DEFAULT will only increment and use
the default value on insertions when no explicit value is given. Unlike GENERATED
ALWAYS columns, you can specify a particular value in an insertion statement to be
used instead of the generated default value.

To use the generated default, either specify the DEFAULT keyword when inserting
into the identity column, or just leave the identity column out of the insertion column
list. To specify a value, included it in the insertion statement. For example:

create table greetings
 (i int generated by default as identity, ch char(50));
-- specify value "1":
insert into greetings values (1, 'hi');
-- use generated default

Derby Reference Manual

48

insert into greetings values (DEFAULT, 'salut');
-- use generated default
insert into greetings(ch) values ('bonjour');

Note that unlike a GENERATED ALWAYS column, a GENERATED BY DEFAULT
column does not guarantee uniqueness. Thus, in the above example, the hi and
salut rows will both have an identity value of "1", because the generated column
starts at "1" and the user-specified value was also "1". To prevent duplication,
especially when loading or importing data, create the table using the START WITH
value which corresponds to the first identity value that the system should assign.
To check for this condition and disallow it, you can use a primary key or unique
constraint on the GENERATED BY DEFAULT identity column.

By default, the initial value of an identity column is 1, and the amount of the increment is
1. You can specify non-default values for both the initial value and the interval amount
when you define the column with the key words START WITH and INCREMENT BY. And
if you specify a negative number for the increment value, Derbydecrements the value
with each insert. If this value is positive, Derby increments the value with each insert. A
value of 0 raises a statement exception.

The maximum and minimum values allowed in identity columns are determined by
the data type of the column. Attempting to insert a value outside the range of values
supported by the data type raises an exception. The following table shows the supported
ranges.

Table 2. Maximum and minimum values for columns with generated column specs

Data Type Maximum Value Minimum Value

SMALLINT 32767
(java.lang.Short.MAX_VALUE)

-32768
(java.lang.Short.MIN_VALUE)

INT 2147483647
(java.lang.Integer.MAX_VALUE)

-2147483648
(java.lang.Integer.MIN_VALUE)

BIGINT 9223372036854775807
(java.lang.Long.MAX_VALUE)

-9223372036854775808
(java.lang.Long.MIN_VALUE)

Automatically generated values in an identity column are unique. Use a primary key or
unique constraint on a column to guarantee uniqueness. Creating an identity column
does not create an index on the column.

The IDENTITY_VAL_LOCAL function is a non-deterministic function that returns the most
recently assigned value for an identity column. See IDENTITY_VAL_LOCAL function for
more information.

Note: Specify the schema, table, and column name using the same case as those
names are stored in the system tables--that is, all upper case unless you used delimited
identifiers when creating those database objects.

Derby keeps track of the last increment value for a column in a cache. It also stores
the value of what the next increment value will be for the column on disk in the
AUTOINCREMENTVALUE column of the SYS.SYSCOLUMNS system table. Rolling
back a transaction does not undo this value, and thus rolled-back transactions can leave
"gaps" in the values automatically inserted into an identity column. Derby behaves this
way to avoid locking a row in SYS.SYSCOLUMNS for the duration of a transaction and
keeping concurrency high.

When an insert happens within a triggeredSQLStatement, the value inserted by the
triggeredSQLStatement into the identity column is available from ConnectionInfo only
within the trigger code. The trigger code is also able to see the value inserted by the

Derby Reference Manual

49

statement that caused the trigger to fire. However, the statement that caused the trigger
to fire is not able to see the value inserted by the triggeredSQLStatement into the identity
column. Likewise, triggers can be nested (or recursive). An SQL statement can cause
trigger T1 to fire. T1 in turn executes an SQL statement that causes trigger T2 to fire.
If both T1 and T2 insert rows into a table that cause Derby to insert into an identity
column, trigger T1 cannot see the value caused by T2's insert, but T2 can see the value
caused by T1's insert. Each nesting level can see increment values generated by itself
and previous nesting levels, all the way to the top-level SQL statement that initiated the
recursive triggers. You can only have 16 levels of trigger recursion.

Example

create table greetings
 (i int generated by default as identity (START WITH 2, INCREMENT BY 1),
 ch char(50));
-- specify value "1":
insert into greetings values (1, 'hi');
-- use generated default
insert into greetings values (DEFAULT, 'salut');
-- use generated default
insert into greetings(ch) values ('bonjour');

generationClause:

GENERATED ALWAYS AS (valueExpression)

A valueExpression is an expression that resolves to a single value, with some limitations
that are described here. See SQL expressions for more information about expressions.

References

The generationClause may reference other non-generated columns in the table, but it
must not reference any generated column. The generationClause must not reference a
column in another table.

Functions

The generationClause may invoke user-coded functions, if the functions meet the
following requirements:

• The functions must not read or write SQL data.
• The functions must have been declared DETERMINISTIC.
• The functions must not invoke any of the following possibly non-deterministic

system functions:
• CURRENT_DATE
• CURRENT_TIME
• CURRENT_TIMESTAMP
• CURRENT_USER
• CURRENT_ROLE
• CURRENT SCHEMA
• CURRENT SQLID
• SESSION_USER

Subqueries

The generationClause must not include subqueries.

Foreign keys

If the generated column is part of a foreign key that references another table, the
referential action must not specify SET NULL or SET DEFAULT, and the update rule
must not specify ON UPDATE CASCADE.

Example

Derby Reference Manual

50

CREATE TABLE employee
(
 employeeID int,
 name varchar(50),
 caseInsensitiveName GENERATED ALWAYS AS(UPPER(name))
);
CREATE INDEX caseInsensitiveEmployeeName ON employee(caseInsensitiveName
);

CREATE TRIGGER statement

The CREATE TRIGGER statement creates a trigger, which defines a set of actions that
are executed when a database event occurs on a specified table.

A database event is a delete, insert, or update operation. For example, if you define a
trigger for a delete on a particular table, the trigger's action occurs whenever someone
deletes a row or rows from the table.

Along with constraints, triggers can help enforce data integrity rules with actions such as
cascading deletes or updates. Triggers can also perform a variety of functions such as
issuing alerts, updating other tables, sending e-mail, and other useful actions.

You can define any number of triggers for a single table, including multiple triggers on the
same table for the same event.

You can create a trigger in any schema where you are the schema owner. To create a
trigger on a table that you do not own, you must be granted the TRIGGER privilege on
that table. The database owner can also create triggers on any table in any schema.

A trigger operates with the privileges of the owner of the trigger. See "Configuring
fine-grained user authorization" and "Privileges on views, triggers, constraints, and
generated columns" in the Derby Security Guide for details.

The trigger does not need to reside in the same schema as the table on which the trigger
is defined.

If a qualified trigger name is specified, the schema name cannot begin with SYS.

Syntax

CREATE TRIGGER triggerName
{ AFTER | NO CASCADE BEFORE }
{ INSERT | DELETE | UPDATE [OF columnName [, columnName]*] }
ON tableName
[referencingClause]
[FOR EACH { ROW | STATEMENT }] [MODE DB2SQL]
[WHEN (booleanExpression)
]
triggeredSQLStatement

Before or after: when triggers fire
Triggers are defined as either Before or After triggers.

• Before triggers fire before the statement's changes are applied and before any
constraints have been applied. Before triggers can be either row or statement
triggers (see Statement versus row triggers).

• After triggers fire after all constraints have been satisfied and after the changes
have been applied to the target table. After triggers can be either row or statement
triggers (see Statement versus row triggers).

Insert, delete, or update: what causes the trigger to fire
A trigger is fired by one of the following database events, depending on how you define it
(see Syntax above):

• INSERT
• UPDATE
• DELETE

Derby Reference Manual

51

You can define any number of triggers for a given event on a given table. For update, you
can specify columns.

Referencing old and new values: the REFERENCING clause

Many triggeredSQLStatements need to refer to data that is currently being changed by
the database event that caused them to fire. The triggeredSQLStatement might need to
refer to the new (post-change or "after") values.

Derby provides you with a number of ways to refer to data that is currently being changed
by the database event that caused the trigger to fire. Changed data can be referred
to in the triggeredSQLStatement using transition variables or transition tables. The
REFERENCING clause allows you to provide a correlation name or alias for these
transition variables by specifying OLD/NEW AS correlationName .

For example, if you add the following clause to the trigger definition:

REFERENCING OLD AS DELETEDROW

you can then refer to this correlation name in the triggeredSQLStatement:

DELETE FROM HotelAvailability WHERE hotel_id = DELETEDROW.hotel_id

The OLD and NEW transition variables map to a java.sql.ResultSet with a single row.
Note: Only row triggers (see Statement versus row triggers) can use the transition
variables. INSERT row triggers cannot reference an OLD row. DELETE row triggers
cannot reference a NEW row.

For statement triggers, transition tables serve as a table identifier for the
triggeredSQLStatement or the trigger qualification. The REFERENCING clause allows
you to provide a correlation name or alias for these transition tables by specifying
OLD_TABLE/NEW_TABLE AS correlationName

For example:

REFERENCING OLD_TABLE AS DeletedHotels

allows you to use that new identifier (DeletedHotels) in the triggeredSQLStatement:

DELETE FROM HotelAvailability WHERE hotel_id IN
 (SELECT hotel_id FROM DeletedHotels)

The old and new transition tables map to a java.sql.ResultSet with cardinality equivalent
to the number of rows affected by the triggering event.
Note: Only statement triggers (see Statement versus row triggers) can use the transition
tables. INSERT statement triggers cannot reference an OLD table. DELETE statement
triggers cannot reference a NEW table.

The REFERENCING clause can designate only one new correlation or identifier and only
one old correlation or identifier. Row triggers cannot designate an identifier for a transition
table and statement triggers cannot designate a correlation for transition variables.

The transition tables or transition variables defined in the REFERENCING clause can be
referenced from the WHEN clause.

Statement versus row triggers
You have the option to specify whether a trigger is a statement trigger or a row trigger. If
it is not specified in the CREATE TRIGGER statement via FOR EACH clause, then the
trigger is a statement trigger by default.

• statement triggers

A statement trigger fires once per triggering event and regardless of whether any
rows are modified by the insert, update, or delete event.

• row triggers

Derby Reference Manual

52

A row trigger fires once for each row affected by the triggering event. If no rows are
affected, the trigger does not fire.

Note: An update that sets a column value to the value that it originally contained (for
example, UPDATE T SET C = C) causes a row trigger to fire, even though the value of
the column is the same as it was prior to the triggering event.

triggeredSQLStatement
The action defined by the trigger is called the triggeredSQLStatement (in Syntax above,
see the last line). It has the following limitations:

• It must not contain any dynamic parameters (?).
• It must not create, alter, or drop the table upon which the trigger is defined.
• It must not add an index to or remove an index from the table on which the trigger is

defined.
• It must not add a trigger to or drop a trigger from the table upon which the trigger is

defined.
• It must not commit or roll back the current transaction or change the isolation level.
• It must not reference a table in the SESSION schema (such as a temporary table;

see DECLARE GLOBAL TEMPORARY TABLE statement).
• Before triggers cannot have INSERT, UPDATE or DELETE statements as their

action.
• Before triggers cannot call procedures that modify SQL data as their action.
• The NEW variable of a Before trigger cannot reference a generated column.

For more information on triggeredSQLStatements, see "Programming trigger actions" in
the Derby Developer's Guide.

Order of execution
When a database event occurs that fires a trigger, Derby performs actions in this order:

• It fires No Cascade Before triggers.
• It performs constraint checking (primary key, unique key, foreign key, check).
• It performs the insert, update, or delete.
• It fires After triggers.

When multiple triggers are defined for the same database event for the same table for
the same trigger time (before or after), triggers are fired in the order in which they were
created.

Examples

-- Statements and triggers:

CREATE TRIGGER t1 NO CASCADE BEFORE UPDATE ON x
 FOR EACH ROW MODE DB2SQL
 values app.notifyEmail('Jerry', 'Table x is about to be updated');

CREATE TRIGGER FLIGHTSDELETE
 AFTER DELETE ON FLIGHTS
 REFERENCING OLD_TABLE AS DELETEDFLIGHTS
 FOR EACH STATEMENT
 DELETE FROM FLIGHTAVAILABILITY WHERE FLIGHT_ID IN
 (SELECT FLIGHT_ID FROM DELETEDFLIGHTS);

CREATE TRIGGER FLIGHTSDELETE3
 AFTER DELETE ON FLIGHTS
 REFERENCING OLD AS OLD
 FOR EACH ROW
 DELETE FROM FLIGHTAVAILABILITY WHERE FLIGHT_ID = OLD.FLIGHT_ID;

Note: You can find more examples in the Derby Developer's Guide.

Trigger recursion

The maximum trigger recursion depth is 16.

Derby Reference Manual

53

Related information
Special system functions that return information about the current time or current user are
evaluated when the trigger fires, not when it is created. Such functions include:

• CURRENT_DATE function
• CURRENT_TIME function
• CURRENT_TIMESTAMP function
• CURRENT_USER function
• SESSION_USER function
• USER function

referencingClause:

REFERENCING
{
 { OLD | NEW } [ROW] [AS] correlationName
 [{ OLD | NEW } [ROW] [AS] correlationName]
 |
 { OLD_TABLE | NEW_TABLE } [AS] identifier
 [{ OLD_TABLE | NEW_TABLE } [AS] identifier]
}

Note: The OLD_TABLE | NEW_TABLE syntax is deprecated since it is not SQL
compliant and is intended for backward compatibility and DB2 compatibility.
WHEN clause:

The WHEN clause is an optional part of a CREATE TRIGGER statement.

Syntax

WHEN (booleanExpression)

If a trigger has been created with a WHEN clause, and the trigger event takes place, the
triggeredSQLStatement will be executed only if the booleanExpression in the WHEN
clause evaluates to TRUE. If it evaluates to FALSE or NULL, the triggeredSQLStatement
will not be executed.

The transition tables or transition variables defined in the REFERENCING clause can be
referenced from the WHEN clause.

The restrictions listed for the triggeredSQLStatement in the CREATE TRIGGER
statement also apply to the WHEN clause.

Note: The use of a WHEN clause in a CREATE TRIGGER statement is valid only after
a database has been fully upgraded to Derby Release 10.11 or higher. (See "Upgrading
a database" in the Derby Developer's Guide for more information.) This clause has no
meaning in a database that is at Release 10.10 or lower.

Example

CREATE TRIGGER FLIGHTSUPDATE
 AFTER UPDATE ON FLIGHTS
 REFERENCING OLD AS OLD NEW AS NEW
 FOR EACH ROW
 WHEN (OLD.FLIGHT_ID <> NEW.FLIGHT_ID)
 UPDATE FLIGHTAVAILABILITY
 SET FLIGHT_ID = NEW.FLIGHT_ID
 WHERE FLIGHT_ID = OLD.FLIGHT_ID

CREATE TYPE statement

The CREATE TYPE statement creates a user-defined type (UDT). A UDT is a
serializable Java class whose instances are stored in columns.

The Java class, specified by the EXTERNAL NAME clause, must implement the
java.io.Serializable interface.

Derby Reference Manual

54

Syntax

CREATE TYPE typeNameEXTERNAL NAMEsingleQuotedString
LANGUAGE JAVA

The type name is composed of an optional schemaName and a SQLIdentifier. If a
schemaName is not provided, the current schema is the default schema. If a qualified
type name is specified, the schema name cannot begin with SYS.

If the Java class specified by the EXTERNAL NAME clause does not implement
java.io.Serializable, or if it is not public and visible on the classpath, Derby raises an
exception when preparing statements which refer to the UDT.

A UDT cannot be cast explicitly to any other type, and no other type can be cast to a
UDT.

A UDT has no ordering. This means that you cannot compare and sort UDTs. You cannot
use them in expressions involving the <, =, >, IN, BETWEEN, and LIKE operators. You
cannot use UDTs in aggregates, DISTINCT expressions, and GROUP/ORDER BY
clauses. You cannot build indexes on them.

You can use subtypes in UDTs. That is, if you use the CREATE TYPE statement to bind
a class named C to a UDT, you can populate that UDT value with an instance of any
subclass of C.

Example

CREATE TYPE price
EXTERNAL NAME 'com.example.types.Price'
LANGUAGE JAVA

Using user-defined types

You can create tables and views with columns that have UDTs. For example:

CREATE TABLE order
(
 orderID INT GENERATED ALWAYS AS IDENTITY,
 customerID INT REFERENCES customer(customerID),
 totalPrice typeSchema.price
);

Although UDTs have no natural order, you can use generated columns to provide useful
sort orders:

ALTER TABLE order
 ADD COLUMN normalizedValue DECIMAL(31, 5) GENERATED ALWAYS AS
 (convert('EUR', TIMESTAMP('2005-01-01 09:00:00'), totalPrice));
CREATE INDEX normalizedOrderPrice ON order(normalizedValue);

You can use factory functions to construct UDTs. For example:

INSERT INTO order(customerID, totalPrice)
 VALUES (12345,
 makePrice('USD',
 CAST(9.99 AS DECIMAL(31, 5)),
 TIMESTAMP('2009-10-16 14:24:43')));

Once a UDT column has been populated, you can use it in other INSERT and UPDATE
statements. For example:

INSERT INTO backOrder SELECT * from order;

UPDATE order SET totalPrice = (SELECT todaysDiscount FROM discount);
UPDATE order SET totalPrice = adjustForInflation(totalPrice);

Derby Reference Manual

55

Using functions, you can access fields inside UDTs in a SELECT statement:

SELECT getCurrencyCode(totalPrice) from order;

You can use JDBC API setObject() and getObject() methods to store and retrieve values
of UDTs. For example:

PreparedStatement ps = conn.prepareStatement("SELECT * from order");
ResultSet rs = ps.executeQuery();

while(rs.next())
{
 int orderID = rs.getInt(1);
 int customerID = rs.getInt(2);
 Price totalPrice = (Price) rs.getObject(3);
 ...
}

CREATE VIEW statement

The CREATE VIEW statement creates a view, which is a virtual table formed by a query.

A view is a dictionary object that you can use until you drop it. Views are not updatable.

If a qualified view name is specified, the schema name cannot begin with SYS.

A view operates with the privileges of the owner of the view. See "Configuring
fine-grained user authorization" and "Privileges on views, triggers, constraints, and
generated columns" in the Derby Security Guide for details.

The view owner automatically gains the SELECT privilege on the view. The SELECT
privilege cannot be revoked from the view owner. The database owner automatically
gains the SELECT privilege on the view and is able to grant this privilege to other users.
The SELECT privilege cannot be revoked from the database owner.

The view owner can only grant the SELECT privilege to other users if the view owner
also owns the underlying objects.

If the underlying objects that the view references are not owned by the view owner, the
view owner must be granted the appropriate privileges. For example, if the authorization
ID user2 attempts to create a view called user2.v2 that references table user1.t1
and function user1.f_abs(), then user2 must have the SELECT privilege on table
user1.t1 and the EXECUTE privilege on function user1.f_abs().

The privilege to grant the SELECT privilege cannot be revoked. If a required privilege
on one of the underlying objects that the view references is revoked, then the view is
dropped.

Syntax

CREATE VIEW viewName
 [(simpleColumnName [, simpleColumnName]*)]
AS query [ORDER BY clause]
 [result offset clause]
 [fetch first clause]

A view definition can contain an optional view column list to explicitly name the columns
in the view. If there is no column list, the view inherits the column names from the
underlying query. All columns in a view must be uniquely named.

Examples

CREATE VIEW SAMP.V1 (COL_SUM, COL_DIFF)
 AS SELECT COMM + BONUS, COMM - BONUS
 FROM SAMP.EMPLOYEE;

CREATE VIEW SAMP.VEMP_RES (RESUME)

Derby Reference Manual

56

 AS VALUES 'Delores M. Quintana', 'Heather A. Nicholls', 'Bruce Adamson';

CREATE VIEW SAMP.PROJ_COMBO
 (PROJNO, PRENDATE, PRSTAFF, MAJPROJ)
 AS SELECT PROJNO, PRENDATE, PRSTAFF, MAJPROJ
 FROM SAMP.PROJECT UNION ALL
SELECT PROJNO, EMSTDATE, EMPTIME, EMPNO
 FROM SAMP.EMP_ACT
 WHERE EMPNO IS NOT NULL;

Statement dependency system
View definitions are dependent on the tables and views referenced within the view
definition. DML (data manipulation language) statements that contain view references
depend on those views, as well as the objects in the view definitions that the views are
dependent on. Statements that reference the view depend on indexes the view uses;
which index a view uses can change from statement to statement based on how the
query is optimized. For example, given:

CREATE TABLE T1 (C1 DOUBLE PRECISION);

CREATE FUNCTION SIN (DATA DOUBLE)
 RETURNS DOUBLE EXTERNAL NAME 'java.lang.Math.sin'
 LANGUAGE JAVA PARAMETER STYLE JAVA;

CREATE VIEW V1 (C1) AS SELECT SIN(C1) FROM T1;

the following SELECT:

SELECT * FROM V1

is dependent on view V1, table T1, and external scalar function SIN.

DECLARE GLOBAL TEMPORARY TABLE statement

The DECLARE GLOBAL TEMPORARY TABLE statement defines a temporary table for
the current connection.

Temporary tables do not reside in the system catalogs and are not persistent. Temporary
tables exist only during the connection that declared them and cannot be referenced
outside of that connection. When the connection closes, the rows of the table are deleted,
and the in-memory description of the temporary table is dropped.

Temporary tables are useful when:
• The table structure is not known before using an application.
• Other users do not need the same table structure.
• Data in the temporary table is needed while using the application.
• The table can be declared and dropped without holding the locks on the system

catalog.

Syntax

DECLARE GLOBAL TEMPORARY TABLE tempTableName
 { columnDefinition [, columnDefinition]* }
[ON COMMIT { DELETE | PRESERVE } ROWS]
NOT LOGGED [ON ROLLBACK DELETE ROWS]

tempTableName

Names the temporary table. If a schemaName other than SESSION is specified, an
error will occur (SQLSTATE 428EK). If the schemaName is not specified, SESSION
is assigned. Multiple connections can define declared global temporary tables with the
same name because each connection has its own unique table descriptor for it.

Derby Reference Manual

57

Using SESSION as the schema name of a physical table will not cause an error, but is
discouraged. The SESSION schema name should be reserved for the temporary table
schema.

columnDefinition

See columnDefinition for CREATE TABLE for more information on columnDefinition.
DECLARE GLOBAL TEMPORARY TABLE does not allow generatedColumnSpec in the
columnDefinition.

Data type
Supported data types are:

• BIGINT
• CHAR
• DATE
• DECIMAL
• DOUBLE
• DOUBLE PRECISION
• FLOAT
• INTEGER
• NUMERIC
• REAL
• SMALLINT
• TIME
• TIMESTAMP
• VARCHAR

ON COMMIT

Specifies the action taken on the global temporary table when a COMMIT operation is
performed.

DELETE ROWS

All rows of the table will be deleted if no hold-able cursor is open on the table. This is
the default value for ON COMMIT. If you specify ON ROLLBACK DELETE ROWS, this
will delete all the rows in the table only if the temporary table was used. ON COMMIT
DELETE ROWS will delete the rows in the table even if the table was not used (if the
table does not have hold-able cursors open on it).

PRESERVE ROWS

The rows of the table will be preserved.

NOT LOGGED

Specifies the action taken on the global temporary table when a rollback operation
is performed. When a ROLLBACK (or ROLLBACK TO SAVEPOINT) operation is
performed, if the table was created in the unit of work (or savepoint), the table will be
dropped. If the table was dropped in the unit of work (or savepoint), the table will be
restored with no rows.

ON ROLLBACK DELETE ROWS

This is the default value for NOT LOGGED. NOT LOGGED [ON ROLLBACK DELETE
ROWS]] specifies the action that is to be taken on the global temporary table when a
ROLLBACK or (ROLLBACK TO SAVEPOINT) operation is performed. If the table data
has been changed, all the rows will be deleted.

Examples

set schema myapp;

Derby Reference Manual

58

create table t1(c11 int, c12 date);

declare global temporary table SESSION.t1(c11 int) not logged;
-- The SESSION qualification is redundant here because temporary
-- tables can only exist in the SESSION schema.

declare global temporary table t2(c21 int) not logged;
-- The temporary table is not qualified here with SESSION because
 temporary
-- tables can only exist in the SESSION schema.

insert into SESSION.t1 values (1);
-- SESSION qualification is mandatory here if you want to use
-- the temporary table, because the current schema is "myapp."

select * from t1;
-- This select statement is referencing the "myapp.t1" physical
-- table since the table was not qualified by SESSION.

Note: Temporary tables can be declared only in the SESSION schema. You should
never declare a physical schema with the SESSION name.
The following is a list of DB2 UDB DECLARE GLOBAL TEMPORARY TABLE functions
that are not supported by Derby:

• IDENTITY column-options
• IDENTITY attribute in copy-options
• AS (fullselect) DEFINITION ONLY
• NOT LOGGED ON ROLLBACK PRESERVE ROWS
• IN tablespace-name
• PARTITIONING KEY
• WITH REPLACE

Restrictions on declared global temporary tables

Derby does not support the following features on temporary tables. Some of these
features are specific to temporary tables and some are specific to Derby.

Temporary tables cannot be specified in the following statements:
• ALTER TABLE
• CREATE INDEX
• CREATE SYNONYM
• CREATE TRIGGER
• CREATE VIEW
• GRANT
• LOCK TABLE
• RENAME
• REVOKE

You cannot use the following features with temporary tables:

• Synonyms, triggers and views on SESSION schema tables (including physical
tables and temporary tables)

• Caching statements that reference SESSION schema tables and views
• Temporary tables cannot be specified in referential constraints and primary keys
• Temporary tables cannot be referenced in a triggeredSQLStatement or in a WHEN

clause
• Check constraints on columns
• Generated-column-spec
• Importing into temporary tables

If a statement that performs an insert, update, or delete to the temporary table
encounters an error, all the rows of the temporary table are deleted.

Derby Reference Manual

59

The following data types cannot be used with Declared Global Temporary Tables:
• BLOB
• CHAR FOR BIT DATA
• CLOB
• LONG VARCHAR
• LONG VARCHAR FOR BIT DATA
• VARCHAR FOR BIT DATA
• XML

Global temporary tables can be used in XA transactions, but can be declared and
accessed only within the scope of a single XA transaction. Derby can support access to
the table only until one of the following methods of the javax.transaction.xa.XAResource
interface is called:

• XAResource.end
• XAresource.prepare
• XAResource.commit

When the XA transaction commits or aborts, the temporary table is dropped.

DELETE statement

The DELETE statement removes rows from a table.

Syntax

{
 DELETE FROM tableName [[AS] correlationName]
 [WHERE clause]
 |
 DELETE FROM tableNameWHERE CURRENT OF clause
}

The first syntactical form, called a searched delete, removes all rows identified by the
table name and WHERE clause.

The second syntactical form, called a positioned delete, deletes the current row of an
open, updatable cursor. For more information about updatable cursors, see SELECT
statement.

Examples

DELETE FROM SAMP.IN_TRAY

stmt.executeUpdate("DELETE FROM SAMP.IN_TRAY WHERE CURRENT OF " +
 resultSet.getCursorName());

Statement dependency system

A searched delete statement depends on the table being updated, all of its
conglomerates (units of storage such as heaps or indexes), and any other table named
in the WHERE clause. A CREATE or DROP INDEX statement for the target table of a
prepared searched delete statement invalidates the prepared searched delete statement.

The positioned delete statement depends on the cursor and any tables the cursor
references. You can compile a positioned delete even if the cursor has not been opened
yet. However, removing the open cursor with the JDBC close method invalidates the
positioned delete.

A CREATE or DROP INDEX statement for the target table of a prepared positioned
delete invalidates the prepared positioned delete statement.

Derby Reference Manual

60

DROP statements

Use DROP statements to remove functions, indexes, procedures, roles, schemas,
synonyms, tables, triggers, and views.

DROP DERBY AGGREGATE statement

The DROP DERBY AGGREGATE statement removes the specified user-defined
aggregate (UDA).

A UDA is created by a CREATE DERBY AGGREGATE statement.

Syntax

DROP DERBY AGGREGATE aggregateName RESTRICT

The RESTRICT keyword is required. CASCADE semantics are not supported. That is,
Derby will not track down and drop orphaned objects.

Dropping a UDA implicitly drops all USAGE privileges that reference it. See GRANT
statement and REVOKE statement for more information.

Derby raises an error if a trigger or view references the UDA.

Example

DROP DERBY AGGREGATE mode RESTRICT;

DROP FUNCTION statement

The DROP FUNCTION statement removes the specified Java function.

A function is created by a CREATE FUNCTION statement.

Syntax

DROP FUNCTION functionName

The argument identifies the particular function to be dropped and is valid only if there
is exactly one function instance with the functionName in the schema. The identified
function can have any number of parameters defined for it.

An error will occur in any of the following circumstances:

• If no function with the indicated name exists in the named or implied schema (the
error is SQLSTATE 42704)

• If there is more than one specific instance of the function in the named or implied
schema

• If you try to drop a user-defined function that is invoked in the generationClause of a
generated column

• If you try to drop a user-defined function that is invoked in a view or trigger
DROP INDEX statement

The DROP INDEX statement removes the specified index.

An index is created by a CREATE INDEX statement.

Syntax

DROP INDEX indexName

Examples

DROP INDEX OrigIndex

DROP INDEX DestIndex

Statement dependency system

Derby Reference Manual

61

If there is an open cursor on the table from which the index is dropped, the DROP INDEX
statement generates an error and does not drop the index. Otherwise, statements that
depend on the index's table are invalidated.

DROP PROCEDURE statement

The DROP PROCEDURE statement removes the specified Java stored procedure.

A stored procedure is created by a CREATE PROCEDURE statement and is called by a
CALL (PROCEDURE) statement.

Syntax

DROP PROCEDURE procedureName

Identifies the particular procedure to be dropped, and is valid only if there is exactly one
procedure instance with the procedureName in the schema. The identified procedure can
have any number of parameters defined for it.

An error will occur in any of the following circumstances:

• If no procedure with the indicated name exists in the named or implied schema (the
error is SQLSTATE 42704)

• If there is more than one specific instance of the procedure in the named or implied
schema

• If you try to drop a user-defined procedure that is invoked in a trigger
DROP ROLE statement

The DROP ROLE statement removes the specified SQL role.

A role is created by a CREATE ROLE statement.

Only the database owner can drop a role.

For more information on roles, see "Using SQL roles" in the Derby Security Guide.

Syntax

DROP ROLE roleName

Dropping a role has the effect of removing the role from the database dictionary. This
means that no session user can henceforth set that role (see SET ROLE statement),
and any existing sessions that have that role as the current role (see CURRENT_ROLE
function) will now have a NULL CURRENT_ROLE. Dropping a role also has the effect of
revoking that role from any user and role it has been granted to. See REVOKE statement
for information on how revoking a role may impact any dependent objects.

Example

DROP ROLE reader;

DROP SCHEMA statement

The DROP SCHEMA statement removes the specified schema.

A schema is created by a CREATE SCHEMA statement.

The target schema must be empty for the drop to succeed.

Neither the APP schema (the default user schema) nor the SYS schema can be dropped.

Syntax

DROP SCHEMA schemaName RESTRICT

Derby Reference Manual

62

The RESTRICT keyword enforces the rule that no objects can be defined in the specified
schema for the schema to be deleted from the database. The RESTRICT keyword is
required.

Example

-- Drop the SAMP schema
-- The SAMP schema may only be deleted from the database
-- if no objects are defined in the SAMP schema.

DROP SCHEMA SAMP RESTRICT

DROP SEQUENCE statement

The DROP SEQUENCE statement removes the specified sequence generator.

A sequence generator is created by a CREATE SEQUENCE statement.

Syntax

DROP SEQUENCE sequenceName RESTRICT

The RESTRICT keyword is required. If a trigger or view references the sequence
generator, Derby throws an exception.

Dropping a sequence generator implicitly drops all USAGE privileges that reference it.

Example

DROP SEQUENCE order_id RESTRICT;

DROP SYNONYM statement

The DROP SYNONYM statement removes the specified synonym from a table or view.

A synonym is created by a CREATE SYNONYM statement.

An error will occur if there are any views or triggers dependent on the synonym.

Syntax

DROP SYNONYM synonymName

DROP TABLE statement

The DROP TABLE statement removes the specified table.

A table is created by a CREATE TABLE statement.

Syntax

DROP TABLE tableName

Statement dependency system

Triggers, constraints (primary, unique, check and references from the table being
dropped), and indexes defined on the table are silently dropped. The existence of an
open cursor that references a table being dropped causes the DROP TABLE statement
to generate an error, and the table is not dropped.

The DROP TABLE statement will also generate an error if the table is used in a view, or if
a trigger defined on another table references the table in its trigger action.

Dropping a table invalidates statements that depend on the table. (Invalidating a
statement causes it to be recompiled upon the next execution. See Interaction with the
dependency system.)

Derby Reference Manual

63

DROP TRIGGER statement

The DROP TRIGGER statement removes the specified trigger.

A trigger is created by a CREATE TRIGGER statement.

Syntax

DROP TRIGGER triggerName

Example

DROP TRIGGER TRIG1

Statement dependency system

When a table is dropped, all triggers on that table are automatically dropped. (You don't
have to drop a table's triggers before dropping the table.)

DROP TYPE statement

The DROP TYPE statement removes the specified user-defined type (UDT).

A UDT is created by a CREATE TYPE statement.

Syntax

DROP TYPE typeName RESTRICT

The RESTRICT keyword is required. CASCADE semantics are not supported. That is,
Derby will not track down and drop orphaned objects.

Dropping a UDT implicitly drops all USAGE privileges that reference it.

You cannot drop a type if it would make another SQL object unusable. This includes the
following restrictions:

• Table columns: No table columns have this UDT.
• Views: No view definition involves expressions which have this UDT.
• Triggers: No trigger definition involves expressions which have this UDT.
• Constraints: No constraints reference expressions of this UDT.
• Generated columns: No generated columns reference expressions of this UDT.
• Routines: No functions or procedures have arguments or return values of this UDT.
• Table Functions: No table functions return tables with columns of this UDT.

Example

DROP TYPE price RESTRICT;

DROP VIEW statement

The DROP VIEW statement removes the specified view.

A view is created by a CREATE VIEW statement.

Syntax

DROP VIEW viewName

Example

DROP VIEW AnIdentifier

Statement dependency system

Any statements referencing the view are invalidated on a DROP VIEW statement. DROP
VIEW fails if there are any views, triggers, or open cursors dependent on the view.

Derby Reference Manual

64

Normally, you must drop a view before you drop any objects that the view depends on.
However, if you issue an ALTER TABLE DROP COLUMN command with the CASCADE
option, any views that depend on the column will be dropped. Also, if you use a REVOKE
statement to revoke privileges on objects that a view depends on, the view will be
dropped. Similarly, if you use a DROP ROLE statement to drop a role that has privileges
on objects that a view depends on, the view will be dropped.

GRANT statement

The GRANT statement gives privileges to a specific user or role, or to all users, to
perform actions on database objects.

You can also use the GRANT statement to grant a role to a user, to PUBLIC, or to
another role.

The following types of privileges can be granted:
• Delete data from a specific table.
• Insert data into a specific table.
• Create a foreign key reference to the named table or to a subset of columns from a

table.
• Select data from a table, view, or a subset of columns in a table.
• Create a trigger on a table.
• Update data in a table or in a subset of columns in a table.
• Run a specified function or procedure.
• Use a sequence generator, a user-defined type, or a user-defined aggregate.

Before you issue a GRANT statement, check that the derby.database.sqlAuthorization
property is set to true. The derby.database.sqlAuthorization property enables the SQL
Authorization mode.

You can grant privileges on an object if you are the owner of the object or the database
owner. See the CREATE statement for the database object that you want to grant
privileges on for more information.

The syntax that you use for the GRANT statement depends on whether you are granting
privileges to a schema object or granting a role.

For more information on using the GRANT statement, see "Using fine-grained user
authorization" in the Derby Security Guide.

Syntax for tables

GRANT privilegeType ON [TABLE] { tableName | viewName } TO grantees

Syntax for routines

GRANT EXECUTE ON FUNCTION functionName TO grantees

GRANT EXECUTE ON PROCEDURE procedureName TO grantees

Syntax for sequence generators

GRANT USAGE ON SEQUENCE sequenceName TO grantees

In order to use a sequence generator, you must have the USAGE privilege on it. This
privilege can be granted to users and to roles. See CREATE SEQUENCE statement for
more information.

Syntax for user-defined types

GRANT USAGE ON TYPE typeName TO grantees

Derby Reference Manual

65

In order to use a user-defined type, you must have the USAGE privilege on it. This
privilege can be granted to users and to roles. See CREATE TYPE statement for more
information.

Syntax for user-defined aggregates

GRANT USAGE ON DERBY AGGREGATE aggregateName TO grantees

In order to use a user-defined aggregate, you must have the USAGE privilege on it. This
privilege can be granted to users and to roles. See CREATE DERBY AGGREGATE
statement for more information.

Syntax for roles

GRANT roleName [, roleName]* TO grantees

Before you can grant a role to a user or to another role, you must create the role using
the CREATE ROLE statement. Only the database owner can grant a role.

A role A contains another role B if role B is granted to role A, or is contained in a role C
granted to role A. Privileges granted to a contained role are inherited by the containing
roles. So the set of privileges identified by role A is the union of the privileges granted to
role A and the privileges granted to any contained roles of role A.

privilegeType

 { ALL PRIVILEGES | privilegeList }

privilegeList

tablePrivilege [, tablePrivilege]*

tablePrivilege

 DELETE |
 INSERT |
 REFERENCES [columnList] |
 SELECT [columnList] |
 TRIGGER |
 UPDATE [columnList]

columnList

 (columnIdentifier [, columnIdentifier]*)

Use the ALL PRIVILEGES privilege type to grant all of the privileges to the user or role
for the specified table. You can also grant one or more table privileges by specifying a
privilegeList.

Use the DELETE privilege type to grant permission to delete rows from the specified
table.

Use the INSERT privilege type to grant permission to insert rows into the specified table.

Use the REFERENCES privilege type to grant permission to create a foreign key
reference to the specified table. If a columnList is specified with the REFERENCES
privilege, the permission is valid on only the foreign key reference to the specified
columns.

Use the SELECT privilege type to grant permission to perform SELECT statements
or selectExpressions on a table or view. If a column list is specified with the SELECT
privilege, the permission is valid on only those columns. If no column list is specified, then
the privilege is valid on all of the columns in the table.

Derby Reference Manual

66

For queries that do not select a specific column from the tables involved in a SELECT
statement or selectExpression (for example, queries that use COUNT(*)), the user must
have at least one column-level SELECT privilege or table-level SELECT privilege.

Use the TRIGGER privilege type to grant permission to create a trigger on the specified
table.

Use the UPDATE privilege type to grant permission to use the UPDATE statement on the
specified table. If a column list is specified, the permission applies only to the specified
columns. To update a row using a statement that includes a WHERE clause, you must
have the SELECT privilege on the columns in the row that you want to update.

grantees

{ authorizationIdentifier | roleName | PUBLIC }
[, { authorizationIdentifier | roleName | PUBLIC }]*

You can grant privileges or roles to specific users or roles or to all users. Use the
keyword PUBLIC to specify all users. When PUBLIC is specified, the privileges or roles
affect all current and future users. The privileges granted to PUBLIC and to individual
users or roles are independent privileges. For example, a SELECT privilege on table t is
granted to both PUBLIC and to the authorization ID harry. The SELECT privilege is later
revoked from the authorization ID harry, but Harry can access the table t through the
PUBLIC privilege.

Either the object owner or the database owner can grant privileges to a user or to a role.
Only the database owner can grant a role to a user or to another role.

Examples
To grant the SELECT privilege on table t to the authorization IDs maria and harry, use
the following syntax:

GRANT SELECT ON TABLE t TO maria,harry

To grant the UPDATE and TRIGGER privileges on table t to the authorization IDs anita
and zhi, use the following syntax:

GRANT UPDATE, TRIGGER ON TABLE t TO anita,zhi

To grant the SELECT privilege on table s.v to all users, use the following syntax:

GRANT SELECT ON TABLE s.v to PUBLIC

To grant the EXECUTE privilege on procedure p to the authorization ID george, use the
following syntax:

GRANT EXECUTE ON PROCEDURE p TO george

To grant the role purchases_reader_role to the authorization IDs george and
maria, use the following syntax:

GRANT purchases_reader_role TO george,maria

To grant the SELECT privilege on table t to the role purchases_reader_role, use
the following syntax:

GRANT SELECT ON TABLE t TO purchases_reader_role

To grant the USAGE privilege on the sequence generator order_id to the role
sales_role, use the following syntax:

GRANT USAGE ON SEQUENCE order_id TO sales_role;

Derby Reference Manual

67

To grant the USAGE privilege on the user-defined type price to the role
finance_role, use the following syntax:

GRANT USAGE ON TYPE price TO finance_role;

To grant the USAGE privilege on the user-defined aggregate types.maxPrice to the
role sales_role, use the following syntax:

GRANT USAGE ON DERBY AGGREGATE types.maxPrice TO sales_role;

INSERT statement

The INSERT statement creates one or more rows and stores them in the named table.

The number of values assigned in an INSERT statement must be the same as the
number of specified or implied columns.

Whenever you insert into a table which has generated columns, Derby calculates the
values of those columns.

Syntax

INSERT INTO tableName
 [(simpleColumnName [, simpleColumnName]*)]
 query [ORDER BY clause]
 [result offset clause]
 [fetch first clause]

The query can be:
• A selectExpression
• A single-row or multiple-row VALUES expression

Single-row and multiple-row VALUES expressions can include the keyword
DEFAULT. Specifying DEFAULT for a column inserts the column's default value
into the column. Another way to insert the default value into the column is to omit
the column from the column list and only insert values into other columns in the
table. For more information, see VALUES expression.

The DEFAULT literal is the only value which you can directly insert into a generated
column.

• UNION expressions

When you want insertion to happen with a specific ordering (for example, in conjunction
with auto-generated keys), it can be useful to specify an ORDER BY clause on the result
set to be inserted.

If the query is a VALUES expression, it cannot contain or be followed by an ORDER BY,
result offset, or fetch first clause. However, if the VALUES expression does not contain
the DEFAULT keyword, the VALUES clause can be put in a subquery and ordered, as in
the following statement:

INSERT INTO t SELECT * FROM (VALUES 'a','c','b') t ORDER BY 1;

Examples

INSERT INTO COUNTRIES
 VALUES ('Taiwan', 'TW', 'Asia')

-- Insert a new department into the DEPARTMENT table,
-- but do not assign a manager to the new department
INSERT INTO DEPARTMENT (DEPTNO, DEPTNAME, ADMRDEPT)
 VALUES ('E31', 'ARCHITECTURE', 'E01')
-- Insert two new departments using one statement
-- into the DEPARTMENT table as in the previous example,

Derby Reference Manual

68

-- but do not assign a manager to the new department.
INSERT INTO DEPARTMENT (DEPTNO, DEPTNAME, ADMRDEPT)
 VALUES ('B11', 'PURCHASING', 'B01'),
 ('E41', 'DATABASE ADMINISTRATION', 'E01')
-- Create a temporary table MA_EMP_ACT with the
-- same columns as the EMP_ACT table.
-- Load MA_EMP_ACT with the rows from the EMP_ACT
-- table with a project number (PROJNO)
-- starting with the letters 'MA'.
CREATE TABLE MA_EMP_ACT
 (
 EMPNO CHAR(6) NOT NULL,
 PROJNO CHAR(6) NOT NULL,
 ACTNO SMALLINT NOT NULL,
 EMPTIME DEC(5,2),
 EMSTDATE DATE,
 EMENDATE DATE
);

INSERT INTO MA_EMP_ACT
 SELECT * FROM EMP_ACT
 WHERE SUBSTR(PROJNO, 1, 2) = 'MA';
-- Insert the DEFAULT value for the LOCATION column
INSERT INTO DEPARTMENT
 VALUES ('E31', 'ARCHITECTURE', '00390', 'E01', DEFAULT)

-- Create an AIRPORTS table and insert into it
-- some of the fields from the CITIES table, with the airport
-- codes sorted alphabetically
CREATE TABLE AIRPORTS (
 AIRPORT_ID INTEGER NOT NULL GENERATED ALWAYS AS IDENTITY
 PRIMARY KEY,
 AIRPORT VARCHAR(3),
 CITY VARCHAR(24) NOT NULL,
 COUNTRY VARCHAR(26) NOT NULL
);

INSERT INTO AIRPORTS (AIRPORT, CITY, COUNTRY)
 SELECT AIRPORT, CITY_NAME, COUNTRY FROM CITIES
 ORDER BY AIRPORT;

Statement dependency system

The INSERT statement depends on the table being inserted into, all of the conglomerates
(units of storage such as heaps or indexes) for that table, and any other table named in
the statement. Any statement that creates or drops an index or a constraint for the target
table of a prepared INSERT statement invalidates the prepared INSERT statement.

LOCK TABLE statement

The LOCK TABLE statement explicitly acquires a shared or exclusive table lock on the
specified table.

The table lock lasts until the end of the current transaction.

To lock a table, you must be either the database owner or the table owner.

Explicitly locking a table is useful to:
• Avoid the overhead of multiple row locks on a table (in other words, user-initiated

lock escalation)
• Avoid deadlocks

You cannot lock system tables with this statement.

Syntax

LOCK TABLE tableName IN { SHARE | EXCLUSIVE } MODE

Derby Reference Manual

69

After a table is locked in either mode, a transaction does not acquire any subsequent
row-level locks on a table. For example, if a transaction locks the entire Flights table in
share mode in order to read data, a particular statement might need to lock a particular
row in exclusive mode in order to update the row. However, the previous table-level lock
on the Flights table forces the exclusive lock to be table-level as well.

If the specified lock cannot be acquired because another connection already holds a lock
on the table, a statement-level exception is raised (SQLState X0X02) after the deadlock
timeout period.

Examples
To lock the entire Flights table in share mode to avoid a large number of row locks,
use the following statement:

LOCK TABLE Flights IN SHARE MODE;
SELECT *
FROM Flights
WHERE orig_airport > 'OOO';

You have a transaction with multiple UPDATE statements. Since each of the individual
statements acquires only a few row-level locks, the transaction will not automatically
upgrade the locks to a table-level lock. However, collectively the UPDATE statements
acquire and release a large number of locks, which might result in deadlocks. For this
type of transaction, you can acquire an exclusive table-level lock at the beginning of the
transaction. For example:

LOCK TABLE FlightAvailability IN EXCLUSIVE MODE;
UPDATE FlightAvailability
SET economy_seats_taken = (economy_seats_taken + 2)
WHERE flight_id = 'AA1265' AND flight_date = DATE('2004-03-31');

UPDATE FlightAvailability
SET economy_seats_taken = (economy_seats_taken + 2)
WHERE flight_id = 'AA1265' AND flight_date = DATE('2004-04-11');

UPDATE FlightAvailability
SET economy_seats_taken = (economy_seats_taken + 2)
WHERE flight_id = 'AA1265' AND flight_date = DATE('2004-04-12');

UPDATE FlightAvailability
SET economy_seats_taken = (economy_seats_taken + 2)
WHERE flight_id = 'AA1265' AND flight_date = DATE('2004-04-15');

If a transaction needs to look at a table before updating the table, acquire an exclusive
lock before selecting to avoid deadlocks. For example:

LOCK TABLE Maps IN EXCLUSIVE MODE;
SELECT MAX(map_id) + 1 FROM Maps;
-- INSERT INTO Maps . . .

MERGE statement

The MERGE statement scans a table and either INSERTs, UPDATEs, or DELETEs rows
depending on whether the rows satisfy a specified condition.

Syntax

MERGE INTO targetTable [[AS] targetCorrelationName]
USING sourceTable [[AS] sourceCorrelationName]
ON searchCondition mergeWhenClause [mergeWhenClause]*

Both targetTable and sourceTable are tableNames.

Derby Reference Manual

70

targetTable must identify a base table. targetTable may not be a transition table in a
triggered statement, and it may not be a synonym.

sourceTable must identify a base table or a table function, and it may not be a synonym.

Both targetCorrelationName and sourceCorrelationName are correlationNames.

The unqualified source table name (or its correlation name) may not be the same as the
unqualified target table name (or its correlation name).

The searchCondition is a Boolean expression. Columns referenced by the
searchCondition must be in either targetTable or sourceTable. Functions mentioned in
the searchCondition may not modify SQL data.

The row count for a successful MERGE statement is the total number of rows inserted,
updated, and deleted by the statement.

Note: The MERGE statement is valid only after a database has been fully upgraded to
Derby Release 10.11 or higher. (See "Upgrading a database" in the Derby Developer's
Guide for more information.) This statement has no meaning in a database that is at
Release 10.10 or lower.

mergeWhenClause

mergeWhenMatched | mergeWhenNotMatched

mergeWhenMatched

WHEN MATCHED [AND matchRefinement] THEN { mergeUpdate | DELETE }

The matchRefinement is a Boolean expression. Columns referenced by the
matchRefinement must be in either targetTable or sourceTable. Functions mentioned in
the matchRefinement may not modify SQL data.

mergeWhenNotMatched

WHEN NOT MATCHED [AND matchRefinement] THEN mergeInsert

The matchRefinement is a Boolean expression. Columns referenced by the
matchRefinement must be in either targetTable or sourceTable. Functions mentioned in
the matchRefinement may not modify SQL data.

Although permitted to do so by the SQL Standard, Derby does not currently support
subqueries in WHEN [NOT] MATCHED clauses.

mergeUpdate

UPDATE SET column-Name = value [, column-Name = value]*

Columns updated must be columns in targetTable.

Functions mentioned in the UPDATE values may not modify SQL data.

On the right side of SET operators for UPDATE actions, DEFAULT is the only value
allowed for generated and identity columns.

No list of updated columns may mention the same column more than once.

The data types of updated values must be assignable to the corresponding columns
according to the rules documented in Data type assignments and comparison, sorting,
and ordering.

mergeInsert

INSERT [(Simple-column-Name [, Simple-column-Name]*)] VALUES (
 value [, value]*)

Derby Reference Manual

71

Columns inserted must be columns in targetTable.

Functions mentioned in the INSERT values may not modify SQL data.

No list of inserted columns may mention identity columns, or may mention the same
column more than once.

In a VALUES clause, DEFAULT is the only allowed value for generated columns.

The data types of inserted values must be assignable to the corresponding columns
according to the rules documented in Data type assignments and comparison, sorting,
and ordering.

Required privileges

The user who executes a MERGE statement must have the following privileges. See
GRANT statement for information on privileges.

• UPDATE privilege on every updated column of targetTable. A blanket UPDATE
privilege on the entire targetTable would cover this.

• INSERT privilege on targetTable if there are WHEN NOT MATCHED clauses.
• DELETE privilege on targetTable if there are WHEN MATCHED ... THEN DELETE

clauses.
• EXECUTE privilege on all functions mentioned in the Boolean expressions and in

the INSERT/UPDATE values.
• USAGE privilege on all sequences and user-defined types mentioned in the

Boolean expressions and in the INSERT/UPDATE values. See CREATE
SEQUENCE statement and CREATE TYPE statement for more information.

• SELECT privilege on all columns mentioned in the Boolean expressions and the
value expressions of SET clauses.

MERGE statement behavior

The MERGE statement behaves as described in the following table.

Table 3. Merge statement behavior

Situation or Behavior Description

Source table is empty If the sourceTable is empty, a "no data" warning is
raised with SQLState 02000.

An initial join is performed Before any changes are made to targetTable,
the sourceTable is joined to the targetTable by
means of the ON clause. Call this join result J. Let
N denote the rows in sourceTable missing from this
join.

Clause order is important The mergeWhenMatched and
mergeWhenNotMatched clauses are applied in
declaration order.

The first matched clause wins For each row in J, Derby applies only the
first mergeWhenMatched clause whose
matchRefinement is satisfied.

The first not matched clause wins For each row in N, Derby applies only the
first mergeWhenNotMatched clause whose
matchRefinement is satisfied.

Double dipping is not permitted A cardinality violation is raised if a MERGE
statement attempts to change (update or delete)
the same row twice. This condition can occur if

Derby Reference Manual

72

Situation or Behavior Description

more than one source row joins to the same target
row.

Examples

MERGE INTO hotIssues h
USING issues i
ON h.issueID = i.issueID
WHEN MATCHED AND i.lastUpdated = CURRENT_DATE
 THEN UPDATE SET h.lastUpdated = i.lastUpdated
WHEN MATCHED AND i.lastUpdated < CURRENT_DATE THEN DELETE
WHEN NOT MATCHED AND i.lastUpdated = CURRENT_DATE
 THEN INSERT VALUES (i.issueID, i.lastUpdated);

MERGE INTO companies c
USING adhocInvoices a
ON a.companyName = c.companyName
WHEN NOT MATCHED THEN INSERT (companyName) VALUES (a.companyName);

MERGE INTO warehouse.productList w
USING production.productList p
ON w.productID = p.productID
WHEN MATCHED and w.lastUpdated != p.lastUpdated
 THEN UPDATE SET lastUpdated = p.lastUpdated,
 description = p.description,
 price = p.price
WHEN NOT MATCHED
 THEN INSERT values (p.productID, p.lastUpdated, p.description,
 p.price);

RENAME statements

Use the RENAME statements with indexes, columns, and tables.

RENAME COLUMN statement

The RENAME COLUMN statement renames an existing column in an existing table in
any schema (except the schema SYS).

To rename a column, you must be either the database owner or the table owner.

Other types of table alterations are possible; see ALTER TABLE statement for more
information.

Syntax

RENAME COLUMN tableName.simpleColumnName TO simpleColumnName

Examples
To rename the manager column in table employee to supervisor, use the following
syntax:

RENAME COLUMN EMPLOYEE.MANAGER TO SUPERVISOR

You can combine ALTER TABLE and RENAME COLUMN to modify a column's data
type. To change column c1 of table t to the new data type NEWTYPE:

 ALTER TABLE t ADD COLUMN c1_newtype NEWTYPE
 UPDATE t SET c1_newtype = c1
 ALTER TABLE t DROP COLUMN c1
 RENAME COLUMN t.c1_newtype TO c1

Usage notes

Derby Reference Manual

73

Restriction: If a view, trigger, check constraint, or generationClause of a generated
column references the column, an attempt to rename it will generate an error.
Restriction: The RENAME COLUMN statement is not allowed if there are any open
cursors that reference the column that is being altered.
Note: If there is an index defined on the column, the column can still be renamed; the
index is automatically updated to refer to the column by its new name
RENAME INDEX statement

The RENAME INDEX statement renames an index in the current schema, which can be
any schema except the schema SYS.

Syntax

RENAME INDEX indexName TO newIndexName

Example

RENAME INDEX DESTINDEX TO ARRIVALINDEX

Statement dependency system

RENAME INDEX is not allowed if there are any open cursors that reference the index
being renamed.

RENAME TABLE statement

The RENAME TABLE statement renames an existing table in any schema (except the
schema SYS).

To rename a table, you must be either the database owner or the table owner.

Syntax

RENAME TABLE tableName TO newTableName

If there is a view that references the table, attempts to rename it will generate an error. In
addition, if there are any check constraints or triggers on the table, attempts to rename it
will also generate an error.

Example

RENAME TABLE SAMP.EMP_ACT TO EMPLOYEE_ACT

See ALTER TABLE statement for more information.

Statement dependency system

The RENAME TABLE statement is not allowed if there are any open cursors that
reference the table that is being altered.

REVOKE statement

The REVOKE statement removes privileges from a specific user or role, or from all users,
to perform actions on database objects.

You can also use the REVOKE statement to revoke a role from a user, from PUBLIC, or
from another role.

The following types of privileges can be revoked:
• Delete data from a specific table.
• Insert data into a specific table.
• Create a foreign key reference to the named table or to a subset of columns from a

table.
• Select data from a table, view, or a subset of columns in a table.

Derby Reference Manual

74

• Create a trigger on a table.
• Update data in a table or in a subset of columns in a table.
• Run a specified routine (function or procedure).
• Use a sequence generator, a user-defined type, or a user-defined aggregate.

The derby.database.sqlAuthorization property must be set to true before you can use
the GRANT statement or the REVOKE statement. The derby.database.sqlAuthorization
property enables SQL Authorization mode.

You can revoke privileges for an object if you are the owner of the object or the database
owner.

The syntax that you use for the REVOKE statement depends on whether you are
revoking privileges to a schema object or revoking a role.

For more information on using the REVOKE statement, see "Using fine-grained user
authorization" in the Derby Security Guide.

Syntax for tables

REVOKE privilegeType ON [TABLE] { tableName | viewName } FROM revokees

Revoking a privilege without specifying a column list revokes the privilege for all of the
columns in the table.

Syntax for routines

REVOKE EXECUTE ON FUNCTION functionName FROM revokees RESTRICT

REVOKE EXECUTE ON PROCEDURE procedureName FROM revokees RESTRICT

You must use the RESTRICT clause on REVOKE statements for routines. The
RESTRICT clause specifies that the EXECUTE privilege cannot be revoked if the
specified routine is used in a view, trigger, or constraint, and the privilege is being
revoked from the owner of the view, trigger, or constraint.

Syntax for sequence generators

REVOKE USAGE ON SEQUENCE sequenceName FROM revokees RESTRICT

In order to use a sequence generator, you must have the USAGE privilege on it. This
privilege can be revoked from users and roles. Only RESTRICTed revokes are allowed.
This means that the REVOKE statement cannot make a view, trigger, or constraint
unusable by its owner. The USAGE privilege cannot be revoked from the schema owner.
See CREATE SEQUENCE statement for more information.

Syntax for user-defined types

REVOKE USAGE ON TYPE typeName FROM revokees RESTRICT

In order to use a user-defined type, you must have the USAGE privilege on it. This
privilege can be revoked from users and roles. Only RESTRICTed revokes are allowed.
This means that the REVOKE statement cannot make a view, trigger, or constraint
unusable by its owner. The USAGE privilege cannot be revoked from the schema owner.
See CREATE TYPE statement for more information.

Syntax for user-defined aggregates

REVOKE USAGE ON DERBY AGGREGATE aggregateName FROM revokees RESTRICT

In order to use a user-defined aggregate, you must have the USAGE privilege on it. This
privilege can be revoked from users and roles. Only RESTRICTed revokes are allowed.
This means that the REVOKE statement cannot make a view or trigger unusable by its

Derby Reference Manual

75

owner. The USAGE privilege cannot be revoked from the schema owner. See CREATE
DERBY AGGREGATE statement for more information.

Syntax for roles

REVOKE roleName [, roleName]* FROM revokees

Only the database owner can revoke a role.

privilegeType

 ALL PRIVILEGES | privilegeList

privilegeList

tablePrivilege [, tablePrivilege]*

tablePrivilege

 DELETE |
 INSERT |
 REFERENCES [columnList] |
 SELECT [columnList] |
 TRIGGER |
 UPDATE [columnList]

columnList

 (columnIdentifier [, columnIdentifier]*)

Use the ALL PRIVILEGES privilege type to revoke all of the privileges from the user
or role for the specified table. You can also revoke one or more table privileges by
specifying a privilegeList.

Use the DELETE privilege type to revoke permission to delete rows from the specified
table.

Use the INSERT privilege type to revoke permission to insert rows into the specified
table.

Use the REFERENCES privilege type to revoke permission to create a foreign key
reference to the specified table. If a column list is specified with the REFERENCES
privilege, the permission is revoked on only the foreign key reference to the specified
columns.

Use the SELECT privilege type to revoke permission to perform SELECT statements on
a table or view. If a column list is specified with the SELECT privilege, the permission is
revoked on only those columns. If no column list is specified, then the privilege is valid on
all of the columns in the table.

Use the TRIGGER privilege type to revoke permission to create a trigger on the specified
table.

Use the UPDATE privilege type to revoke permission to use the UPDATE statement
on the specified table. If a column list is specified, the privilege is revoked only on the
specified columns.

revokees

{ authorizationIdentifier | roleName | PUBLIC }
[, { authorizationIdentifier | roleName | PUBLIC }]*

You can revoke the privileges from specific users or roles or from all users. Use the
keyword PUBLIC to specify all users. The privileges revoked from PUBLIC and from
individual users or roles are independent privileges. For example, a SELECT privilege

Derby Reference Manual

76

on table t is revokeed to both PUBLIC and to the authorization ID harry. The SELECT
privilege is later revoked from the authorization ID harry, but the authorization ID harry
can access the table t through the PUBLIC privilege.

You can revoke a role from a role, from a user, or from PUBLIC.

Restriction: You cannot revoke the privileges of the owner of an object.

Prepared statements and open result sets/cursors

Checking for privileges happens at statement execution time, so prepared statements are
still usable after a revoke action. If sufficient privileges are still available for the session,
prepared statements will be executed, and for queries, a result set will be returned.

Once a result set has been returned to the application (by executing a prepared
statement or by direct execution), it will remain accessible even if privileges or roles are
revoked in a way that would cause another execution of the same statement to fail.

Cascading object dependencies

For views, triggers, and constraints, if the privilege on which the object depends on is
revoked, the object is automatically dropped. Derby does not try to determine if you
have other privileges that can replace the privileges that are being revoked. For more
information, see "Configuring fine-grained user authorization" and "Privileges on views,
triggers, constraints, and generated columns" in the Derby Security Guide.

Limitations

The following limitations apply to the REVOKE statement:

Table-level privileges
All of the table-level privilege types for a specified revokeee and table ID are stored
in one row in the SYSTABLEPERMS system table. For example, when user2 is
revokeed the SELECT and DELETE privileges on table user1.t1, a row is added to
the SYSTABLEPERMS table. The GRANTEE field contains user2 and the TABLEID
contains user1.t1. The SELECTPRIV and DELETEPRIV fields are set to Y. The
remaining privilege type fields are set to N.

When a revokeee creates an object that relies on one of the privilege types,
the Derby engine tracks the dependency of the object on the specific row in the
SYSTABLEPERMS table. For example, user2 creates the view v1 by using the
statement SELECT * FROM user1.t1, the dependency manager tracks the
dependency of view v1 on the row in SYSTABLEPERMS for GRANTEE(user2),
TABLEID(user1.t1). The dependency manager knows only that the view is
dependent on a privilege type in that specific row, but does not track exactly which
privilege type the view is dependent on.

When a REVOKE statement for a table-level privilege is issued for a revokeee and
table ID, all of the objects that are dependent on the revokeee and table ID are
dropped. For example, if user1 revokes the DELETE privilege on table t1 from
user2, the row in SYSTABLEPERMS for GRANTEE(user2), TABLEID(user1.t1)
is modified by the REVOKE statement. The dependency manager sends a revoke
invalidation message to the view user2.v1 and the view is dropped even though
the view is not dependent on the DELETE privilege for GRANTEE(user2),
TABLEID(user1.t1).

Column-level privileges
Only one type of privilege for a specified revokeee and table ID are stored in one
row in the SYSCOLPERMS system table. For example, when user2 is revokeed the
SELECT privilege on table user1.t1 for columns c12 and c13, a row is added to
the SYSCOLPERMS. The GRANTEE field contains user2, the TABLEID contains
user1.t1, the TYPE field contains S, and the COLUMNS field contains c12, c13.

Derby Reference Manual

77

When a revokeee creates an object that relies on the privilege type and the subset
of columns in a table ID, the Derby engine tracks the dependency of the object on
the specific row in the SYSCOLPERMS table. For example, user2 creates the
view v1 by using the statement SELECT c11 FROM user1.t1, the dependency
manager tracks the dependency of view v1 on the row in SYSCOLPERMS for
GRANTEE(user2), TABLEID(user1.t1), TYPE(S). The dependency manager
knows that the view is dependent on the SELECT privilege type, but does not track
exactly which columns the view is dependent on.

When a REVOKE statement for a column-level privilege is issued for a revokeee,
table ID, and type, all of the objects that are dependent on the revokeee, table
ID, and type are dropped. For example, if user1 revokes the SELECT privilege
on column c12 on table user1.t1 from user2, the row in SYSCOLPERMS for
GRANTEE(user2), TABLEID(user1.t1), TYPE(S) is modified by the REVOKE
statement. The dependency manager sends a revoke invalidation message to the
view user2.v1 and the view is dropped even though the view is not dependent on
the column c12 for GRANTEE(user2), TABLEID(user1.t1), TYPE(S).

Roles
Derby tracks any dependencies on the definer's current role for views, constraints,
and triggers. If privileges were obtainable only via the current role when the object
in question was defined, that object depends on the current role. The object will
be dropped if the role is revoked from the defining user or from PUBLIC, as the
case may be. Also, if a contained role of the current role in such cases is revoked,
dependent objects will be dropped. Note that dropping may be too pessimistic. This
is because Derby does not currently make an attempt to recheck if the necessary
privileges are still available in such cases.

Revoke examples
To revoke the SELECT privilege on table t from the authorization IDs maria and harry,
use the following syntax:

REVOKE SELECT ON TABLE t FROM maria,harry

To revoke the UPDATE and TRIGGER privileges on table t from the authorization IDs
anita and zhi, use the following syntax:

REVOKE UPDATE, TRIGGER ON TABLE t FROM anita,zhi

To revoke the SELECT privilege on table s.v from all users, use the following syntax:

REVOKE SELECT ON TABLE s.v FROM PUBLIC

To revoke the UPDATE privilege on columns c1 and c2 of table s.v from all users, use
the following syntax:

REVOKE UPDATE (c1,c2) ON TABLE s.v FROM PUBLIC

To revoke the EXECUTE privilege on procedure p from the authorization ID george, use
the following syntax:

REVOKE EXECUTE ON PROCEDURE p FROM george RESTRICT

To revoke the role purchases_reader_role from the authorization IDs george and
maria, use the following syntax:

REVOKE purchases_reader_role FROM george,maria

To revoke the SELECT privilege on table t from the role purchases_reader_role,
use the following syntax:

REVOKE SELECT ON TABLE t FROM purchases_reader_role

Derby Reference Manual

78

To revoke the USAGE privilege on the sequence generator order_id from the role
sales_role, use the following syntax:

REVOKE USAGE ON SEQUENCE order_id FROM sales_role;

To revoke the USAGE privilege on the user-defined type price from the role
finance_role, use the following syntax:

REVOKE USAGE ON TYPE price FROM finance_role;

To revoke the USAGE privilege on the user-defined aggregate types.maxPrice from
the role sales_role, use the following syntax:

REVOKE USAGE ON DERBY AGGREGATE types.maxPrice FROM sales_role;

SELECT statement

The SELECT statement performs a query on one or more tables.

Syntax

query
[ORDER BY clause]
[result offset clause]
[fetch first clause]
[FOR UPDATE clause]
[WITH { RR | RS | CS | UR }]

A SELECT statement consists of a query with an optional ORDER BY clause, an optional
result offset clause, an optional fetch first clause, an optional FOR UPDATE clause, and
an optional isolation level. The SELECT statement is so named because the typical first
word of the query construct is SELECT. (A query includes the VALUES expression and
UNION, INTERSECT, and EXCEPT expressions as well as SELECT expressions).

The ORDER BY clause guarantees the ordering of the ResultSet. The result offset clause
and the fetch first clause can be used to fetch only a subset of the otherwise selected
rows, possibly with an offset into the result set. The FOR UPDATE clause makes the
result set's cursor updatable. The SELECT statement supports the FOR FETCH ONLY
clause. The FOR FETCH ONLY clause is synonymous with the FOR READ ONLY
clause.

You can set the isolation level in a SELECT statement using the WITH { RR | RS |
CS | UR } syntax.

For queries that do not select a specific column from the tables involved in the SELECT
statement (for example, queries that use COUNT(*)), the user must have at least one
column-level SELECT privilege or table-level SELECT privilege. See GRANT statement
for more information.

Example

-- lists the names of the expression
-- SAL+BONUS+COMM as TOTAL_PAY and
-- orders by the new name TOTAL_PAY
SELECT FIRSTNME, SALARY+BONUS+COMM AS TOTAL_PAY
 FROM EMPLOYEE
 ORDER BY TOTAL_PAY
-- creating an updatable cursor with a FOR UPDATE clause
-- to update the start date (PRSTDATE) and the end date (PRENDATE)
-- columns in the PROJECT table
SELECT PROJNO, PRSTDATE, PRENDATE
 FROM PROJECT
 FOR UPDATE OF PRSTDATE, PRENDATE
-- set the isolation level to RR for this statement only

Derby Reference Manual

79

SELECT *
FROM Flights
WHERE flight_id BETWEEN 'AA1111' AND 'AA1112'
WITH RR

A SELECT statement returns a ResultSet. A cursor is a pointer to a specific row in
ResultSet. In Java applications, all ResultSets have an underlying associated SQL
cursor, often referred to as the result set's cursor. The cursor can be updatable,
that is, you can update or delete rows as you step through the ResultSet if the
SELECT statement that generated it and its underlying query meet cursor updatability
requirements, as detailed below. The FOR UPDATE clause can be used to ensure a
compilation check that the SELECT statement meets the requiremments of a updatable
cursors, or to limit the columns that can be updated.
Note: The ORDER BY clause allows you to order the results of the SELECT. Without
the ORDER BY clause, the results are returned in random order.

Requirements for updatable cursors and updatable ResultSets
Only simple, single-table SELECT cursors can be updatable. The SELECT statement
for updatable ResultSets has the same syntax as the SELECT statement for updatable
cursors. To generate updatable cursors:

• The SELECT statement must not include an ORDER BY clause.
• The underlying query must be a selectExpression.
• The selectExpression in the underlying query must not include:

• DISTINCT
• Aggregates
• GROUP BY clause
• HAVING clause
• ORDER BY clause

• The FROM clause in the underlying query must not have:
• More than one table in its FROM clause
• Anything other than one table name
• selectExpressions
• Subqueries

• If the underlying query has a WHERE clause, the WHERE clause must not have
subqueries.

Note: Cursors are read-only by default. To produce an updatable cursor besides
meeting the requirements listed above, the concurrency mode for the ResultSet must be
ResultSet.CONCUR_UPDATABLE or the SELECT statement must have FOR UPDATE
in the FOR clause (see FOR UPDATE clause).

There is no SQL language statement to assign a name to a cursor. Instead, one can use
the JDBC API to assign names to cursors or retrieve system-generated names. For more
information, see "Naming or accessing the name of a cursor" in the Derby Developer's
Guide.

Statement dependency system

The SELECT depends on all the tables and views named in the query and the
conglomerates (units of storage such as heaps and indexes) chosen for access paths
on those tables. CREATE INDEX does not invalidate a prepared SELECT statement.
A DROP INDEX statement invalidates a prepared SELECT statement if the index is
an access path in the statement. If the SELECT includes views, it also depends on the
dictionary objects on which the view itself depends (see CREATE VIEW statement).

Any prepared UPDATE WHERE CURRENT or DELETE WHERE CURRENT statement
against a cursor of a SELECT depends on the SELECT. Removing a SELECT through
a java.sql.Statement.close request invalidates the UPDATE WHERE CURRENT or
DELETE WHERE CURRENT.

Derby Reference Manual

80

The SELECT depends on all aliases used in the query. Dropping an alias invalidates a
prepared SELECT statement if the statement uses the alias.

SET statements

Use the SET statements to set the current deferrability for constraints or to set the current
role, schema, or isolation level.

SET CONSTRAINTS statement

The SET CONSTRAINTS statement sets the deferrability of one or more constraints.

The SET CONSTRAINTS statement allows you to set the constraint mode for one or
more constraints either to DEFERRED or to IMMEDIATE.

When you use the statement to change a constraint from DEFERRED to IMMEDIATE,
the constraint is checked as soon as the statement is executed.

If the check fails, the transaction is not rolled back; an error here constitutes a statement
level error only. Therefore, you can use this statement to check if all constraints are
fulfilled before you attempt to commit the transaction.

A SET CONSTRAINTS statement changes the state of a constraint only until the
transaction ends (or until another, overriding SET CONSTRAINTS statement is issued).
Once the transaction ends, the constraint reverts to the default behavior declared for it at
the time it was created (using a CREATE TABLE or ALTER TABLE statement).

For more information on deferrable constraints, see CONSTRAINT clause and
constraintCharacteristics.

It is recommended that you use SET CONSTRAINTS on table-level constraints. If you
use SET CONSTRAINTS on a column-level constraint, you will need to find the name
of the corresponding index by performing queries against the system tables, which is
cumbersome and requires additional non-portable SQL.

Note: The SET CONSTRAINTS statement is valid only after a database has been fully
upgraded to Derby Release 10.11 or higher. (See "Upgrading a database" in the Derby
Developer's Guide for more information.) This statement has no meaning in a database
that is at Release 10.10 or lower.

Syntax

SET CONSTRAINTS constraintNameList { DEFERRED | IMMEDIATE }

The constraintNameList is defined as follows:

ALL | constraintName [{ , constraintName }...]

Runtime behavior

If the constraint mode is DEFERRED and a violation is seen at commit time, an exception
is thrown, and the transaction is rolled back.

When you change the constraint mode explicitly to IMMEDIATE using SET
CONSTRAINTS, the constraint is checked, but slightly differently from the way it is
checked at commit time: if a violation is found, a statement-level exception is thrown. You
can use this behavior to verify that constraints are fulfilled before you attempt to commit.

If the constraint mode is IMMEDIATE upon entering a stored routine, and that routine in
a nested connection changes the constraint mode to DEFERRED, any constraints that
are affected are checked upon return from the routine. If the check fails, an exception is
thrown, and the transaction is rolled back.

Derby Reference Manual

81

Constraints with a constraint mode of DEFERRED are also checked if the
application calls XAResource.prepare(Xid). If there is a violation, Derby throws
XAException.XA_RBINTEGRITY, and the XA transaction is rolled back.

Examples

SET CONSTRAINTS FOO DEFERRED;

SET CONSTRAINTS ALL DEFERRED;

SET CONSTRAINTS FOO, BAR IMMEDIATE;

SET ISOLATION statement

The SET ISOLATION statement changes the isolation level for a user's connection.

Valid isolation levels are SERIALIZABLE, REPEATABLE READ, READ COMMITTED,
and READ UNCOMMITTED.

Issuing this statement always commits the current transaction. The JDBC
java.sql.Connection.setTransactionIsolation method behaves almost identically to this
command, with one exception: if you are using the embedded driver, and if the call to
java.sql.Connection.setTransactionIsolation does not actually change the isolation level
(that is, if it sets the isolation level to its current value), the current transaction is not
committed.

For information about isolation levels, see "Locking, concurrency,
and isolation" in the Derby Developer's Guide. For information about
the JDBC java.sql.Connection.setTransactionIsolation method, see
java.sql.Connection.setTransactionIsolation method.

Syntax

SET [CURRENT] ISOLATION [=]
{
 UR | DIRTY READ | READ UNCOMMITTED |
 CS | READ COMMITTED | CURSOR STABILITY |
 RS |
 RR | REPEATABLE READ | SERIALIZABLE |
 RESET
}

Example

set isolation serializable;

SET ROLE statement

The SET ROLE statement sets the current role for the current SQL context of a session.

You can set a role only if the current user has been granted the role, or if the role has
been granted to PUBLIC.

For more information on roles, see "Using SQL roles" in the Derby Security Guide.

Syntax

SET ROLE { roleName | 'stringConstant' | ? | NONE }

If you specify a roleName of NONE, the effect is to unset the current role.

If you specify the role as a string constant or as a dynamic parameter specification (?),
any leading and trailing blanks are trimmed from the string before attempting to use the
remaining (sub)string as a roleName. The dynamic parameter specification can be used

Derby Reference Manual

82

in prepared statements, so the SET ROLE statement can be prepared once and then
executed with different role values. You cannot specify NONE as a dynamic parameter.

Setting a role identifies a set of privileges that is a union of the following:

• The privileges granted to that role
• The union of privileges of roles contained in that role (for a definition of role

containment, see "Syntax for roles" in GRANT statement)

In a session, the current privileges define what the session is allowed to access. The
current privileges are the union of the following:

• The privileges granted to the current user
• The privileges granted to PUBLIC
• The privileges identified by the current role, if set

The SET ROLE statement is not transactional; a rollback does not undo the effect of
setting a role. If a transaction is in progress, an attempt to set a role results in an error.

Examples

SET ROLE reader;

 // These examples show the use of SET ROLE in JDBC statements.
 // The case normal form is visible in the SYS.SYSROLES system table.
 stmt.execute("SET ROLE admin"); -- case normal form: ADMIN
 stmt.execute("SET ROLE \"admin\""); -- case normal form: admin
 stmt.execute("SET ROLE none"); -- special case

 PreparedStatement ps = conn.prepareStatement("SET ROLE ?");
 ps.setString(1, " admin "); -- on execute: case normal form: ADMIN
 ps.setString(1, "\"admin\""); -- on execute: case normal form: admin
 ps.setString(1, "none"); -- on execute: syntax error
 ps.setString(1, "\"none\""); -- on execute: case normal form: none

SET SCHEMA statement

The SET SCHEMA statement sets the default schema for a connection's session to the
designated schema.

The default schema is used as the target schema for all statements issued from the
connection that do not explicitly specify a schema name.

The target schema must exist for the SET SCHEMA statement to succeed. If the schema
doesn't exist an error is returned. See CREATE SCHEMA statement.

The SET SCHEMA statement is not transactional: If the SET SCHEMA statement is part
of a transaction that is rolled back, the schema change remains in effect.

Syntax

SET [CURRENT] SCHEMA [=] { schemaName | USER | ? | 'stringConstant' }
 |
SET CURRENT SQLID [=] { schemaName | USER | ? | 'stringConstant' }

The schemaName is an identifier with a maximum length of 128. It is case insensitive
unless enclosed in double quotes. (For example, SYS is equivalent to sYs, SYs, and
sys.)

USER is the current user. If no current user is defined, the current schema defaults to
the APP schema. (If a user name was specified upon connection, the user's name is the
default schema for the connection, if a schema with that name exists.)

? is a dynamic parameter specification that can be used in prepared statements. The
SET SCHEMA statement can be prepared once and then executed with different schema

Derby Reference Manual

83

values. The schema values are treated as string constants so they are case sensitive.
For example, to designate the APP schema, use the string "APP" rather than "app".

Examples

-- The following are all equivalent and will work
-- assuming a schema called HOTEL
SET SCHEMA HOTEL
SET SCHEMA hotel
SET CURRENT SCHEMA hotel
SET CURRENT SQLID hotel
SET SCHEMA = hotel
SET CURRENT SCHEMA = hotel
SET CURRENT SQLID = hotel
SET SCHEMA "HOTEL" -- quoted identifier
SET SCHEMA 'HOTEL' -- quoted string-- This example produces an error
 because
 -- lower case hotel won't be found
SET SCHEMA = 'hotel'
 -- This example produces an error because SQLID is not
 -- allowed without CURRENT
SET SQLID hotel
 -- This sets the schema to the current user id
SET CURRENT SCHEMA USER

// Here's an example of using SET SCHEMA in an Java program
PreparedStatement ps = conn.PrepareStatement("set schema ?");
ps.setString(1,"HOTEL");
ps.executeUpdate();
... do some work
ps.setString(1,"APP");
ps.executeUpdate();

ps.setString(1,"app"); //error - string is case sensitive
// no app will be found
ps.setNull(1, Types.VARCHAR); //error - null is not allowed

TRUNCATE TABLE statement

The TRUNCATE TABLE statement quickly removes all content from the specified table
and returns it to its initial empty state.

To truncate a table, you must be either the database owner or the table owner.

You cannot truncate system tables or global temporary tables with this statement.

Syntax

TRUNCATE TABLE tableName

Examples
To truncate the entire Flights table, use the following statement:

TRUNCATE TABLE Flights;

UPDATE statement

The UPDATE statement updates the value of one or more columns of a table.

Syntax

{
 UPDATE tableName [[AS] correlationName]]
 SET columnName = value
 [, columnName = value]*

Derby Reference Manual

84

 [WHERE clause]
 |
 UPDATE tableName
 SET columnName = value
 [, columnName = value]*
 WHERE CURRENT OF
}

where value is defined as follows:

expression | DEFAULT

The first syntactical form, called a searched update, updates the value of one or more
columns for all rows of the table for which the WHERE clause evaluates to TRUE.

The second syntactical form, called a positioned update, updates one or more columns
on the current row of an open, updatable cursor. If columns were specified in the FOR
UPDATE clause of the SELECT statement used to generate the cursor, only those
columns can be updated. If no columns were specified or the select statement did not
include a FOR UPDATE clause, all columns may be updated.

Specifying DEFAULT for the update value sets the value of the column to the default
defined for that table.

The DEFAULT literal is the only value which you can directly assign to a generated
column. Whenever you alter the value of a column referenced by the generationClause of
a generated column, Derby recalculates the value of the generated column.

Example

-- All the employees except the manager of
-- department (WORKDEPT) 'E21' have been temporarily reassigned.
-- Indicate this by changing their job (JOB) to NULL and their pay
-- (SALARY, BONUS, COMM) values to zero in the EMPLOYEE table.
UPDATE EMPLOYEE
 SET JOB=NULL, SALARY=0, BONUS=0, COMM=0
 WHERE WORKDEPT = 'E21' AND JOB <> 'MANAGER'

-- PROMOTE the job (JOB) of employees without a specific job title to
 MANAGER
UPDATE EMPLOYEE
 SET JOB = 'MANAGER'
 WHERE JOB IS NULL;
// Increase the project staffing (PRSTAFF) by 1.5 for all projects
stmt.executeUpdate("UPDATE PROJECT SET PRSTAFF = "
"PRSTAFF + 1.5" +
"WHERE CURRENT OF" + ResultSet.getCursorName());

-- Change the job (JOB) of employee number (EMPNO) '000290' in the
 EMPLOYEE table
-- to its DEFAULT value which is NULL
UPDATE EMPLOYEE
 SET JOB = DEFAULT
 WHERE EMPNO = '000290'

Statement dependency system

A searched update statement depends on the table being updated, all of its
conglomerates (units of storage such as heaps or indexes), all of its constraints, and
any other table named in the WHERE clause or SET expressions. A CREATE or DROP
INDEX statement or an ALTER TABLE statement for the target table of a prepared
searched update statement invalidates the prepared searched update statement.

The positioned update statement depends on the cursor and any tables the cursor
references. You can compile a positioned update even if the cursor has not been opened

Derby Reference Manual

85

yet. However, removing the open cursor with the JDBC close method invalidates the
positioned update.

A CREATE or DROP INDEX statement or an ALTER TABLE statement for the target
table of a prepared positioned update invalidates the prepared positioned update
statement.

Dropping an alias invalidates a prepared update statement if the latter statement uses the
alias.

Dropping or adding triggers on the target table of the update invalidates the update
statement.

SQL clauses

CONSTRAINT clause

A CONSTRAINT clause is an optional part of a CREATE TABLE statement or an ALTER
TABLE statement. A constraint is a rule to which data must conform. Constraint names
are optional.

See CREATE TABLE statement and rrefsqlj81859 for details on those statements.

A CONSTRAINT can be one of the following:
• A columnLevelConstraint

Column-level constraints refer to a single column in the table and do not specify a
column name (except check constraints). They refer to the column that they follow.

• A tableLevelConstraint

Table-level constraints refer to one or more columns in the table. Table-level
constraints specify the names of the columns to which they apply. Table-level
CHECK constraints can refer to 0 or more columns in the table.

Column constraints include:
• NOT NULL

Specifies that this column cannot hold NULL values (constraints of this type are not
nameable).

• PRIMARY KEY

Specifies the column that uniquely identifies a row in the table. The identified
columns must be defined as NOT NULL.

Note: If you attempt to add a primary key using ALTER TABLE and any of the
columns included in the primary key contain null values, an error will be generated
and the primary key will not be added. See ALTER TABLE statement for more
information.

• UNIQUE

Specifies that values in the column must be unique.
• FOREIGN KEY

Specifies that the values in the column must correspond to values in a referenced
primary key or unique key column or that they are NULL.

• CHECK

Specifies rules for values in the column.

Table constraints include:
• PRIMARY KEY

Derby Reference Manual

86

Specifies the column or columns that uniquely identify a row in the table. NULL
values are not allowed.

• UNIQUE

Specifies that values in the columns must be unique.
• FOREIGN KEY

Specifies that the values in the columns must correspond to values in referenced
primary key or unique columns or that they are NULL.

Note: If the foreign key consists of multiple columns, and any column is NULL,
the whole key is considered NULL. The insert is permitted no matter what is on the
non-null columns.

• CHECK

Specifies a wide range of rules for values in the table.

Column constraints and table constraints have the same function; the difference is
in where you specify them. Table constraints allow you to specify more than one
column in a PRIMARY KEY, UNIQUE, CHECK, or FOREIGN KEY constraint definition.
Column-level constraints (except for check constraints) refer to only one column.

A constraint operates with the privileges of the owner of the constraint. See "Using SQL
standard authorization" and "Privileges on views, triggers, and constraints" in the Derby
Developer's Guide for details.

Deferrable constraints

Constraints can be deferred, meaning that Derby does not check constraints
immediately. By default, a constraint is checked as soon as a statement completes.
Deferrable constraints allow temporary breaches of constraints for more flexible insert
and update operations.

Note: Deferrable constraints are available only after a database has been fully upgraded
to Derby Release 10.11 or higher. (See "Upgrading a database" in the Derby Developer's
Guide for more information.) They cannot be used in a database that is at Release 10.10
or lower.

When a deferrable constraint's constraint mode is DEFERRED before execution of a
statement starts, the checking of the constraint does not take place at the end of the
statement execution as usual, but only when it is explicitly or implicitly requested using
one of the following mechanisms:

• The transaction ends (a commit operation takes place)
• A SET CONSTRAINTS statement which sets the constraint mode to IMMEDIATE is

executed
• A return from a stored procedure or function reverts the constraint mode to

IMMEDIATE

The point at which a deferrable constraint is checked is referred to as the deferred
checking time.

If the constraint mode of a constraint is IMMEDIATE before a call to a stored procedure
or function, and the stored procedure or function sets the constraint mode of that
constraint to DEFERRED, the constraint mode is implicitly reset to IMMEDIATE on
return from the stored procedure. This happens because the constraint mode is pushed
on a stack when we enter the stored procedure or function (as are other session
state variables, like the current role). If a constraint violation happens as a result, the
transaction is rolled back and an exception is thrown.

See Referential actions for information about the behavior of deferrable foreign keys.

Primary key constraints

Derby Reference Manual

87

A primary key defines the set of columns that uniquely identifies rows in a table.

When you create a primary key constraint, none of the columns included in the primary
key can have NULL constraints; that is, they must not permit NULL values.

ALTER TABLE ADD PRIMARY KEY allows you to include existing columns in a
primary key if they were first defined as NOT NULL. NULL values are not allowed. If the
column(s) contain NULL values, the system will not add the primary key constraint. See
ALTER TABLE statement for more information.

A table can have at most one PRIMARY KEY constraint.

Unique constraints

A UNIQUE constraint defines a set of columns that uniquely identify rows in a table only
if all the key values are not NULL. If one or more key parts are NULL, duplicate keys are
allowed.

For example, if there is a UNIQUE constraint on col1 and col2 of a table, the
combination of the values held by col1 and col2 will be unique as long as these values
are not NULL. If one of col1 and col2 holds a NULL value, there can be another
identical row in the table.

A table can have multiple UNIQUE constraints.

Foreign key constraints

Foreign keys provide a way to enforce the referential integrity of a database. A foreign
key is a column or group of columns within a table that references a key in some other
table (or sometimes, though rarely, the same table). The foreign key must always include
the columns of which the types exactly match those in the referenced primary key or
unique constraint.

For a table-level foreign key constraint in which you specify the columns in the table that
make up the constraint, you cannot use the same column more than once.

If there is a column list in the ReferencesSpecification (a list of columns in the referenced
table), it must correspond either to a unique constraint or to a primary key constraint
in the referenced table. The ReferencesSpecification can omit the column list for the
referenced table if that table has a declared primary key.

If there is no column list in the ReferencesSpecification and the referenced table has no
primary key, a statement exception is thrown. (This means that if the referenced table
has only unique keys, you must include a column list in the ReferencesSpecification.)

If the REFERENCES clause contains a CASCADE or SET NULL referential action, the
primary or unique key referenced must not be deferrable.

A foreign key constraint is satisfied if there is a matching value in the referenced unique
or primary key column. If the foreign key consists of multiple columns, the foreign key
value is considered NULL if any of its columns contains a NULL.
Note: It is possible for a foreign key consisting of multiple columns to allow one of
the columns to contain a value for which there is no matching value in the referenced
columns, per the SQL standard. To avoid this situation, create NOT NULL constraints on
all of the foreign key's columns.

Foreign key constraints and DML

When you insert into or update a table with an enabled foreign key constraint, Derby
checks that the row does not violate the foreign key constraint by looking up the
corresponding referenced key in the referenced table. If the constraint is not satisfied,
Derby rejects the insert or update with a statement exception.

Derby Reference Manual

88

When you update or delete a row in a table with a referenced key (a primary or unique
constraint referenced by a foreign key), Derby checks every foreign key constraint
that references the key to make sure that the removal or modification of the row does
not cause a constraint violation. If removal or modification of the row would cause a
constraint violation, the update or delete is not permitted and Derby throws a statement
exception.

If the constraint mode is IMMEDIATE (the default), Derby performs constraint checks at
the time the statement is executed. If the constraint mode is DEFERRED, the checking is
done later, typically at commit time. See Deferrable constraints for more information.

Backing indexes

UNIQUE, PRIMARY KEY, and FOREIGN KEY constraints generate indexes that
enforce or "back" the constraint (and are sometimes called backing indexes). PRIMARY
KEY constraints generate unique indexes. FOREIGN KEY constraints generate
non-unique indexes. UNIQUE constraints generate unique indexes if all the columns
are non-nullable, and they generate non-unique indexes if one or more columns are
nullable. Therefore, if a column or set of columns has a UNIQUE, PRIMARY KEY, or
FOREIGN KEY constraint on it, you do not need to create an index on those columns for
performance. Derby has already created it for you. See Indexes and constraints.

These indexes are available to the optimizer for query optimization (see CREATE INDEX
statement) and have system-generated names.

You cannot drop backing indexes with a DROP INDEX statement; you must drop the
constraint or the table.

Check constraints

A check constraint can be used to specify a wide range of rules for the contents of
a table. A search condition (which is a boolean expression) is specified for a check
constraint. This search condition must be satisfied for all rows in the table. The search
condition is applied to each row that is modified on an INSERT or UPDATE at the time of
the row modification. The entire statement is aborted if any check constraint is violated.

Requirements for search conditions

If a check constraint is specified as part of a columnDefinition, a column reference
can only be made to the same column. Check constraints specified as part of a table
definition can have column references identifying columns previously defined in the
CREATE TABLE statement.

The search condition must always return the same value if applied to the same values.
Thus, it cannot contain any of the following:

• Dynamic parameters (?)
• Date/Time Functions (CURRENT_DATE, CURRENT_TIME,

CURRENT_TIMESTAMP)
• Subqueries
• User Functions (such as USER, SESSION_USER, CURRENT_USER)

Referential actions

You can specify an ON DELETE clause and/or an ON UPDATE clause, followed by the
appropriate action (CASCADE, RESTRICT, SET NULL, or NO ACTION) when defining
foreign keys. These clauses specify whether Derby should modify corresponding foreign
key values or disallow the operation, to keep foreign key relationships intact when a
primary key value is updated or deleted from a table.

You specify the update and delete rule of a referential constraint when you define the
referential constraint.

Derby Reference Manual

89

The update rule applies when a row of either the parent or dependent table is updated.
The choices are NO ACTION and RESTRICT.

• When a value in a column of the parent table's primary key is updated and the
update rule has been specified as RESTRICT, Derby checks dependent tables
for foreign key constraints. If any row in a dependent table violates a foreign key
constraint, the statement is rolled back.

• If the update rule is NO ACTION, Derby checks the dependent tables for foreign
key constraints after all updates and BEFORE triggers have been executed, but
before AFTER triggers have been executed. If any row in a dependent table violates
a foreign key constraint, the statement is rejected.

When a value in a column of the dependent table is updated, and that value is part of a
foreign key, NO ACTION is the implicit update rule. NO ACTION means that if a foreign
key is updated with a non-null value, the update value must match a value in the parent
table's primary key when the update statement is completed. If the update does not
match a value in the parent table's primary key, the statement is rejected.

The delete rule applies when a row of the parent table is deleted and that row has
dependents in the dependent table of the referential constraint. If rows of the dependent
table are deleted as part of a CASCADE on the parent table, the delete operation on the
parent table is said to be propagated to the dependent table. If the dependent table is
also a parent table, the action specified applies, in turn, to its dependents.

The choices are NO ACTION, RESTRICT, CASCADE, or SET NULL. SET NULL can be
specified only if some column of the foreign key allows null values. If the delete rule is:

• NO ACTION, Derby checks the dependent tables for foreign key constraints after all
deletes and BEFORE triggers have been executed, but before AFTER triggers have
been executed. If any row in a dependent table violates a foreign key constraint, the
statement is rejected.

• RESTRICT, Derby checks dependent tables for foreign key constraints. If any row
in a dependent table violates a foreign key constraint, the statement is rolled back.

• CASCADE, the delete operation is propagated to the dependent table (and that
table's dependents, if applicable).

• SET NULL, each nullable column of the dependent table's foreign key is set to null.

If ON DELETE is not specified, NO ACTION is the implicit delete rule.

Each referential constraint in which a table is a parent has its own delete rule; all
applicable delete rules are used to determine the result of a delete operation. Thus, a
row cannot be deleted if it has dependents in a referential constraint with a delete rule of
RESTRICT or NO ACTION. Similarly, a row cannot be deleted if the deletion cascades to
any of its descendants that are dependents in a referential constraint with the delete rule
of RESTRICT or NO ACTION.

Deleting a row from the parent table involves other tables. Any table involved in a delete
operation on the parent table is said to be delete-connected to the parent table. The
delete can affect rows of these tables in the following ways:

• If the delete rule is RESTRICT or NO ACTION, a dependent table is involved in the
operation but is not affected by the operation. (That is, Derby checks the values
within the table, but does not delete any values.)

• If the delete rule is SET NULL, a dependent table's rows can be updated when a
row of the parent table is the object of a delete or propagated delete operation.

• If the delete rule is CASCADE, a dependent table's rows can be deleted when a
parent table is the object of a delete.

• If the dependent table is also a parent table, the actions described in this list apply,
in turn, to its dependents.

Derby Reference Manual

90

If a foreign key's constraint mode is DEFERRED, an insert (or update of a row that
changes the foreign key) in the child table will be checked at deferred checking time,
notwithstanding the ON DELETE or ON UPDATE referential action specification. If
a row in the parent table is deleted (or updated so as to modify the referenced key),
the behavior depends on the specification of ON DELETE or ON UPDATE. Only if
NO ACTION has been specified is the checking ever deferred. If the primary table's
referenced primary or unique key constraint is also deferred, any delete of a parent row
can lead to a foreign key violation immediately (or at deferred checking time, if the foreign
key is also deferred, as the case may be) when the last of possibly several key duplicates
of the referenced key is deleted or updated.

Statement dependency system

INSERT and UPDATE statements depend on all constraints on the target table.
DELETEs depend on unique, primary key, and foreign key constraints. These statements
are invalidated if a constraint is added to or dropped from the target table.

Examples

-- column-level primary key constraint named OUT_TRAY_PK:
CREATE TABLE SAMP.OUT_TRAY
 (
 SENT TIMESTAMP,
 DESTINATION CHAR(8),
 SUBJECT CHAR(64) NOT NULL CONSTRAINT OUT_TRAY_PK PRIMARY KEY,
 NOTE_TEXT VARCHAR(3000)
);

-- the table-level primary key definition allows you to
-- include two columns in the primary key definition:
CREATE TABLE SAMP.SCHED
 (
 CLASS_CODE CHAR(7) NOT NULL,
 DAY SMALLINT NOT NULL,
 STARTING TIME,
 ENDING TIME,
 PRIMARY KEY (CLASS_CODE, DAY)
);

-- Use a column-level constraint for an arithmetic check
-- Use a table-level constraint
-- to make sure that a employee's taxes does not
-- exceed the bonus
CREATE TABLE SAMP.EMP
 (
 EMPNO CHAR(6) NOT NULL CONSTRAINT EMP_PK PRIMARY KEY,
 FIRSTNME CHAR(12) NOT NULL,
 MIDINIT VARCHAR(12) NOT NULL,
 LASTNAME VARCHAR(15) NOT NULL,
 SALARY DECIMAL(9,2) CONSTRAINT SAL_CK CHECK (SALARY >= 10000),
 BONUS DECIMAL(9,2),
 TAX DECIMAL(9,2),
 CONSTRAINT BONUS_CK CHECK (BONUS > TAX)
);

-- use a check constraint to allow only appropriate
-- abbreviations for the meals
CREATE TABLE FLIGHTS
 (
 FLIGHT_ID CHAR(6) NOT NULL ,
 SEGMENT_NUMBER INTEGER NOT NULL ,
 ORIG_AIRPORT CHAR(3),
 DEPART_TIME TIME,
 DEST_AIRPORT CHAR(3),
 ARRIVE_TIME TIME,
 MEAL CHAR(1) CONSTRAINT MEAL_CONSTRAINT
 CHECK (MEAL IN ('B', 'L', 'D', 'S')),

Derby Reference Manual

91

 PRIMARY KEY (FLIGHT_ID, SEGMENT_NUMBER)
);

-- use the same check constraint, but
-- make the MEAL_CONSTRAINT deferrable
CREATE TABLE FLIGHTS
 (
 FLIGHT_ID CHAR(6) NOT NULL,
 SEGMENT_NUMBER INTEGER NOT NULL,
 ORIG_AIRPORT CHAR(3),
 DEPART_TIME TIME,
 DEST_AIRPORT CHAR(3),
 ARRIVE_TIME TIME,
 MEAL CHAR(1) CONSTRAINT MEAL_CONSTRAINT
 CHECK (MEAL IN ('B', 'L', 'D', 'S'))
 DEFERRABLE INITIALLY DEFERRED,
 PRIMARY KEY (FLIGHT_ID, SEGMENT_NUMBER)
);

CREATE TABLE METROPOLITAN
 (
 HOTEL_ID INT NOT NULL CONSTRAINT HOTELS_PK PRIMARY KEY,
 HOTEL_NAME VARCHAR(40) NOT NULL,
 CITY_ID INT CONSTRAINT METRO_FK REFERENCES CITIES
);

-- create a table with a table-level primary key constraint
-- and a table-level foreign key constraint
CREATE TABLE FLTAVAIL
 (
 FLIGHT_ID CHAR(6) NOT NULL,
 SEGMENT_NUMBER INT NOT NULL,
 FLIGHT_DATE DATE NOT NULL,
 ECONOMY_SEATS_TAKEN INT,
 BUSINESS_SEATS_TAKEN INT,
 FIRSTCLASS_SEATS_TAKEN INT,
 CONSTRAINT FLTAVAIL_PK PRIMARY KEY (FLIGHT_ID, SEGMENT_NUMBER),
 CONSTRAINT FLTS_FK
 FOREIGN KEY (FLIGHT_ID, SEGMENT_NUMBER)
 REFERENCES Flights (FLIGHT_ID, SEGMENT_NUMBER)
);
-- add a unique constraint to a column
ALTER TABLE SAMP.PROJECT
ADD CONSTRAINT P_UC UNIQUE (PROJNAME);

-- create a table whose city_id column references the
-- primary key in the Cities table
-- using a column-level foreign key constraint
CREATE TABLE CONDOS
 (
 CONDO_ID INT NOT NULL CONSTRAINT hotels_PK PRIMARY KEY,
 CONDO_NAME VARCHAR(40) NOT NULL,
 CITY_ID INT CONSTRAINT city_foreign_key
 REFERENCES Cities ON DELETE CASCADE ON UPDATE RESTRICT
);

columnLevelConstraint

[CONSTRAINT constraintName]
{
 NOT NULL |
 CHECK (searchCondition) |
 PRIMARY KEY |
 UNIQUE |
 REFERENCES clause
} [constraintCharacteristics]

A searchCondition is any boolean expression that meets the requirements specified in
Requirements for search conditions.

Derby Reference Manual

92

If a constraintName is not specified, Derby generates a unique constraint name.

tableLevelConstraint

[CONSTRAINT constraintName]
{
 CHECK (searchCondition) |
 {
 PRIMARY KEY (simpleColumnName [, simpleColumnName]*) |
 UNIQUE (simpleColumnName [, simpleColumnName]*) |
 FOREIGN KEY (simpleColumnName
 [, simpleColumnName]*
)
REFERENCES clause
 }
} [constraintCharacteristics]

A searchCondition is any boolean expression that meets the requirements specified in
Requirements for search conditions.

If a constraintName is not specified, Derby generates a unique constraint name.

REFERENCES clause

REFERENCES tableName [(simpleColumnName [, simpleColumnName]*)]
[ON DELETE { NO ACTION | RESTRICT | CASCADE | SET NULL }]
 [ON UPDATE { NO ACTION | RESTRICT }]
|
[ON UPDATE { NO ACTION | RESTRICT }]
 [ON DELETE { NO ACTION | RESTRICT | CASCADE | SET NULL }]

constraintCharacteristics

constraintCheckTime [[NOT] DEFERRABLE] |
[NOT] DEFERRABLE [constraintCheckTime]

The constraintCheckTime is defined as follows:

INITIALLY DEFERRED | INITIALLY IMMEDIATE

If DEFERRABLE is specified, the constraint is deferrable; otherwise it is not deferrable
unless INITIALLY DEFERRED is specified. To make a constraint from an existing
database deferrable, you must drop and recreate the constraint.

If constraintCheckTime is not specified, INITIALLY IMMEDIATE is implicit.

If INITIALLY DEFERRED is specified and DEFERRABLE is not specified, DEFERRABLE
is implicit. If INITIALLY DEFERRED is specified, NOT DEFERRABLE is not permitted.

The deferrability or the constraintCheckTime (that is, the default checking time) of
a constraint cannot be altered. To change these characteristics, you must drop the
constraint and recreate it.

NOT NULL constraints are not deferrable; all others are deferrable. The NOT NULL
constraint can, however, be dropped and recreated if desired. This will require a full table
scan.

A constraint can be specified as DEFERRABLE or NOT DEFERRABLE, or with a
constraintCheckTime of INITIALLY DEFERRED or INITIALLY IMMEDIATE, only after a
database has been fully upgraded to Derby Release 10.11 or higher. (See "Upgrading a
database" in the Derby Developer's Guide for more information.) These keywords have
no meaning in a database that is at Release 10.10 or lower.

After a full upgrade to Release 10.11 or higher, old constraints on the database will be
converted to NOT DEFERRABLE, the default value.

Derby Reference Manual

93

Note: Deferred constraints sometimes impose extra performance overhead to allow
for the deferred checking. If your application does not require deferred checking, we
recommend that you make constraints NOT DEFERRABLE (the default).
Note: In contrast to constraint checking, the referential actions specified by a referential
constraint are never deferred. In Derby, these actions are RESTRICT, SET NULL
and CASCADE for delete and RESTRICT for update. If NO ACTION is specified, the
referential check can be deferred.

EXTERNAL NAME clause

The EXTERNAL NAME clause specifies the Java method to be called in a CREATE
FUNCTION or CREATE PROCEDURE statement, and it specifies a Java class in a
CREATE AGGREGATE or CREATE TYPE statement.

See CREATE FUNCTION statement, CREATE PROCEDURE statement, CREATE
DERBY AGGREGATE statement, and CREATE TYPE statement for more information.

Syntax

EXTERNAL NAME singleQuotedString

The singleQuotedString cannot have any extraneous spaces.

The method name specified in the CREATE FUNCTION or CREATE PROCEDURE
statement normally takes the following form:

'class_name.method_name'

If the class is a static nested class, or if the method is in a static nested class, use a
dollar sign ($) as a separator between the outer and static class. For example, suppose
you have the following class and method definition:

public class TestFuncs {
 public static final class MyMath {
 public static double pow(double base, double power) {
 return Math.pow(base, power);
 }
 }
}

If you use CREATE FUNCTION to bind this pow method to a user-defined function, the
external name should be TestFuncs$MyMath.pow, not TestFuncs.MyMath.pow.

Examples

-- Specify the Mode class as an external name
CREATE DERBY AGGREGATE mode FOR INT
EXTERNAL NAME 'com.example.myapp.aggs.Mode';

-- Specify the pow method in the static class MyMath
CREATE FUNCTION MYPOWER (X DOUBLE, Y DOUBLE)
RETURNS DOUBLE
PARAMETER STYLE JAVA
NO SQL LANGUAGE JAVA
EXTERNAL NAME 'TestFuncs$MyMath.pow'

FOR UPDATE clause

The FOR UPDATE clause is an optional part of a SELECT statement.

Cursors are read-only by default. The FOR UPDATE clause specifies that the cursor
should be updatable, and enforces a check during compilation that the SELECT

Derby Reference Manual

94

statement meets the requirements for an updatable cursor. For more information about
updatability, see Requirements for updatable cursors and updatable ResultSets.

Syntax

FOR
{
 READ ONLY |
 FETCH ONLY |
 UPDATE [OF simpleColumnName [, simpleColumnName]*]
}

simpleColumnName refers to the names visible for the table specified in the FROM
clause of the underlying query.

Instead of FOR UPDATE, you can specify FOR READ ONLY or its synonym, FOR
FETCH ONLY, to indicate that the result set is not updatable.

Note: The use of the FOR UPDATE clause is not mandatory to obtain an
updatable JDBC ResultSet. As long as the statement used to generate the JDBC
ResultSet meets the requirements for updatable cursor, it is sufficient for the
JDBC Statement that generates the JDBC ResultSet to have concurrency mode
ResultSet.CONCUR_UPDATABLE for the ResultSet to be updatable.

The optimizer is able to use an index even if the column in the index is being updated.

For information about how indexes affect performance, see Tuning Derby.

Example

SELECT RECEIVED, SOURCE, SUBJECT, NOTE_TEXT FROM SAMP.IN_TRAY FOR UPDATE

FROM clause

The FROM clause is a mandatory clause in a selectExpression.

It specifies the tables (tableExpression) from which the other clauses of the query can
access columns for use in expressions. See selectExpression for more information.

Syntax

FROM tableExpression [, tableExpression]*

Examples

SELECT Cities.city_id
FROM Cities
WHERE city_id < 5
-- other types of tableExpressions
SELECT TABLENAME, ISINDEX
FROM SYS.SYSTABLES T, SYS.SYSCONGLOMERATES C
WHERE T.TABLEID = C.TABLEID
ORDER BY TABLENAME, ISINDEX
-- force the join order
SELECT *
FROM Flights, FlightAvailability
WHERE FlightAvailability.flight_id = Flights.flight_id
AND FlightAvailability.segment_number = Flights.segment_number
AND Flights.flight_id < 'AA1115'
-- a tableExpression can be a join operation. Therefore
-- you can have multiple join operations in a FROM clause
SELECT COUNTRIES.COUNTRY, CITIES.CITY_NAME, FLIGHTS.DEST_AIRPORT
FROM COUNTRIES LEFT OUTER JOIN CITIES
ON COUNTRIES.COUNTRY_ISO_CODE = CITIES.COUNTRY_ISO_CODE
LEFT OUTER JOIN FLIGHTS
ON Cities.AIRPORT = FLIGHTS.DEST_AIRPORT

Derby Reference Manual

95

GROUP BY clause

A GROUP BY clause, part of a selectExpression, groups a result into subsets that have
matching values for one or more columns.

In each group, no two rows have the same value for the grouping column or columns.
NULLs are considered equivalent for grouping purposes. See selectExpression for more
information.

You typically use a GROUP BY clause in conjunction with an aggregate expression.

Using the ROLLUP syntax, you can specify that multiple levels of grouping should be
computed at once.

Syntax

GROUP BY
{
 columnName [, columnName]* |
 ROLLUP (columnName [, columnName]*)
}

The columnName must be a column from the current scope of the query; there can be
no columns from a query block outside the current scope. For example, if a GROUP BY
clause is in a subquery, it cannot refer to columns in the outer query.

The selectItems in the selectExpression with a GROUP BY clause must contain only
aggregates or grouping columns.

Examples

-- find the average flying_times of flights grouped by
-- airport
SELECT AVG (flying_time), orig_airport
FROM Flights
GROUP BY orig_airport

SELECT MAX(city_name), region
FROM Cities, Countries
WHERE Cities.country_ISO_code = Countries.country_ISO_code
GROUP BY region

-- group by an a smallint
SELECT ID, AVG(SALARY)
FROM SAMP.STAFF
GROUP BY ID

-- Get the AVGSALARY and EMPCOUNT columns, and the DEPTNO column using
 the AS clause
-- And group by the WORKDEPT column using the correlation name OTHERS
SELECT OTHERS.WORKDEPT AS DEPTNO,
AVG(OTHERS.SALARY) AS AVGSALARY,
COUNT(*) AS EMPCOUNT
FROM SAMP.EMPLOYEE OTHERS
GROUP BY OTHERS.WORKDEPT

-- Compute sub-totals of Sales_History data, grouping it by Region, by
-- (Region, State), and by (Region, State, Product), as well as computing
-- an overall total of the sales for all Regions, States, and Products:
SELECT Region, State, Product, SUM(Sales) Total_Sales
FROM Sales_History
GROUP BY ROLLUP(Region, State, Product)

HAVING clause

Derby Reference Manual

96

A HAVING clause restricts the results of a GROUP BY in a selectExpression.

The HAVING clause is applied to each group of the grouped table, much as a WHERE
clause is applied to a select list. If there is no GROUP BY clause, the HAVING clause is
applied to the entire result as a single group. The SELECT clause cannot refer directly to
any column that does not have a GROUP BY clause. It can, however, refer to constants,
aggregates, and special registers.

See selectExpression for more information.

Syntax

HAVING booleanExpression

The booleanExpression can contain only grouping columns (see GROUP BY clause),
columns that are part of aggregate expressions, and columns that are part of a subquery.
For example, the following query is illegal, because the column SALARY is not a
grouping column, it does not appear within an aggregate, and it is not within a subquery:

-- SELECT COUNT(*)
-- FROM SAMP.STAFF
-- GROUP BY ID
-- HAVING SALARY > 15000

Aggregates in the HAVING clause do not need to appear in the SELECT list. If the
HAVING clause contains a subquery, the subquery can refer to the outer query block if
and only if it refers to a grouping column.

Example

-- Find the total number of economy seats taken on a flight,
-- grouped by airline,
-- only when the group has at least 2 records.
SELECT SUM(ECONOMY_SEATS_TAKEN), AIRLINE_FULL
FROM FLIGHTAVAILABILITY, AIRLINES
WHERE SUBSTR(FLIGHTAVAILABILITY.FLIGHT_ID, 1, 2) = AIRLINE
GROUP BY AIRLINE_FULL
HAVING COUNT(*) > 1

WINDOW clause

The WINDOW clause allows you to refer to a window by name when you use a ROW
NUMBER function in a selectExpression.

See ROW_NUMBER function and selectExpression for more information.

Syntax

WINDOW windowName AS windowSpecification

In a WINDOW clause, windowName is a SQLIdentifier.

Currently, the only valid windowSpecification is a set of empty parentheses (()), which
indicates that the function is evaluated over the entire result set.

Example

SELECT ROW_NUMBER() OVER R,
 B,
 SUM(A)
FROM T5 GROUP BY B WINDOW R AS ()

ORDER BY clause

Derby Reference Manual

97

The ORDER BY clause is an optional element of several statements, expressions, and
subqueries.

It can be an element of the following:

• A SELECT statement
• A selectExpression
• A VALUES expression
• A scalarSubquery
• A tableSubquery

It can also be used in an INSERT statement or a CREATE VIEW statement.

An ORDER BY clause allows you to specify the order in which rows appear in the result
set. In subqueries, the ORDER BY clause is meaningless unless it is accompanied
by one or both of the result offset and fetch first clauses or in conjunction with the
ROW_NUMBER function, since there is no guarantee that the order is retained in the
outer result set. It is permissible to combine ORDER BY on the outer query with ORDER
BY in subqueries.

Syntax

ORDER BY { columnName | columnPosition | expression }
 [ASC | DESC]
 [NULLS FIRST | NULLS LAST]
 [, columnName | columnPosition | expression
 [ASC | DESC]
 [NULLS FIRST | NULLS LAST]
]*

columnName
Refers to the names visible from the selectItems in the underlying query of the
SELECT statement. The columnName that you specify in the ORDER BY clause
does not need to be the SELECT list.

columnPosition
An integer that identifies the number of the column in the selectItems in the
underlying query of the SELECT statement. The columnPosition must be greater than
0 and not greater than the number of columns in the result table. In other words, if
you want to order by a column, that column must be specified in the SELECT list.

expression
A sort key expression, such as numeric, string, and datetime expressions. An
expression can also be a row value expression such as a scalarSubquery or case
expression.

ASC
Specifies that the results should be returned in ascending order. If the order is not
specified, ASC is the default.

DESC
Specifies that the results should be returned in descending order.

NULLS FIRST
Specifies that NULL values should be returned before non-NULL values.

NULLS LAST
Specifies that NULL values should be returned after non-NULL values.

Notes
• If SELECT DISTINCT is specified or if the SELECT statement contains a GROUP

BY clause, the ORDER BY columns must be in the SELECT list.
• An ORDER BY clause prevents a SELECT statement from being an updatable

cursor. For more information, see Requirements for updatable cursors and
updatable ResultSets.

• If the null ordering is not specified then the handling of the null values is:

Derby Reference Manual

98

• NULLS LAST if the sort is ASC
• NULLS FIRST if the sort is DESC

• If neither ascending nor descending order is specified, and the null ordering is also
not specified, then both defaults are used and thus the order will be ascending with
NULLS LAST.

Example using a correlation name

You can sort the result set by a correlation name, if the correlation name is specified in
the select list. For example, to return from the CITIES database all of the entries in the
CITY_NAME and COUNTRY columns, where the COUNTRY column has the correlation
name NATION, you specify this SELECT statement:

SELECT CITY_NAME, COUNTRY AS NATION
 FROM CITIES
 ORDER BY NATION

Example using a numeric expression
You can sort the result set by a numeric expression, for example:

SELECT name, salary, bonus FROM employee
 ORDER BY salary+bonus

In this example, the salary and bonus columns are DECIMAL data types.

Example using a function
You can sort the result set by invoking a function, for example:

SELECT i, len FROM measures
 ORDER BY sin(i)

Example specifying null ordering
You can specify the position of NULL values using the null ordering specification:

SELECT * FROM t1 ORDER BY c1 DESC NULLS LAST

The result offset and fetch first clauses

The result offset clause provides a way to skip the first N rows in a result set before
starting to return any rows. The fetch first clause, which can be combined with the result
offset clause if desired, limits the number of rows returned in the result set.

The fetch first clause can sometimes be useful for retrieving only a few rows from an
otherwise large result set, usually in combination with an ORDER BY clause. The use
of this clause can give efficiency benefits. In addition, it can make programming the
application simpler.

Syntax

OFFSET { integerLiteral | ? } { ROW | ROWS }

FETCH { FIRST | NEXT } [integerLiteral | ?] { ROW | ROWS } ONLY

ROW is synonymous with ROWS and FIRST is synonymous with NEXT.

For the result offset clause, the value of the integer literal (or the dynamic parameter ?)
must be equal to 0 (default if the clause is not given), or positive. If it is larger than the
number of rows in the underlying result set, no rows are returned.

For the fetch first clause, the value of the literal (or the dynamic parameter ?) must be 1
or higher. The literal can be omitted, in which case it defaults to 1. If the clause is omitted
entirely, all rows (or those rows remaining if a result offset clause is also given) will be
returned.

Derby Reference Manual

99

Examples

-- Fetch the first row of T
SELECT * FROM T FETCH FIRST ROW ONLY

-- Sort T using column I, then fetch rows 11 through 20 of the sorted
-- rows (inclusive)
SELECT * FROM T ORDER BY I OFFSET 10 ROWS FETCH NEXT 10 ROWS ONLY

-- Skip the first 100 rows of T
-- If the table has fewer than 101 records, an empty result set is
-- returned
SELECT * FROM T OFFSET 100 ROWS

-- Use of ORDER BY and FETCH FIRST in a subquery
SELECT DISTINCT A.ORIG_AIRPORT, B.FLIGHT_ID FROM
 (SELECT FLIGHT_ID, ORIG_AIRPORT
 FROM FLIGHTS
 ORDER BY ORIG_AIRPORT DESC
 FETCH FIRST 40 ROWS ONLY)
 AS A, FLIGHTAVAILABILITY AS B
 WHERE A.FLIGHT_ID = B.FLIGHT_ID

JDBC (using a dynamic parameter):
PreparedStatement p =
 con.prepareStatement("SELECT * FROM T ORDER BY I OFFSET ? ROWS");
p.setInt(1, 100);
ResultSet rs = p.executeQuery();

Note: Make sure to specify the ORDER BY clause if you expect to retrieve a sorted
result set. If you do not use an ORDER BY clause, the result set that is retrieved will
typically have the order in which the records were inserted.

USING clause

The USING clause specifies which columns to test for equality when two tables are
joined.

It can be used instead of an ON clause in the JOIN operations that have an explicit join
clause.

Syntax

USING (simpleColumnName [, simpleColumnName]*)

The columns listed in the USING clause must be present in both of the two tables being
joined. The USING clause will be transformed to an ON clause that checks for equality
between the named columns in the two tables.

When a USING clause is specified, an asterisk (*) in the select list of the query will be
expanded to the following list of columns (in this order):

• All the columns in the USING clause
• All the columns of the first (left) table that are not specified in the USING clause
• All the columns of the second (right) table that are not specified in the USING

clause

An asterisk qualified by a table name (for example, COUNTRIES.*) will be expanded to
every column of that table that is not listed in the USING clause.

If a column in the USING clause is referenced without being qualified by a table name,
the column reference points to the column in the first (left) table if the join is an INNER
JOIN or a LEFT OUTER JOIN. If it is a RIGHT OUTER JOIN, unqualified references to a
column in the USING clause point to the column in the second (right) table.

Examples

Derby Reference Manual

100

The following query performs an inner join between the COUNTRIES table
and the CITIES table on the condition that COUNTRIES.COUNTRY is equal to
CITIES.COUNTRY:

SELECT * FROM COUNTRIES JOIN CITIES
 USING (COUNTRY)

The next query is similar to the one above, but it has the additional join condition that
COUNTRIES.COUNTRY_ISO_CODE is equal to CITIES.COUNTRY_ISO_CODE:

SELECT * FROM COUNTRIES JOIN CITIES
 USING (COUNTRY, COUNTRY_ISO_CODE)

WHERE clause

A WHERE clause is an optional part of a selectExpression, DELETE statement, or
UPDATE statement. The WHERE clause lets you select rows based on a boolean
expression.

Only rows for which the selectExpression evaluates to TRUE are returned in the result,
or, in the case of a DELETE statement, deleted, or, in the case of an UPDATE statement,
updated.

Syntax

WHERE booleanExpression

Boolean expressions are allowed in the WHERE clause. Most of the general expressions
listed in General expressions can result in a boolean value.

In addition, there are the more common boolean expressions. Specific boolean
operators, listed in SQL boolean operators, take one or more operands; the expressions
return a boolean value.

Example

-- find the flights where no business-class seats have
-- been booked
SELECT *
FROM FlightAvailability
WHERE business_seats_taken IS NULL
OR business_seats_taken = 0
-- Join the EMP_ACT and EMPLOYEE tables
-- select all the columns from the EMP_ACT table and
-- add the employee's surname (LASTNAME) from the EMPLOYEE table
-- to each row of the result.
SELECT SAMP.EMP_ACT.*, LASTNAME
 FROM SAMP.EMP_ACT, SAMP.EMPLOYEE
 WHERE EMP_ACT.EMPNO = EMPLOYEE.EMPNO
-- Determine the employee number and salary of sales representatives
-- along with the average salary and head count of their departments.
-- This query must first create a new-column-name specified in the AS
 clause
-- which is outside the fullselect (DINFO)
-- in order to get the AVGSALARY and EMPCOUNT columns,
-- as well as the DEPTNO column that is used in the WHERE clause
SELECT THIS_EMP.EMPNO, THIS_EMP.SALARY, DINFO.AVGSALARY, DINFO.EMPCOUNT
 FROM EMPLOYEE THIS_EMP,
 (SELECT OTHERS.WORKDEPT AS DEPTNO,
 AVG(OTHERS.SALARY) AS AVGSALARY,
 COUNT(*) AS EMPCOUNT
 FROM EMPLOYEE OTHERS
 GROUP BY OTHERS.WORKDEPT
)AS DINFO
 WHERE THIS_EMP.JOB = 'SALESREP'
 AND THIS_EMP.WORKDEPT = DINFO.DEPTNO

Derby Reference Manual

101

WHERE CURRENT OF clause

The WHERE CURRENT OF clause is a clause in some UPDATE and DELETE
statements. It allows you to perform positioned updates and deletes on updatable
cursors.

Updatable and/or scrollable JDBC ResultSets can provide a simpler and easier way to
perform these tasks.

See UPDATE statement and DELETE statement for more information on those
statements. For more information about updatable cursors, see SELECT statement.
For information on scrollable and updatable ResultSets, see the Java SE API
documentation on the java.sql.ResultSet interface as well as the information on the Derby
implementation at java.sql.ResultSet interface.

Syntax

WHERE CURRENT OF cursorName

Example

conn.setAutoCommit(false);

Statement s = conn.createStatement();
s.setCursorName("AIRLINESRESULTS");
ResultSet rs = s.executeQuery(
 "SELECT Airline, basic_rate " +
 "FROM Airlines FOR UPDATE OF basic_rate");
rs.next();
Statement s2 = conn.createStatement();
s2.executeUpdate("UPDATE Airlines SET basic_rate = basic_rate " +
 "+ .25 WHERE CURRENT OF AirlinesResults");

SQL expressions
Syntax for many statements and expressions includes the term expression, or a term for
a specific kind of expression such as tableSubquery. Expressions are allowed in these
specified places within statements.

Some locations allow only a specific type of expression or one with a specific property.
If not otherwise specified, an expression is permitted anywhere the word expression
appears in the syntax. This includes:

• ORDER BY clause
• selectExpression
• UPDATE statement (SET portion)
• VALUES expression
• WHERE clause

Of course, many other statements include these elements as building blocks, and so
allow expressions as part of these elements.

The following tables list all the possible SQL expressions and indicate where the
expressions are allowed.

General expressions

General expressions are expressions that might result in a value of any type. The
following table lists the types of general expressions.

Table 4. General expressions

Derby Reference Manual

102

Expression Type Explanation

Column reference A columnName that references the value of the column
made visible to the expression containing the Column
reference.

You must qualify the columnName by the table name or
correlation name if it is ambiguous.

The qualifier of a columnName must be the correlation
name, if a correlation name is given to a table that is in
a FROM clause. The table name is no longer visible as
a columnName qualifier once it has been aliased by a
correlation name.

Allowed in selectExpressions, UPDATE statements, and
the WHERE clauses of data manipulation statements.

Constant Most built-in data types typically have constants
associated with them (as shown in Data types).

NULL NULL is an untyped constant representing the unknown
value.

Allowed in CAST expressions or in INSERT VALUES
lists and UPDATE SET clauses. Using it in a CAST
expression gives it a specific data type.

Dynamic parameter A dynamic parameter is a parameter to an SQL
statement for which the value is not specified when
the statement is created. Instead, the statement has a
question mark (?) as a placeholder for each dynamic
parameter. See Dynamic parameters.

Dynamic parameters are permitted only in prepared
statements. You must specify values for them before the
prepared statement is executed. The values specified
must match the types expected.

Allowed anywhere in an expression where the data type
can be easily deduced. See Dynamic parameters.

CAST expression Lets you specify the type of NULL or of a dynamic
parameter or convert a value to another type. See CAST
function.

Scalar subquery Subquery that returns a single row with a single column.
See scalarSubquery.

Table subquery Subquery that returns more than one column and more
than one row. See tableSubquery.

Allowed as a tableExpression in a FROM clause and with
EXISTS, IN, and quantified comparisons.

Conditional expression A conditional expression chooses an expression
to evaluate based on a boolean test. Conditional
expressions include the CASE expression, the NULLIF
function, and the COALESCE function.

Boolean expressions

Derby Reference Manual

103

Boolean expressions are expressions that result in boolean values. Most general
expressions can result in boolean values. See Boolean expressions for more information
and a table of operators.

Numeric expressions

Numeric expressions are expressions that result in numeric values. Most of the general
expressions can result in numeric values. Numeric values have one of the following
types:

• BIGINT
• DECIMAL
• DOUBLE PRECISION
• INTEGER
• REAL
• SMALLINT

The following table lists the types of numeric expressions.

Table 5. Numeric expressions

Expression Type Explanation

+, -, *, /, unary + and -
expressions

Evaluate the expected math operation on the
operands. If both operands are the same type,
the result type is not promoted, so the division
operator on integers results in an integer that is the
truncation of the actual numeric result. When types
are mixed, they are promoted as described in Data
types.

Unary + is a noop (i.e., +4 is the same as 4).
Unary - is the same as multiplying the value by -1,
effectively changing its sign.

AVG Returns the average of a set of numeric values.
See AVG function.

SUM Returns the sum of a set of numeric values. See
SUM function.

LENGTH Returns the number of characters in a character or
bit string. See LENGTH function.

LOWER See LCASE or LOWER function.

COUNT Returns the count of a set of values. See COUNT
function, COUNT(*) function.

Character expressions

Character expressions are expressions that result in a CHAR or VARCHAR value. Most
general expressions can result in a CHAR or VARCHAR value. The following table lists
the types of character expressions.

Table 6. Character expressions

Expression Type Explanation

A CHAR or VARCHAR value that
uses wildcards.

The wildcards % and _ make a character string a
pattern against which the LIKE operator can look
for a match.

Derby Reference Manual

104

Expression Type Explanation

Concatenation expression In a concatenation expression, the concatenation
operator, "||", concatenates its right operand to the
end of its left operand. Operates on character and
bit strings. See Concatenation operator.

Built-in string functions The built-in string functions act on a String and
return a string. See LTRIM function, LCASE or
LOWER function, RTRIM function, TRIM function,
SUBSTR function, and UCASE or UPPER function.

USER functions User functions return information about the current
user as a String. See CURRENT_USER function,
SESSION_USER function, and USER function.

Date and time expressions

A date or time expression results in a DATE, TIME, or TIMESTAMP value. Most of the
general expressions can result in a date or time value. The following table lists the types
of date and time expressions.

Table 7. Date and time expressions

Expression Type Explanation

CURRENT_DATE Returns the current date. See CURRENT_DATE
function.

CURRENT_TIME Returns the current time. See CURRENT_TIME
function.

CURRENT_TIMESTAMP Returns the current timestamp. See
CURRENT_TIMESTAMP function.

selectExpression

A selectExpression is the basic SELECT-FROM-WHERE construct used to build a table
value based on filtering and projecting values from other tables.

Syntax

SELECT [DISTINCT | ALL] selectItem [
 , selectItem
]*
FROM clause
[WHERE clause]
[GROUP BY clause]
[HAVING clause]
[WINDOW clause]
[ORDER BY clause]
[result offset clause]
[fetch first clause]

selectItem:

{
 * |
 { tableName | correlationName } .* |
 expression [AS simpleColumnName]
}

Derby Reference Manual

105

The SELECT clause contains a list of expressions and an optional quantifier that is
applied to the results of the FROM clause and the WHERE clause. If DISTINCT is
specified, only one copy of any row value is included in the result. Nulls are considered
duplicates of one another for the purposes of DISTINCT. If no quantifier, or ALL, is
specified, no rows are removed from the result in applying the SELECT clause (ALL is
the default).

A selectItem projects one or more result column values for a table result being
constructed in a selectExpression.

For queries that do not select a specific column from the tables involved in the
selectExpression (for example, queries that use COUNT(*)), the user must have at
least one column-level SELECT privilege or table-level SELECT privilege. See GRANT
statement for more information.

The result of the FROM clause is the cross product of the FROM items. The WHERE
clause can further qualify this result.

The WHERE clause causes rows to be filtered from the result based on a boolean
expression. Only rows for which the expression evaluates to TRUE are returned in the
result.

The GROUP BY clause groups rows in the result into subsets that have matching values
for one or more columns. GROUP BY clauses are typically used with aggregates.

If there is a GROUP BY clause, the SELECT clause must contain only aggregates or
grouping columns. If you want to include a non-grouped column in the SELECT clause,
include the column in an aggregate expression. For example:

-- List head count of each department,
-- the department number (WORKDEPT), and the average departmental salary
-- (SALARY) for all departments in the EMPLOYEE table.
-- Arrange the result table in ascending order by average departmental
-- salary.
SELECT COUNT(*),WORK_DEPT,AVG(SALARY)
 FROM EMPLOYEE
 GROUP BY WORK_DEPT
 ORDER BY 3

If there is no GROUP BY clause, but a selectItem contains an aggregate not in a
subquery, the query is implicitly grouped. The entire table is the single group.

The HAVING clause restricts a grouped table, specifying a search condition (much like a
WHERE clause) that can refer only to grouping columns or aggregates from the current
scope. The HAVING clause is applied to each group of the grouped table. If the HAVING
clause evaluates to TRUE, the row is retained for further processing. If the HAVING
clause evaluates to FALSE or NULL, the row is discarded. If there is a HAVING clause
but no GROUP BY, the table is implicitly grouped into one group for the entire table.

The WINDOW clause allows you to refer to a window by name when you use a
ROW_NUMBER function in a selectExpression.

The ORDER BY clause allows you to specify the order in which rows appear in the result
set. In subqueries, the ORDER BY clause is meaningless unless it is accompanied
by one or both of the result offset and fetch first clauses or in conjunction with the
ROW_NUMBER function.

The result offset clause provides a way to skip the N first rows in a result set before
starting to return any rows. The fetch first clause, which can be combined with the result
offset clause if desired, limits the number of rows returned in the result set.

Derby processes a selectExpression in the following order:
• FROM clause

Derby Reference Manual

106

• WHERE clause
• GROUP BY (or implicit GROUP BY)
• HAVING clause
• WINDOW clause
• ORDER BY clause
• Result offset clause
• Fetch first clause
• SELECT clause

The result of a selectExpression is always a table.

When a query does not have a FROM clause (when you are constructing a value, not
getting data out of a table), you use a VALUES expression, not a selectExpression. For
example:

VALUES CURRENT_TIMESTAMP

See VALUES expression.

The * wildcard

* expands to all columns in the tables in the associated FROM clause.

table-Name.* and correlation-Name.* expand to all columns in the identified table. That
table must be listed in the associated FROM clause.

Naming columns

You can name a selectItem column using the AS clause. If a column of a selectItem
is not a simple columnReference expression or named with an AS clause, it is given a
generated unique name.

These column names are useful in several cases:
• They are made available on the JDBC ResultSetMetaData.
• They are used as the names of the columns in the resulting table when the

selectExpression is used as a table subquery in a FROM clause.
• They are used in the ORDER BY clause as the column names available for sorting.

Examples

-- This example shows SELECT-FROM-WHERE
-- with an ORDER BY clause
-- and correlation-Names for the tables.
SELECT CONSTRAINTNAME, COLUMNNAME
 FROM SYS.SYSTABLES t, SYS.SYSCOLUMNS col,
 SYS.SYSCONSTRAINTS cons, SYS.SYSCHECKS checks
 WHERE t.TABLENAME = 'FLIGHTS'
 AND t.TABLEID = col.REFERENCEID
 AND t.TABLEID = cons.TABLEID
 AND cons.CONSTRAINTID = checks.CONSTRAINTID
 ORDER BY CONSTRAINTNAME
-- This example shows the use of the DISTINCT clause
SELECT DISTINCT ACTNO
 FROM EMP_ACT
-- This example shows how to rename an expression
-- Using the EMPLOYEE table, list the department number (WORKDEPT) and
-- maximum departmental salary (SALARY) renamed as BOSS
-- for all departments whose maximum salary is less than the
-- average salary in all other departments.
SELECT WORKDEPT AS DPT, MAX(SALARY) AS BOSS
 FROM EMPLOYEE EMP_COR
 GROUP BY WORKDEPT
 HAVING MAX(SALARY) < (SELECT AVG(SALARY)
 FROM EMPLOYEE
 WHERE NOT WORKDEPT = EMP_COR.WORKDEPT)
 ORDER BY BOSS

Derby Reference Manual

107

tableExpression

A tableExpression specifies a table, view, or function in a FROM clause.

A tableExpression is the source from which a selectExpression selects a result.

A correlation name can be applied to a table in a tableExpression so that its columns
can be qualified with that name. If you do not supply a correlation name, the table name
qualifies the column name. When you give a table a correlation name, you cannot use
the table name to qualify columns. You must use the correlation name when qualifying
column names.

No two items in the FROM clause can have the same correlation name, and no
correlation name can be the same as an unqualified table name specified in that FROM
clause.

In addition, you can give the columns of the table new names in the AS clause. Some
situations in which this is useful:

• When a VALUES expression is used as a tableSubquery, since there is no other
way to name the columns of a VALUES expression.

• When column names would otherwise be the same as those of columns in other
tables; renaming them means you don't have to qualify them.

The query in a tableSubquery appearing in a fromItem can contain multiple columns and
return multiple rows.

For information about the optimizer overrides you can specify, see Tuning Derby.

Syntax

{
 tableViewOrFunctionExpression |
 joinOperation
}

Example

-- SELECT from a JOIN expression
SELECT E.EMPNO, E.LASTNAME, M.EMPNO, M.LASTNAME
 FROM EMPLOYEE E LEFT OUTER JOIN
 DEPARTMENT INNER JOIN EMPLOYEE M
 ON MGRNO = M.EMPNO
 ON E.WORKDEPT = DEPTNO

tableViewOrFunctionExpression

{
 { tableName | viewName }
 [correlationClause]
|
 { tableSubquery | tableFunctionInvocation }
 correlationClause
}

where correlationClause is

[AS]
correlationName
[(simpleColumnName [, simpleColumnName]*)]

tableFunctionInvocation:

TABLE functionName([[functionArg] [, functionArg]*])

Derby Reference Manual

108

Note that when you invoke a table function, you must bind it to a correlation name. For
example:

SELECT s.*
FROM TABLE(externalEmployees(42)) s

NEXT VALUE FOR expression

The NEXT VALUE FOR expression retrieves the next value from a sequence generator.

A sequence generator is created with a CREATE SEQUENCE statement.

Syntax

NEXT VALUE FOR sequenceName

If this is the first use of the sequence generator, the generator returns its START
value. Otherwise, the INCREMENT value is added to the previous value returned by
the sequence generator. The data type of the value is the dataType specified for the
sequence generator.

If the sequence generator wraps around, then one of the following happens:

• If the sequence generator was created using the CYCLE keyword, the sequence
generator is reset to its START value.

• If the sequence generator was created with the default NO CYCLE behavior, Derby
throws an exception.

In order to retrieve the next value of a sequence generator, you or your session's current
role must have USAGE privilege on the generator.

A NEXT VALUE FOR expression may occur in the following places:

• SELECT statement: As part of the expression defining a returned column in a
SELECT list

• VALUES expression: As part of the expression defining a column in a row
constructor (VALUES expression)

• UPDATE statement; As part of the expression defining the new value to which a
column is being set

Only one NEXT VALUE FOR expression is allowed per sequence per statement.

The NEXT VALUE FOR expression is not allowed in any statement which has a
DISTINCT or ORDER BY expression.

The next value of a sequence generator is not affected by whether the user commits or
rolls back a transaction which invoked the sequence generator.

A NEXT VALUE expression may not appear in any of these situations:

• CASE expression
• WHERE clause
• ORDER BY clause
• Aggregate expression
• ROW_NUMBER function
• DISTINCT select list

Examples

VALUES (NEXT VALUE FOR order_id);

INSERT INTO re_order_table
 SELECT NEXT VALUE FOR order_id, order_date, quantity

Derby Reference Manual

109

 FROM orders
 WHERE back_order = 1;

UPDATE orders
 SET oid = NEXT VALUE FOR order_id
 WHERE expired = 1;

VALUES expression

The VALUES expression allows construction of a row or a table from other values.

A VALUES expression can be used in all the places where a query can, and thus can be
used in any of the following ways:

• As a statement that returns a ResultSet
• Within expressions and statements wherever subqueries are permitted
• As the source of values for an INSERT statement (in an INSERT statement, you

normally use a VALUES expression when you do not use a selectExpression)

Syntax

{
 VALUES (value [, value]*)
 [, (value [, value]*)]*
 |
 VALUES value [, value]*
} [ORDER BY clause]
 [result offset clause]
 [fetch first clause]

where value is defined as

expression | DEFAULT

The first form constructs multi-column rows. The second form constructs single-column
rows, each expression being the value of the column of the row.

The DEFAULT keyword is allowed only if the VALUES expression is in an INSERT
statement. Specifying DEFAULT for a column inserts the column's default value into the
column. Another way to insert the default value into the column is to omit the column from
the column list and only insert values into other columns in the table.

A VALUES expression that is used in an INSERT statement cannot use an ORDER BY,
result offset, or fetch first clause. However, if the VALUES expression does not contain
the DEFAULT keyword, the VALUES clause can be put in a subquery and ordered, as in
the following statement:

INSERT INTO t SELECT * FROM (VALUES 'a','c','b') t ORDER BY 1;

Examples

-- 3 rows of 1 column
VALUES (1),(2),(3)
-- 3 rows of 1 column
VALUES 1, 2, 3
-- 1 row of 3 columns
VALUES (1, 2, 3)
-- 3 rows of 2 columns
VALUES (1,21),(2,22),(3,23)
-- using ORDER BY and FETCH FIRST
VALUES (3,21),(1,22),(2,23) ORDER BY 1 FETCH FIRST 2 ROWS ONLY
-- using ORDER BY and OFFSET
VALUES (3,21),(1,22),(2,23) ORDER BY 1 OFFSET 1 ROW
-- constructing a derived table
VALUES ('orange', 'orange'), ('apple', 'red'),
('banana', 'yellow')

Derby Reference Manual

110

-- Insert two new departments using one statement into the DEPARTMENT
 table,
-- but do not assign a manager to the new department.
INSERT INTO DEPARTMENT (DEPTNO, DEPTNAME, ADMRDEPT)
 VALUES ('B11', 'PURCHASING', 'B01'),
 ('E41', 'DATABASE ADMINISTRATION', 'E01')
-- insert a row with a DEFAULT value for the MAJPROJ column
INSERT INTO PROJECT (PROJNO, PROJNAME, DEPTNO, RESPEMP, PRSTDATE,
 MAJPROJ)
VALUES ('PL2101', 'ENSURE COMPAT PLAN', 'B01', '000020', CURRENT_DATE,
 DEFAULT)

-- using a built-in function
VALUES CURRENT_DATE
-- getting the value of an arbitrary expression
VALUES (3*29, 26.0E0/3)
-- getting a value returned by a built-in function
values char(1)

Expression precedence

Precedence of operations from highest to lowest is as follows.

• (), ?, constants (including sign), NULL, columnReference, scalarSubquery, CAST
• LENGTH, CURRENT_DATE, CURRENT_TIME, CURRENT_TIMESTAMP, and

other built-ins
• Unary + and -
• *, /, || (concatenation)
• Binary + and -
• Comparisons, quantified comparisons, EXISTS, IN, IS NULL, LIKE, BETWEEN, IS
• NOT
• AND
• OR

You can explicitly specify precedence by placing expressions within parentheses.
An expression within parentheses is evaluated before any operations outside the
parentheses are applied to it.

Example

(3+4)*9
(age < 16 OR age > 65) AND employed = TRUE

Boolean expressions

Boolean expressions are expressions that result in boolean values.

Most of the expressions listed in the table General expressions can result in boolean
values.

Boolean expressions are allowed in the following clauses and operations:
• WHERE clause
• Check constraints (boolean expressions in check constraints have limitations; see

CONSTRAINT clause for details)
• CASE expression
• HAVING clause (with restrictions)
• ON clauses of INNER JOIN, LEFT OUTER JOIN, and RIGHT OUTER JOIN

operations

A boolean expression can include a boolean operator or operators. These operators are
listed in the following table.

Table 8. SQL boolean operators

Derby Reference Manual

111

Operator Explanation and Example Syntax

AND, OR, NOT Evaluate any operand(s) that are
boolean expressions

(orig_airport = 'SFO') OR
 (dest_airport = 'GRU')
 -- returns true

{
 expression AND
 expression |
 expression OR
 expression |
 NOT expression
}

Comparisons <, =, >, <=, >=, <> are applicable to all
of the built-in types.

DATE('1998-02-26') <
 DATE('1998-03-01')
-- returns true

Note: Derby also accepts the !=
operator, which is not included in the
SQL standard.

expression
{
 < |
 = |
 > |
 <= |
 >= |
 <>
}
expression

IS NULL, IS NOT
NULL

Test whether the result of an
expression is null or not.

WHERE MiddleName IS NULL

expression IS [NOT
]
 NULL

LIKE Attempts to match a character
expression to a character pattern,
which is a character string that
includes one or more wildcards.

% matches any number (zero
or more) of characters in the
corresponding position in first
character expression.

_ matches one character in the
corresponding position in the
character expression.

Any other character matches only
that character in the corresponding
position in the character expression.

city LIKE 'Sant_'

To treat % or _ as constant
characters, escape the character with
an optional escape character, which
you specify with the ESCAPE clause.

SELECT a FROM tabA WHERE a
LIKE '%=_' ESCAPE '='

Note: When LIKE comparisons are
used, Derby compares one character
at a time for non-metacharacters.
This is different than the way Derby
processes = comparisons. The
comparisons with the = operator
compare the entire character string
on left side of the = operator with
the entire character string on the

characterExpression
 [NOT] LIKE

 characterExpression
 WithWildCard
 [ESCAPE

'escapeCharacter']

Derby Reference Manual

112

Operator Explanation and Example Syntax

right side of the = operator. For more
information, see "Character-based
collation in Derby" in the Derby
Developer's Guide.

BETWEEN Tests whether the first operand
is between the second and third
operands. The second operand
must be less than the third operand.
Applicable only to types to which <=
and >= can be applied.

WHERE booking_date BETWEEN
 DATE('1998-02-26') AND
 DATE('1998-03-01')

expression [NOT]
BETWEEN expression
 AND expression

IN Operates on table subquery or list
of values. Returns TRUE if the left
expression's value is in the result of
the table subquery or in the list of
values. Table subquery can return
multiple rows but must return a single
column.

WHERE booking_date NOT IN
 (SELECT booking_date FROM
HotelBookings WHERE
 rooms_available = 0)

{
 expression [NOT]
 IN
 tableSubquery
 |
 expression [NOT]
 IN (expression
 [, expression]*
)
}

EXISTS Operates on a table subquery.
Returns TRUE if the table subquery
returns any rows, and FALSE if it
returns no rows. A table subquery can
return multiple columns and rows.

WHERE EXISTS
 (SELECT *
 FROM Flights
 WHERE dest_airport = 'SFO'
 AND orig_airport = 'GRU')

[NOT] EXISTS
 tableSubquery

Quantified
comparison

A quantified comparison is a
comparison operator (<, =, >, <=,
>=, <>) with ALL or ANY or SOME
applied.

Operates on table subqueries, which
can return multiple rows but must
return a single column.

If ALL is used, the comparison must
be true for all values returned by the
table subquery. If ANY or SOME
is used, the comparison must be
true for at least one value of the
table subquery. ANY and SOME are
equivalent.

WHERE normal_rate < ALL

expressioncomparisonOperator
 {
 ALL |
 ANY |
 SOME
 }
 tableSubquery

Derby Reference Manual

113

Operator Explanation and Example Syntax

(SELECT budget/550 FROM Groups)

CASE expression

The CASE expression can be used for conditional expressions in Derby.

See SQL expressions for more information on expressions.

Syntax

You can place a CASE expression anywhere an expression is allowed. It chooses an
expression to evaluate based on a boolean test.

Derby supports three kinds of CASE expressions, which we refer to as a searched CASE
expression, a simple CASE expression, and an extended CASE expression.

The syntax of a searched CASE expression is as follows:

CASE
 WHEN booleanExpression THEN thenExpression
 [WHEN booleanExpression THEN thenExpression]*
 [ELSE elseExpression]
END

The syntax of a simple CASE expression is as follows:

CASE valueExpression
 WHEN valueExpression [, valueExpression]* THEN thenExpression
 [WHEN valueExpression [, valueExpression]* THEN thenExpression]*
 [ELSE elseExpression]
END

A valueExpression is an expression that resolves to a single value.

For both searched and simple CASE expressions, both thenExpression and
elseExpression are defined as follows:

NULL | valueExpression

The thenExpression and elseExpression must be type-compatible. For built-in types, this
means that the types must be the same or that a built-in broadening conversion must
exist between the types.

The syntax of an extended CASE expression is as follows:

CASE valueExpression
 WHEN whenOperand [, whenOperand]* THEN thenExpression
 [WHEN whenOperand [, whenOperand]* THEN thenExpression]*
 [ELSE elseExpression]
END

A whenOperand is defined as follows:

valueExpression
 |
comparisonOperatorexpression |
IS [NOT] NULL |
[NOT] LIKE characterExpressionWithWildCard [ESCAPE 'escapeCharacter']
 |
[NOT] BETWEEN expression AND expression |
[NOT] IN tableSubquery |
[NOT] IN (expression [, expression
]*)

Derby Reference Manual

114

 |
comparisonOperator { ALL | ANY | SOME } tableSubquery

A comparisonOperator is defined as follows:

{ < | = | > | <= | >= | <> }

For details on LIKE expressions, see Boolean expressions.

For all types of CASE expressions, if an ELSE clause is not specified, ELSE NULL is
implicit.

Example

-- searched CASE expression
-- returns 3
VALUES CASE WHEN 1=1 THEN 3 ELSE 4 END

-- simple CASE expression, equivalent to previous expression
-- returns 3
VALUES CASE 1 WHEN 1 THEN 3 ELSE 4 END

-- searched CASE expression
-- returns 7
VALUES
 CASE
 WHEN 1 = 2 THEN 3
 WHEN 4 = 5 THEN 6
 ELSE 7
 END

-- simple CASE expression
-- returns 'two'
VALUES
 CASE 1+1
 WHEN 1 THEN 'one'
 WHEN 2 THEN 'two'
 ELSE 'many'
 END

-- simple CASE expression
-- returns 'odd', 'even', 'big'
SELECT
 CASE X
 WHEN 1, 3, 5, 7, 9 THEN 'odd'
 WHEN 2, 4, 6, 8, 10 THEN 'even'
 ELSE 'big'
 END
FROM
 (VALUES 5, 8, 12) AS V(X)

-- extended CASE expression
-- returns ('long', 182), ('medium', 340), ('short', 20)
SELECT DISTANCE, COUNT(*)
FROM (SELECT
 CASE MILES
 WHEN < 250 THEN 'short'
 WHEN BETWEEN 250 AND 2000 THEN 'medium'
 WHEN > 2000 THEN 'long'
 END
 FROM FLIGHTS) AS F(DISTANCE)
GROUP BY DISTANCE

Dynamic parameters

You can prepare statements that are allowed to have parameters for which the value is
not specified when the statement is prepared using PreparedStatement methods in the

Derby Reference Manual

115

JDBC API. These parameters are called dynamic parameters and are represented by a
question mark (?).

The JDBC API documentation refers to dynamic parameters as IN, INOUT, or OUT
parameters. In SQL, they are always IN parameters.

You must specify values for dynamic parameters before executing the statement. The
values specified must match the types expected.

Dynamic parameters example

PreparedStatement ps2 = conn.prepareStatement(
 "UPDATE HotelAvailability SET rooms_available = " +
 "(rooms_available - ?) WHERE hotel_id = ? " +
 "AND booking_date BETWEEN ? AND ?");
-- this sample code sets the values of dynamic parameters
-- to be the values of program variables
ps2.setInt(1, numberRooms);
ps2.setInt(2, theHotel.hotelId);
ps2.setDate(3, arrival);
ps2.setDate(4, departure);
updateCount = ps2.executeUpdate();

Where dynamic parameters are allowed

You can use dynamic parameters anywhere in an expression where their data type can
be easily deduced.

1. Use as the first operand of BETWEEN is allowed if one of the second and third
operands is not also a dynamic parameter. The type of the first operand is assumed
to be the type of the non-dynamic parameter, or the union result of their types if
both are not dynamic parameters.

WHERE ? BETWEEN DATE('1996-01-01') AND ?
-- types assumed to be DATE

2. Use as the second or third operand of BETWEEN is allowed. Type is assumed to
be the type of the left operand.

WHERE DATE('1996-01-01') BETWEEN ? AND ?
-- types assumed to be DATE

3. Use as the left operand of an IN list is allowed if at least one item in the list is not
itself a dynamic parameter. Type for the left operand is assumed to be the union
result of the types of the non-dynamic parameters in the list.

WHERE ? NOT IN (?, ?, 'Santiago')
-- types assumed to be CHAR

4. Use in the values list in an IN predicate is allowed if the first operand is not a
dynamic parameter or its type was determined in the previous rule. Type of the
dynamic parameters appearing in the values list is assumed to be the type of the
left operand.

WHERE FloatColumn IN (?, ?,
 ?)
-- types assumed to be FLOAT

5. For the binary operators +, -, *, /, AND, OR, <, >, =, <>, <=, and >=, use of a
dynamic parameter as one operand but not both is permitted. Its type is taken from
the other side.

WHERE ? < CURRENT_TIMESTAMP
-- type assumed to be a TIMESTAMP

6. Use in a CAST is always permitted. This gives the dynamic parameter a type.

CALL valueOf(CAST (? AS VARCHAR(10)))

Derby Reference Manual

116

7. Use on either or both sides of LIKE operator is permitted. When used on the left, the
type of the dynamic parameter is set to the type of the right operand, but with the
maximum allowed length for the type. When used on the right, the type is assumed
to be of the same length and type as the left operand. (LIKE is permitted on CHAR
and VARCHAR types; see Concatenation operator for more information.)

WHERE ? LIKE 'Santi%'
-- type assumed to be CHAR with a length of
-- java.lang.Integer.MAX_VALUE

8. A ? parameter is allowed by itself on only one side of the || operator. That is, "? || ?"
is not allowed. The type of a ? parameter on one side of a || operator is determined
by the type of the expression on the other side of the || operator. If the expression
on the other side is a CHAR or VARCHAR, the type of the parameter is VARCHAR
with the maximum allowed length for the type. If the expression on the other side
is a CHAR FOR BIT DATA or VARCHAR FOR BIT DATA type, the type of the
parameter is VARCHAR FOR BIT DATA with the maximum allowed length for the
type.

SELECT BITcolumn || ?
FROM UserTable
-- Type assumed to be CHAR FOR BIT DATA of length specified for
 BITcolumn

9. In a conditional expression, which uses a ?, use of a dynamic parameter (which is
also represented as a ?) is allowed. The type of a dynamic parameter as the first
operand is assumed to be boolean. Only one of the second and third operands can
be a dynamic parameter, and its type will be assumed to be the same as that of the
other (that is, the third and second operand, respectively).

SELECT c1 IS NULL ? ? : c1
-- allows you to specify a "default" value at execution time
-- dynamic parameter assumed to be the type of c1
-- you cannot have dynamic parameters on both sides
-- of the :

10. A dynamic parameter is allowed as an item in the values list or select list of an
INSERT statement. The type of the dynamic parameter is assumed to be the type of
the target column.

INSERT INTO t VALUES (?)
-- dynamic parameter assumed to be the type
-- of the only column in table t
INSERT INTO t SELECT ?
FROM t2
-- not allowed

11. A ? parameter in a comparison with a subquery takes its type from the expression
being selected by the subquery. For example:

SELECT *
FROM tab1
WHERE ? = (SELECT x FROM tab2)

SELECT *
FROM tab1
WHERE ? = ANY (SELECT x FROM tab2)
-- In both cases, the type of the dynamic parameter is
-- assumed to be the same as the type of tab2.x.

12. A dynamic parameter is allowed as the value in an UPDATE statement. The type of
the dynamic parameter is assumed to be the type of the column in the target table.

UPDATE t2 SET c2 =? -- type is assumed to be type of c2
13. Dynamic parameters are allowed as the operand of the unary operators - or +. For

example:

Derby Reference Manual

117

CREATE TABLE t1 (c11 INT, c12 SMALLINT, c13 DOUBLE, c14 CHAR(3))
SELECT * FROM t1 WHERE c11 BETWEEN -? AND +?
-– The type of both of the unary operators is INT
-- based on the context in which they are used (that is,
-- because c11 is INT, the unary parameters also get the
-- type INT.

14. LENGTH allow a dynamic parameter. The type is assumed to be a maximum length
VARCHAR type.

SELECT LENGTH(?)
15. Qualified comparisons.

? = SOME (SELECT 1 FROM t)
-- is valid. Dynamic parameter assumed to be INTEGER type
1 = SOME (SELECT ? FROM t)
-- is valid. Dynamic parameter assumed to be INTEGER type.

16. A dynamic parameter is allowed as the left operand of an IS expression and is
assumed to be a boolean.

Once the type of a dynamic parameter is determined based on the expression it is in,
that expression is allowed anywhere it would normally be allowed if it did not include a
dynamic parameter.

JOIN operations
The JOIN operations perform joins between two tables.

The JOIN operations are among the possible tableExpressions in a FROM clause. (You
can also perform a join between two tables using an explicit equality test in a WHERE
clause, such as WHERE t1.col1 = t2.col2.)

The JOIN operations are:

• INNER JOIN operation

Specifies a join between two tables with an explicit join clause.
• LEFT OUTER JOIN operation

Specifies a join between two tables with an explicit join clause, preserving
unmatched rows from the first table.

• RIGHT OUTER JOIN operation

Specifies a join between two tables with an explicit join clause, preserving
unmatched rows from the second table.

• CROSS JOIN operation

Specifies a join that produces the Cartesian product of two tables. It has no explicit
join clause.

• NATURAL JOIN operation

Specifies an inner or outer join between two tables. It has no explicit join clause.
Instead, one is created implicitly using the common columns from the two tables.

In all cases, you can specify additional restrictions on one or both of the tables being
joined in outer join clauses or in the WHERE clause.

JOIN expressions and query optimization

For information on which types of joins are optimized, see Tuning Derby.

INNER JOIN operation

Derby Reference Manual

118

An INNER JOIN is a JOIN operation that allows you to specify an explicit join clause.

Syntax

tableExpression [INNER] JOIN tableExpression
{
 ON booleanExpression |
 USING clause
}

You can specify the join clause by specifying ON with a boolean expression.

The scope of expressions in the ON clause includes the current tables and any tables in
outer query blocks to the current SELECT. In the following example, the ON clause refers
to the current tables:

SELECT *
FROM SAMP.EMPLOYEE INNER JOIN SAMP.STAFF
ON EMPLOYEE.SALARY < STAFF.SALARY

The ON clause can reference tables not being joined and does not have to reference
either of the tables being joined (though typically it does).

Examples

-- Join the EMP_ACT and EMPLOYEE tables
-- select all the columns from the EMP_ACT table and
-- add the employee's surname (LASTNAME) from the EMPLOYEE table
-- to each row of the result
SELECT SAMP.EMP_ACT.*, LASTNAME
 FROM SAMP.EMP_ACT JOIN SAMP.EMPLOYEE
 ON EMP_ACT.EMPNO = EMPLOYEE.EMPNO
-- Join the EMPLOYEE and DEPARTMENT tables,
-- select the employee number (EMPNO),
-- employee surname (LASTNAME),
-- department number (WORKDEPT in the EMPLOYEE table and DEPTNO in the
-- DEPARTMENT table)
-- and department name (DEPTNAME)
-- of all employees who were born (BIRTHDATE) earlier than 1930.
SELECT EMPNO, LASTNAME, WORKDEPT, DEPTNAME
 FROM SAMP.EMPLOYEE JOIN SAMP.DEPARTMENT
 ON WORKDEPT = DEPTNO
 AND YEAR(BIRTHDATE) < 1930

-- Another example of "generating" new data values,
-- using a query which selects from a VALUES clause (which is an
-- alternate form of a fullselect).
-- This query shows how a table can be derived called "X"
-- having 2 columns "R1" and "R2" and 1 row of data
SELECT *
FROM (VALUES (3, 4), (1, 5), (2, 6))
AS VALUESTABLE1(C1, C2)
JOIN (VALUES (3, 2), (1, 2),
(0, 3)) AS VALUESTABLE2(c1, c2)
ON VALUESTABLE1.c1 = VALUESTABLE2.c1
-- This results in:
-- C1 |C2 |C1 |2
-- ---
-- 3 |4 |3 |2
-- 1 |5 |1 |2

-- List every department with the employee number and
-- last name of the manager

SELECT DEPTNO, DEPTNAME, EMPNO, LASTNAME
 FROM DEPARTMENT INNER JOIN EMPLOYEE
 ON MGRNO = EMPNO

Derby Reference Manual

119

-- List every employee number and last name
-- with the employee number and last name of their manager
SELECT E.EMPNO, E.LASTNAME, M.EMPNO, M.LASTNAME
 FROM EMPLOYEE E INNER JOIN
 DEPARTMENT INNER JOIN EMPLOYEE M
 ON MGRNO = M.EMPNO
 ON E.WORKDEPT = DEPTNO

LEFT OUTER JOIN operation

A LEFT OUTER JOIN is one of the JOIN operations that allow you to specify a join
clause. It preserves the unmatched rows from the first (left) table, joining them with a
NULL row in the shape of the second (right) table.

Syntax

tableExpression LEFT [OUTER] JOIN tableExpression
{
 ON booleanExpression |
 USING clause
}

The scope of expressions in either the ON clause includes the current tables and any
tables in query blocks outer to the current SELECT. The ON clause can reference tables
not being joined and does not have to reference either of the tables being joined (though
typically it does).

Example 1

-- match cities to countries in Asia

SELECT CITIES.COUNTRY, CITIES.CITY_NAME, REGION
FROM Countries
LEFT OUTER JOIN Cities
ON CITIES.COUNTRY_ISO_CODE = COUNTRIES.COUNTRY_ISO_CODE
WHERE REGION = 'Asia'

-- use the synonymous syntax, LEFT JOIN, to achieve exactly
-- the same results as in the example above

SELECT COUNTRIES.COUNTRY, CITIES.CITY_NAME,REGION
FROM COUNTRIES
LEFT JOIN CITIES
ON CITIES.COUNTRY_ISO_CODE = COUNTRIES.COUNTRY_ISO_CODE
WHERE REGION = 'Asia'

Example 2

-- Join the EMPLOYEE and DEPARTMENT tables,
-- select the employee number (EMPNO),
-- employee surname (LASTNAME),
-- department number (WORKDEPT in the EMPLOYEE table
-- and DEPTNO in the DEPARTMENT table)
-- and department name (DEPTNAME)
-- of all employees who were born (BIRTHDATE) earlier than 1930

SELECT EMPNO, LASTNAME, WORKDEPT, DEPTNAME
 FROM SAMP.EMPLOYEE LEFT OUTER JOIN SAMP.DEPARTMENT
 ON WORKDEPT = DEPTNO
 AND YEAR(BIRTHDATE) < 1930

-- List every department with the employee number and
-- last name of the manager,
-- including departments without a manager

SELECT DEPTNO, DEPTNAME, EMPNO, LASTNAME

Derby Reference Manual

120

 FROM DEPARTMENT LEFT OUTER JOIN EMPLOYEE
 ON MGRNO = EMPNO

RIGHT OUTER JOIN operation

A RIGHT OUTER JOIN is one of the JOIN operations that allow you to specify a JOIN
clause. It preserves the unmatched rows from the second (right) table, joining them with a
NULL in the shape of the first (left) table.

B LEFT OUTER JOIN A is equivalent to A RIGHT OUTER JOIN B, with the columns in a
different order.

Syntax

tableExpression RIGHT [OUTER] JOIN tableExpression
{
 ON booleanExpression |
 USING clause
}

The scope of expressions in the ON clause includes the current tables and any tables in
query blocks outer to the current SELECT. The ON clause can reference tables not being
joined and does not have to reference either of the tables being joined (though typically it
does).

Example 1

-- get all countries and corresponding cities, including
-- countries without any cities

SELECT COUNTRIES.COUNTRY, CITIES.CITY_NAME
FROM CITIES
RIGHT OUTER JOIN COUNTRIES
ON CITIES.COUNTRY_ISO_CODE = COUNTRIES.COUNTRY_ISO_CODE

-- get all countries in Africa and corresponding cities, including
-- countries without any cities

SELECT COUNTRIES.COUNTRY, CITIES.CITY_NAME
FROM CITIES
RIGHT OUTER JOIN COUNTRIES
ON CITIES.COUNTRY_ISO_CODE = COUNTRIES.COUNTRY_ISO_CODE
WHERE Countries.region = 'Africa'

-- use the synonymous syntax, RIGHT JOIN, to achieve exactly
-- the same results as in the example above

SELECT COUNTRIES.COUNTRY, CITIES.CITY_NAME
FROM CITIES
RIGHT JOIN COUNTRIES
ON CITIES.COUNTRY_ISO_CODE = COUNTRIES.COUNTRY_ISO_CODE
WHERE Countries.region = 'Africa'

Example 2

-- a tableExpression can be a join operation. Therefore
-- you can have multiple join operations in a FROM clause
-- List every employee number and last name
-- with the employee number and last name of their manager

SELECT E.EMPNO, E.LASTNAME, M.EMPNO, M.LASTNAME
 FROM EMPLOYEE E RIGHT OUTER JOIN
 DEPARTMENT RIGHT OUTER JOIN EMPLOYEE M
 ON MGRNO = M.EMPNO
 ON E.WORKDEPT = DEPTNO

Derby Reference Manual

121

CROSS JOIN operation

A CROSS JOIN is a JOIN operation that produces the Cartesian product of two tables.
Unlike other JOIN operators, it does not let you specify a join clause. You may, however,
specify a WHERE clause in the SELECT statement.

Syntax

tableExpression CROSS JOIN
{
 tableViewOrFunctionExpression |
 (tableExpression)
}

Examples

The following SELECT statements are equivalent:

SELECT * FROM CITIES CROSS JOIN FLIGHTS

SELECT * FROM CITIES, FLIGHTS

The following SELECT statements are equivalent:

SELECT * FROM CITIES CROSS JOIN FLIGHTS
 WHERE CITIES.AIRPORT = FLIGHTS.ORIG_AIRPORT

SELECT * FROM CITIES INNER JOIN FLIGHTS
 ON CITIES.AIRPORT = FLIGHTS.ORIG_AIRPORT

The following example is more complex. The ON clause in this example is associated
with the LEFT OUTER JOIN operation. Note that you can use parentheses around a
JOIN operation.

SELECT * FROM CITIES LEFT OUTER JOIN
 (FLIGHTS CROSS JOIN COUNTRIES)
 ON CITIES.AIRPORT = FLIGHTS.ORIG_AIRPORT
 WHERE COUNTRIES.COUNTRY_ISO_CODE = 'US'

A CROSS JOIN operation can be replaced with an INNER JOIN where the join clause
always evaluates to true (for example, 1=1). It can also be replaced with a sub-query. So
equivalent queries would be:

SELECT * FROM CITIES LEFT OUTER JOIN
 FLIGHTS INNER JOIN COUNTRIES ON 1=1
 ON CITIES.AIRPORT = FLIGHTS.ORIG_AIRPORT
 WHERE COUNTRIES.COUNTRY_ISO_CODE = 'US'

SELECT * FROM CITIES LEFT OUTER JOIN
 (SELECT * FROM FLIGHTS, COUNTRIES) S
 ON CITIES.AIRPORT = S.ORIG_AIRPORT
 WHERE S.COUNTRY_ISO_CODE = 'US'

NATURAL JOIN operation

A NATURAL JOIN is a JOIN operation that creates an implicit join clause for you based
on the common columns in the two tables being joined. Common columns are columns
that have the same name in both tables.

A NATURAL JOIN can be an INNER join, a LEFT OUTER join, or a RIGHT OUTER join.
The default is INNER join.

If the SELECT statement in which the NATURAL JOIN operation appears has an asterisk
(*) in the select list, the asterisk will be expanded to the following list of columns (in this
order):

Derby Reference Manual

122

• All the common columns
• Every column in the first (left) table that is not a common column
• Every column in the second (right) table that is not a common column

An asterisk qualified by a table name (for example, COUNTRIES.*) will be expanded to
every column of that table that is not a common column.

If a common column is referenced without being qualified by a table name, the column
reference points to the column in the first (left) table if the join is an INNER JOIN or a
LEFT OUTER JOIN. If it is a RIGHT OUTER JOIN, unqualified references to a common
column point to the column in the second (right) table.

Syntax

tableExpression NATURAL [{ LEFT | RIGHT } [OUTER] | INNER] JOIN
{
 tableViewOrFunctionExpression |
 (tableExpression)
}

Examples

If the tables COUNTRIES and CITIES have two common columns named COUNTRY
and COUNTRY_ISO_CODE, the following two SELECT statements are equivalent:

SELECT * FROM COUNTRIES NATURAL JOIN CITIES

SELECT * FROM COUNTRIES JOIN CITIES
 USING (COUNTRY, COUNTRY_ISO_CODE)

The following example is similar to the one above, but it also preserves unmatched rows
from the first (left) table:

SELECT * FROM COUNTRIES NATURAL LEFT JOIN CITIES

SQL queries

query

A query creates a virtual table based on existing tables or constants built into tables.

Syntax

{
 (query
 [ORDER BY clause]
 [result offset clause]
 [fetch first clause]
) |
 query INTERSECT [ALL | DISTINCT] query |
 query EXCEPT [ALL | DISTINCT] query |
 query UNION [ALL | DISTINCT] query |
 selectExpression | VALUES expression
}

You can arbitrarily put parentheses around queries, or use the parentheses to control
the order of evaluation of the INTERSECT, EXCEPT, or UNION operations. These
operations are evaluated from left to right when no parentheses are present, with the
exception of INTERSECT operations, which would be evaluated before any UNION or
EXCEPT operations.

Duplicates in UNION, INTERSECT, and EXCEPT ALL results

Derby Reference Manual

123

The ALL and DISTINCT keywords determine whether duplicates are eliminated from the
result of the operation. If you specify the DISTINCT keyword, then the result will have
no duplicate rows. If you specify the ALL keyword, then there may be duplicates in the
result, depending on whether there were duplicates in the input. DISTINCT is the default,
so if you don't specify ALL or DISTINCT, the duplicates will be eliminated. For example,
UNION builds an intermediate ResultSet with all of the rows from both queries and
eliminates the duplicate rows before returning the remaining rows. UNION ALL returns all
rows from both queries as the result.

Depending on which operation is specified, if the number of copies of a row in the left
table is L and the number of copies of that row in the right table is R, then the number of
duplicates of that particular row that the output table contains (assuming the ALL keyword
is specified) is:

• UNION: (L + R).
• EXCEPT: the maximum of (L - R) and 0 (zero).
• INTERSECT: the minimum of L and R.

Examples

-- a Select expression
SELECT *
FROM ORG

-- a subquery
SELECT *
FROM (SELECT CLASS_CODE FROM CL_SCHED) AS CS

-- a subquery
SELECT *
FROM (SELECT CLASS_CODE FROM CL_SCHED) AS CS (CLASS_CODE)

-- a UNION
-- returns all rows from columns DEPTNUMB and MANAGER
-- in table ORG
-- and (1,2) and (3,4)
-- DEPTNUMB and MANAGER are smallint columns
SELECT DEPTNUMB, MANAGER
FROM ORG
UNION ALL
VALUES (1,2), (3,4)

-- a values expression
VALUES (1,2,3)

-- Use of ORDER BY and FETCH FIRST in a subquery
SELECT DISTINCT A.ORIG_AIRPORT, B.FLIGHT_ID FROM
 (SELECT FLIGHT_ID, ORIG_AIRPORT
 FROM FLIGHTS
 ORDER BY ORIG_AIRPORT DESC
 FETCH FIRST 40 ROWS ONLY)
 AS A, FLIGHTAVAILABILITY AS B
 WHERE A.FLIGHT_ID = B.FLIGHT_ID

-- List the employee numbers (EMPNO) of all employees in the EMPLOYEE
-- table whose department number (WORKDEPT) either begins with 'E' or
-- who are assigned to projects in the EMP_ACT table
-- whose project number (PROJNO) equals 'MA2100', 'MA2110', or 'MA2112'
SELECT EMPNO
 FROM EMPLOYEE
 WHERE WORKDEPT LIKE 'E%'
 UNION
 SELECT EMPNO
 FROM EMP_ACT
 WHERE PROJNO IN('MA2100', 'MA2110', 'MA2112')
-- Make the same query as in the previous example
-- and "tag" the rows from the EMPLOYEE table with 'emp' and

Derby Reference Manual

124

-- the rows from the EMP_ACT table with 'emp_act'.
-- Unlike the result from the previous example,
-- this query may return the same EMPNO more than once,
-- identifying which table it came from by the associated "tag"
SELECT EMPNO, 'emp'
 FROM EMPLOYEE
 WHERE WORKDEPT LIKE 'E%'
 UNION
 SELECT EMPNO, 'emp_act' FROM EMP_ACT
 WHERE PROJNO IN('MA2100', 'MA2110', 'MA2112')
-- Make the same query as in the previous example,
-- only use UNION ALL so that no duplicate rows are eliminated
SELECT EMPNO
 FROM EMPLOYEE
 WHERE WORKDEPT LIKE 'E%'
 UNION ALL
 SELECT EMPNO
 FROM EMP_ACT
 WHERE PROJNO IN('MA2100', 'MA2110', 'MA2112')
-- Make the same query as in the previous example,
-- only include an additional two employees currently not in any table
-- and tag these rows as "new"
 SELECT EMPNO, 'emp'
 FROM EMPLOYEE
 WHERE WORKDEPT LIKE 'E%'
 UNION
 SELECT EMPNO, 'emp_act'
 FROM EMP_ACT
 WHERE PROJNO IN('MA2100', 'MA2110', 'MA2112')
 UNION
 VALUES ('NEWAAA', 'new'), ('NEWBBB', 'new')

scalarSubquery

A scalarSubquery, sometimes called an expression subquery, is a subquery that
evaluates to a single row with a single column.

You can place a scalarSubquery anywhere an expression is permitted. A scalarSubquery
turns a selectExpression result into a scalar value because it returns only a single row
and column value.

Syntax

(query
 [ORDER BY clause]
 [result offset clause]
 [fetch first clause]
)

Examples

-- avg always returns a single value, so the subquery is
-- a scalarSubquery
SELECT NAME, COMM
 FROM STAFF
 WHERE EXISTS
 (SELECT AVG(BONUS + 800)
 FROM EMPLOYEE
 WHERE COMM < 5000
 AND EMPLOYEE.LASTNAME = UPPER(STAFF.NAME)
)
-- Introduce a way of "generating" new data values,
-- using a query which selects from a VALUES clause (which is an
-- alternate form of a fullselect).
-- This query shows how a table can be derived called "X" having
-- 2 columns "R1" and "R2" and 1 row of data.
SELECT R1,R2
 FROM (VALUES('GROUP 1','GROUP 2')) AS X(R1,R2)

Derby Reference Manual

125

tableSubquery

A tableSubquery is a subquery that returns multiple rows.

Unlike a scalarSubquery, a tableSubquery is allowed only:
• As a tableExpression in a FROM clause
• With EXISTS, IN, or quantified comparisons

When used as a tableExpression in a FROM clause, or with EXISTS, it can return
multiple columns.

When used with IN or quantified comparisons, it must return a single column.

Syntax

(query
 [ORDER BY clause]
 [result offset clause]
 [fetch first clause]
)

Example

-- a subquery used as a tableExpression in a FROM clause
SELECT VirtualFlightTable.flight_ID
FROM
 (SELECT flight_ID, orig_airport, dest_airport
 FROM Flights
 WHERE (orig_airport = 'SFO' OR dest_airport = 'SCL'))
AS VirtualFlightTable
-- a subquery (values expression) used as a tableExpression
-- in a FROM clause
SELECT mycol1
FROM
 (VALUES (1, 2), (3, 4))
AS mytable (mycol1, mycol2)
-- a subquery used with EXISTS
SELECT *
FROM Flights
WHERE EXISTS
 (SELECT * FROM Flights WHERE dest_airport = 'SFO'
 AND orig_airport = 'GRU')
-- a subquery used with IN
SELECT flight_id, segment_number
FROM Flights
WHERE flight_id IN
 (SELECT flight_ID
 FROM Flights WHERE orig_airport = 'SFO'
 OR dest_airport = 'SCL')
-- a subquery with ORDER BY and FETCH FIRST clauses
SELECT flight_id, segment_number
FROM Flights
WHERE flight_id IN
 (SELECT flight_ID
 FROM Flights WHERE orig_airport = 'SFO'
 OR dest_airport = 'SCL' ORDER BY flight_id FETCH FIRST 12 ROWS ONLY)
-- a subquery used with a quantified comparison
SELECT NAME, COMM
FROM STAFF
WHERE COMM >
(SELECT AVG(BONUS + 800)
 FROM EMPLOYEE
 WHERE COMM < 5000)

Built-in functions

Derby Reference Manual

126

A built-in function is an expression in which an SQL keyword or special operator executes
some operation.

Built-in functions use keywords or special built-in operators. Built-ins are SQLIdentifiers
and are case-insensitive. Note that escaped functions like TIMESTAMPADD and
TIMESTAMPDIFF are only accessible using the JDBC escape function syntax, and can
be found in JDBC escape syntax.

Standard built-in functions

The standard built-in functions supported in Derby are as follows.

• ABS or ABSVAL function
• ACOS function
• ASIN function
• ATAN function
• ATAN2 function
• BIGINT function
• CAST function
• CEIL or CEILING function
• CHAR function
• Concatenation operator
• COS function
• NULLIF function
• CURRENT_DATE function
• CURRENT ISOLATION function
• CURRENT_TIME function
• CURRENT_TIMESTAMP function
• CURRENT_USER function
• DATE function
• DAY function
• DEGREES function
• DOUBLE function
• EXP function
• FLOOR function
• HOUR function
• IDENTITY_VAL_LOCAL function
• INTEGER function
• LENGTH function
• LN or LOG function
• LOG10 function
• LOCATE function
• LCASE or LOWER function
• LTRIM function
• MINUTE function
• MOD function
• MONTH function
• PI function
• RADIANS function
• RTRIM function
• SECOND function
• SESSION_USER function
• SIN function
• SMALLINT function
• SQRT function
• SUBSTR function

Derby Reference Manual

127

• TAN function
• TIME function
• TIMESTAMP function
• TRIM function
• UCASE or UPPER function
• USER function
• VARCHAR function
• YEAR function

Aggregates (set functions)

This section describes aggregates (also described as set functions in ANSI SQL and as
column functions in some database literature).

Aggregates provide a means of evaluating an expression over a set of rows. Whereas
the other built-in functions operate on a single expression, aggregates operate on a set
of values and reduce them to a single scalar value. Built-in aggregates can calculate the
minimum, maximum, sum, count, and average of an expression over a set of values as
well as count rows.

In addition to the built-in aggregates, Derby allows you to create custom aggregate
operators, called user-defined aggregates (UDAs). For information on creating and
removing UDAs, see CREATE DERBY AGGREGATE statement and DROP DERBY
AGGREGATE statement. See GRANT statement and REVOKE statement for information
on usage privileges for UDAs.

For information on writing the Java classes that implement UDAs, see "Programming
user-defined aggregates" in the Derby Developer's Guide.

The built-in aggregates can operate on expressions that evaluate to the data types
shown in the following table.

Table 9. Permitted data types for built-in aggregates

Function Name Permitted Data Types

COUNT All types

MIN Data types that can be indexed

MAX Data types that can be indexed

AVG Numeric built-in data types

SUM Numeric built-in data types

Aggregates are permitted only in the following:
• A selectItem in a selectExpression.
• A HAVING clause.
• An ORDER BY clause (using an alias name) if the aggregate appears in the

result of the relevant query block. That is, an alias for an aggregate is permitted
in an ORDER BY clause if and only if the aggregate appears in a selectItem in a
selectExpression.

All expressions in selectItems in the selectExpression must be either aggregates
or grouped columns (see GROUP BY clause). (The same is true if there is a
HAVING clause without a GROUP BY clause.) This is because the ResultSet of a
selectExpression must be either a scalar (single value) or a vector (multiple values),
but not a mixture of both. (Aggregates evaluate to a scalar value, and the reference to
a column can evaluate to a vector.) For example, the following query mixes scalar and
vector values and thus is not valid:

Derby Reference Manual

128

-- not valid
SELECT MIN(flying_time), flight_id
FROM Flights

Aggregates are not allowed on outer references (correlations). This means that if a
subquery contains an aggregate, that aggregate cannot evaluate an expression that
includes a reference to a column in the outer query block. For example, the following
query is not valid because SUM operates on a column from the outer query:

SELECT c1
FROM t1
GROUP BY c1
HAVING c2 >
 (SELECT t2.x
 FROM t2
 WHERE t2.y = SUM(t1.c3))

A cursor declared on a ResultSet that includes an aggregate in the outer query block is
not updatable.

ABS or ABSVAL function

The ABS or ABSVAL function returns the absolute value of a numeric expression.

The return type is the type of the parameter. All built-in numeric types are supported
(DECIMAL, DOUBLE PRECISION, FLOAT, INTEGER, BIGINT, NUMERIC, REAL, and
SMALLINT).

Syntax

ABS (numericExpression)

ABSVAL (numericExpression)

Example

-- returns 3
VALUES ABS(-3)

ACOS function

The ACOS function returns the arc cosine of a specified number.

The specified number is the cosine, in radians, of the angle that you want. The specified
number must be a DOUBLE PRECISION number.

• If the specified number is NULL, the result of this function is NULL.
• If the absolute value of the specified number is greater than 1, an exception is

returned that indicates that the value is out of range (SQL state 22003).

The returned value, in radians, is in the range of zero (0) to pi. The data type of the
returned value is a DOUBLE PRECISION number.

Syntax

ACOS (number)

ASIN function

The ASIN function returns the arc sine of a specified number.

The specified number is the sine, in radians, of the angle that you want. The specified
number must be a DOUBLE PRECISION number.

Derby Reference Manual

129

• If the specified number is NULL, the result of this function is NULL.
• If the specified number is zero (0), the result of this function is zero.
• If the absolute value of the specified number is greater than 1, an exception is

returned that indicates that the value is out of range (SQL state 22003).

The returned value, in radians, is in the range -pi/2 to pi/2. The data type of the returned
value is a DOUBLE PRECISION number.

Syntax

ASIN (number)

ATAN function

The ATAN function returns the arc tangent of a specified number.

The specified number is the tangent, in radians, of the angle that you want. The specified
number must be a DOUBLE PRECISION number.

• If the specified number is NULL, the result of this function is NULL.
• If the specified number is zero (0), the result of this function is zero.

The returned value, in radians, is in the range -pi/2 to pi/2. The data type of the returned
value is a DOUBLE PRECISION number.

Syntax

ATAN (number)

ATAN2 function

The ATAN2 function returns the arctangent, in radians, of the quotient of the two
arguments.

Upon successful completion, the function returns the arc tangent of y/x in the range -pi
to pi radians, where y is the first argument and x is the second argument. The specified
numbers must be DOUBLE PRECISION numbers.

• If either argument is NULL, the result of the function is NULL.
• If the first argument is zero and the second argument is positive, the result of the

function is zero.
• If the first argument is zero and the second argument is negative, the result of the

function is the double value closest to pi.
• If the first argument is positive and the second argument is zero, the result is the

double value closest to pi/2.
• If the first argument is negative and the second argument is zero, the result is the

double value closest to -pi/2.

The data type of the returned value is a DOUBLE PRECISION number.

Syntax

ATAN2 (y, x)

AVG function

AVG is an aggregate function that evaluates the average of an expression over a set of
rows.

AVG is allowed only on expressions that evaluate to numeric data types.

See Aggregates (set functions) for more information about these functions.

Derby Reference Manual

130

Syntax

AVG ([DISTINCT | ALL] expression)

The DISTINCT qualifier eliminates duplicates. The ALL qualifier retains duplicates. ALL
is the default value if neither ALL nor DISTINCT is specified. For example, if a column
contains the values 1.0, 1.0, 1.0, 1.0, and 2.0, AVG(col) returns a smaller value than
AVG(DISTINCT col).

Only one DISTINCT aggregate expression per selectExpression is allowed. For example,
the following query is not valid:

SELECT AVG (DISTINCT flying_time), SUM (DISTINCT miles)
FROM Flights

The expression can contain multiple column references or expressions, but it cannot
contain another aggregate or subquery. It must evaluate to an SQL numeric data type.
You can therefore call methods that evaluate to SQL data types. If an expression
evaluates to NULL, the aggregate skips that value.

The resulting data type is the same as the expression on which it operates (it will never
overflow). The following query, for example, returns the INTEGER 1, which might not be
what you would expect:

SELECT AVG(c1)
FROM (VALUES (1), (1), (1), (1), (2)) AS myTable (c1)

CAST the expression to another data type if you want more precision:

SELECT AVG(CAST (c1 AS DOUBLE PRECISION))
FROM (VALUES (1), (1), (1), (1), (2)) AS myTable (c1)

BIGINT function

The BIGINT function returns a 64-bit integer representation of a number or character
string in the form of an integer constant.

Syntax

BIGINT (characterExpression | numericExpression)

characterExpression
An expression that returns a character string value of length not greater than
the maximum length of a character constant. Leading and trailing blanks are
eliminated and the resulting string must conform to the rules for forming an SQL
integer constant. The character string cannot be a long string. If the argument
is a characterExpression, the result is the same number that would occur if the
corresponding integer constant were assigned to a big integer column or variable.

numericExpression
An expression that returns a value of any built-in numeric data type. If the argument is
a numericExpression, the result is the same number that would occur if the argument
were assigned to a big integer column or variable. If the whole part of the argument is
not within the range of integers, an error occurs. The decimal part of the argument is
truncated if present.

The result of the function is a big integer. If the argument can be null, the result can be
null; if the argument is null, the result is the null value.

Example
Using the EMPLOYEE table, select the EMPNO column in big integer form for further
processing in the application:

Derby Reference Manual

131

SELECT BIGINT (EMPNO) FROM EMPLOYEE

CAST function

The CAST function converts a value from one data type to another and provides a data
type to a dynamic parameter (?) or a NULL value.

CAST expressions are permitted anywhere expressions are permitted.

Syntax

CAST ([expression | NULL | ?]
 AS dataType)

The data type to which you are casting an expression is the target type. The data type of
the expression from which you are casting is the source type.

CAST conversions among SQL data types

The following table shows valid explicit conversions between source types and target
types for SQL data types. This table shows which explicit conversions between data
types are valid. The first column on the table lists the source data types. The first row lists
the target data types. A "Y" indicates that a conversion from the source to the target is
valid. For example, the first cell in the second row lists the source data type SMALLINT.
The remaining cells on the second row indicate the whether or not you can convert
SMALLINT to the target data types that are listed in the first row of the table.

Table 10. Explicit conversions between source types and target types for SQL data
types

Types

B
O
O
L
E
A
N

S
M
A
L
L
I
N
T

I
N
T
E
G
E
R

B
I
G
I
N
T

D
E
C
I
M
A
L

R
E
A
L

D
O
U
B
L
E

F
L
O
A
T

C
H
A
R

V
A
R
C
H
A
R

L
O
N
G

V
A
R
C
H
A
R

C
H
A
R

F
O
R

B
I
T

D
A
T
A

V
A
R
C
H
A
R

F
O
R

B
I
T

D
A
T
A

L
O
N
G

V
A
R
C
H
A
R

F
O
R

B
I
T

D
A
T
A

C
L
O
B

B
L
O
B

D
A
T
E

T
I
M
E

T
I
M
E
S
T
A
M
P

X
M
L

BOOLEAN Y - - - - - - - Y Y Y - - - Y - - - - -

SMALLINT - Y Y Y Y Y Y Y Y - - - - - - - - - - -

Derby Reference Manual

132

Types

B
O
O
L
E
A
N

S
M
A
L
L
I
N
T

I
N
T
E
G
E
R

B
I
G
I
N
T

D
E
C
I
M
A
L

R
E
A
L

D
O
U
B
L
E

F
L
O
A
T

C
H
A
R

V
A
R
C
H
A
R

L
O
N
G

V
A
R
C
H
A
R

C
H
A
R

F
O
R

B
I
T

D
A
T
A

V
A
R
C
H
A
R

F
O
R

B
I
T

D
A
T
A

L
O
N
G

V
A
R
C
H
A
R

F
O
R

B
I
T

D
A
T
A

C
L
O
B

B
L
O
B

D
A
T
E

T
I
M
E

T
I
M
E
S
T
A
M
P

X
M
L

INTEGER - Y Y Y Y Y Y Y Y - - - - - - - - - - -

BIGINT - Y Y Y Y Y Y Y Y - - - - - - - - - - -

DECIMAL - Y Y Y Y Y Y Y Y - - - - - - - - - - -

REAL - Y Y Y Y Y Y Y - - - - - - - - - - - -

DOUBLE - Y Y Y Y Y Y Y - - - - - - - - - - - -

FLOAT - Y Y Y Y Y Y Y - - - - - - - - - - - -

CHAR Y Y Y Y Y - - - Y Y Y - - - Y - Y Y Y -

VARCHAR Y Y Y Y Y - - - Y Y Y - - - Y - Y Y Y -

LONG
VARCHAR

Y - - - - - - - Y Y Y - - - Y - - - - -

CHAR FOR
BIT DATA

- - - - - - - - - - - Y Y Y Y Y - - - -

VARCHAR
FOR BIT
DATA

- - - - - - - - - - - Y Y Y Y Y - - - -

LONG
VARCHAR
FOR BIT
DATA

- - - - - - - - - - - Y Y Y Y Y - - - -

CLOB Y - - - - - - - Y Y Y - - - Y - - - - -

BLOB - - - - - - - - - - - - - - - Y - - - -

DATE - - - - - - - - Y Y - - - - - - Y - - -

Derby Reference Manual

133

Types

B
O
O
L
E
A
N

S
M
A
L
L
I
N
T

I
N
T
E
G
E
R

B
I
G
I
N
T

D
E
C
I
M
A
L

R
E
A
L

D
O
U
B
L
E

F
L
O
A
T

C
H
A
R

V
A
R
C
H
A
R

L
O
N
G

V
A
R
C
H
A
R

C
H
A
R

F
O
R

B
I
T

D
A
T
A

V
A
R
C
H
A
R

F
O
R

B
I
T

D
A
T
A

L
O
N
G

V
A
R
C
H
A
R

F
O
R

B
I
T

D
A
T
A

C
L
O
B

B
L
O
B

D
A
T
E

T
I
M
E

T
I
M
E
S
T
A
M
P

X
M
L

TIME - - - - - - - - Y Y - - - - - - - Y - -

TIMESTAMP - - - - - - - - Y Y - - - - - - Y Y Y -

XML - - - - - - - - - - - - - - - - - - - Y

If a conversion is valid, CASTs are allowed. Size incompatibilities between the source
and target types might cause runtime errors.

Notes
In this discussion, the Derby SQL data types are categorized as follows:

• logical
• BOOLEAN

• numeric
• Exact numeric (SMALLINT, INTEGER, BIGINT, DECIMAL, NUMERIC)
• Approximate numeric (FLOAT, REAL, DOUBLE PRECISION)

• string
• Character string (CLOB, CHAR, VARCHAR, LONG VARCHAR)
• Bit string (BLOB, CHAR FOR BIT DATA, VARCHAR FOR BIT DATA, LONG

VARCHAR FOR BIT DATA)
• date/time

• DATE
• TIME
• TIMESTAMP

Conversions to and from logical types

A BOOLEAN value can be cast explicitly to any of the string types. The result is 'true',
'false', or null. Conversely, string types can be cast to BOOLEAN. However, an error
is raised if the string value is not 'true', 'false', 'unknown', or null. Casting 'unknown' to
boolean results in a null value.

Conversions from numeric types

Derby Reference Manual

134

A numeric type can be converted to any other numeric type. If the target type cannot
represent the non-fractional component without truncation, an exception is raised. If the
target numeric cannot represent the fractional component (scale) of the source numeric,
then the source is silently truncated to fit into the target. For example, casting 763.1234
as INTEGER yields 763.

Conversions from and to bit strings

Bit strings can be converted to other bit strings, but not to character strings. Strings that
are converted to bit strings are padded with trailing zeros to fit the size of the target bit
string. The BLOB type is more limited and requires explicit casting. In most cases the
BLOB type cannot be cast to and from other types: you can cast a BLOB only to another
BLOB, but you can cast other bit string types to a BLOB.

Conversions of date/time values

A date/time value can always be converted to and from a TIMESTAMP. If a DATE is
converted to a TIMESTAMP, the TIME component of the resulting TIMESTAMP is always
00:00:00. If a TIME data value is converted to a TIMESTAMP, the DATE component is
set to the value of CURRENT_DATE at the time the CAST is executed. If a TIMESTAMP
is converted to a DATE, the TIME component is silently truncated. If a TIMESTAMP is
converted to a TIME, the DATE component is silently truncated.

Conversions of XML values

An XML value cannot be converted to any non-XML type using an explicit or implicit
CAST. Use the XMLSERIALIZE operator to convert an XML type to a character type.

Examples

SELECT CAST (miles AS INT)
FROM Flights
-- convert timestamps to text
INSERT INTO mytable (text_column)
VALUES (CAST (CURRENT_TIMESTAMP AS VARCHAR(100)))
-- you must cast NULL as a data type to use it
SELECT airline
FROM Airlines
UNION ALL
VALUES (CAST (NULL AS CHAR(2)))
-- cast a double as a decimal
SELECT CAST (FLYING_TIME AS DECIMAL(5,2))
FROM FLIGHTS
-- cast a SMALLINT to a BIGINT
VALUES CAST (CAST (12 as SMALLINT) as BIGINT)

CEIL or CEILING function

The CEIL or CEILING function rounds the specified number up, and returns the smallest
number that is greater than or equal to the specified number.

The specified number must be a DOUBLE PRECISION number.
• If the specified number is NULL, the returned value is NULL.
• If the specified number is equal to a mathematical integer, the returned value is the

same as the specified number.
• If the specified number is zero (0), the returned value is zero.
• If the specified number is less than zero but greater than -1.0, the returned value is

zero.

The returned value is the smallest (closest to negative infinity) double floating-point value
that is greater than or equal to the specified number. The returned value is equal to a
mathematical integer. The data type of the returned value is a DOUBLE PRECISION
number.

Derby Reference Manual

135

Syntax

CEIL (number)

CEILING (number)

CHAR function

The CHAR function returns a fixed-length character string representation.

The representations are:
• A character string, if the first argument is any type of character string.
• A datetime value, if the first argument is a date, time, or timestamp.
• A decimal number, if the first argument is a decimal number.
• A double-precision floating-point number, if the first argument is a DOUBLE or

REAL.
• An integer number, if the first argument is a SMALLINT, INTEGER, or BIGINT.

The first argument must be of a built-in data type. The result of the CHAR function is a
fixed-length character string. If the first argument can be null, the result can be null. If
the first argument is null, the result is the null value. The first argument cannot be an
XML value. To convert an XML value to a CHAR of a specified length, you must use the
SQL/XML serialization operator XMLSERIALIZE.

Character to character syntax

CHAR (characterExpression [, integer])

characterExpression
An expression that returns a value that is CHAR, VARCHAR, LONG VARCHAR, or
CLOB data type.

integer
The length attribute for the resulting fixed length character string. The value must be
between 0 and 254.

If the length of the characterExpression is less than the length attribute of the result,
the result is padded with blanks up to the length of the result. If the length of the
characterExpression is greater than the length attribute of the result, truncation is
performed. A warning is returned unless the truncated characters were all blanks and the
characterExpression was not a long string (LONG VARCHAR or CLOB).

Integer to character syntax

CHAR (integerExpression)

integerExpression
An expression that returns a value that is an integer data type (either SMALLINT,
INTEGER, or BIGINT).

The result is the character string representation of the argument in the form of an SQL
integer constant. The result consists of n characters that are the significant digits that
represent the value of the argument with a preceding minus sign if the argument is
negative. The result is left justified.

• If the first argument is a SMALLINT: The length of the result is 6. If the number of
characters in the result is less than 6, then the result is padded on the right with
blanks to length 6.

• If the first argument is an INTEGER: The length of the result is 11. If the number of
characters in the result is less than 11, then the result is padded on the right with
blanks to length 11.

Derby Reference Manual

136

• If the first argument is a BIGINT: The length of the result is 20. If the number of
characters in the result is less than 20, then the result is padded on the right with
blanks to length 20.

Datetime to character syntax

CHAR (datetimeExpression)

datetimeExpression
An expression that is one of the following three data types:

• DATE: The result is the character representation of the date. The length of the
result is 10.

• TIME: The result is the character representation of the time. The length of the
result is 8.

• TIMESTAMP: The result is the character string representation of the timestamp.
The length of the result is 26.

Decimal to character

CHAR (decimalExpression)

decimalExpression
An expression that returns a value that is a decimal data type.

Floating point to character syntax

CHAR (floatingPointExpression)

floatingPointExpression
An expression that returns a value that is a floating-point data type (DOUBLE or
REAL).

Example
Use the CHAR function to return the values for EDLEVEL (defined as smallint) as a fixed
length character string:

SELECT CHAR(EDLEVEL) FROM EMPLOYEE

An EDLEVEL of 18 would be returned as the CHAR(6) value '18 ' (18 followed by four
blanks).

COALESCE function

The COALESCE function takes two or more compatible arguments and returns the first
argument that is not null.

The result is null only if all the arguments are null.

If all the parameters of the function call are dynamic, an error occurs.

Note: A synonym for COALESCE is VALUE. VALUE is accepted by Derby but is not
recognized by the SQL standard.

Syntax

COALESCE (expression, expression [, expression]*)

The function must have at least two arguments.

Example

ij> -- create table with three different integer types
ij> create table temp(smallintcol smallint, bigintcol bigint, intcol
 integer);

Derby Reference Manual

137

0 rows inserted/updated/deleted

ij> insert into temp values (1, null, null);
1 row inserted/updated/deleted
ij> insert into temp values (null, 2, null);
1 row inserted/updated/deleted
ij> insert into temp values (null, null, 3);
1 row inserted/updated/deleted

ij> select * from temp;
SMALL&|BIGINTCOL |INTCOL

1 |NULL |NULL
NULL |2 |NULL
NULL |NULL |3

3 rows selected

ij> -- the return data type of coalesce is bigint
ij> select coalesce (smallintcol, bigintcol) from temp;
1

1
2
NULL

3 rows selected

ij> -- the return data type of coalesce is bigint
ij> select coalesce (smallintcol, bigintcol, intcol) from temp;
1

1
2
3

3 rows selected

ij> -- the return data type of coalesce is integer
ij> select coalesce (smallintcol, intcol) from temp;
1

1
NULL
3

3 rows selected

Concatenation operator

The concatenation operator, ||, concatenates its right operand to the end of its left
operand. It operates on character or bit expressions.

Because all built-in data types are implicitly converted to strings, this function can act on
all built-in data types.

Syntax

{
 characterExpression || characterExpression |
 bitExpression || bitExpression
}

For character strings, if both the left and right operands are of type CHAR, the resulting
type is CHAR; otherwise, it is VARCHAR. The normal blank padding/trimming rules for
CHAR and VARCHAR apply to the result of this operator.

The length of the resulting string is the sum of the lengths of both operands.

Derby Reference Manual

138

For bit strings, if both the left and the right operands are of type CHAR FOR BIT DATA,
the resulting type is CHAR FOR BIT DATA; otherwise, it is VARCHAR FOR BIT DATA.

Examples

-- returns 'supercalifragilisticexbealidocious(sp?)'
VALUES 'supercalifragilistic' || 'exbealidocious' || '(sp?)'
-- returns NULL
VALUES CAST (null AS VARCHAR(7))|| 'AString'
-- returns '130asdf'
VALUES '130' || 'asdf'

COS function

The COS function returns the cosine of a specified number.

The specified number is the angle, in radians, that you want the cosine for. The specified
number must be a DOUBLE PRECISION number.

• If the specified number is NULL, the result of this function is NULL.

Syntax

COS (number)

COSH function

The COSH function returns the hyperbolic cosine of a specified number.

The specified number is the angle, in radians, that you want the hyperbolic cosine for.
The specified number must be a DOUBLE PRECISION number.

• If the specified number is NULL, the result of this function is NULL.
• If the specified number is zero (0), the result of this function is one (1.0).

Syntax

COSH (number)

COT function

The COT function returns the cotangent of a specified number.

The specified number is the angle, in radians, that you want the cotangent for. The
specified number must be a DOUBLE PRECISION number.

• If the specified number is NULL, the result of this function is NULL.

Syntax

COT (number)

COUNT function

COUNT is an aggregate function that counts the number of rows accessed in an
expression. COUNT is allowed on all types of expressions.

See Aggregates (set functions) for more information about these functions.

Syntax

COUNT ([DISTINCT | ALL] expression)

The DISTINCT qualifier eliminates duplicates. The ALL qualifier retains duplicates. ALL
is assumed if neither ALL nor DISTINCT is specified. For example, if a column contains

Derby Reference Manual

139

the values 1, 1, 1, 1, and 2, COUNT(col) returns a greater value than COUNT(DISTINCT
col).

Only one DISTINCT aggregate expression per selectExpression is allowed. For example,
the following query is not allowed:

-- query not allowed
SELECT COUNT (DISTINCT flying_time), SUM (DISTINCT miles)
FROM Flights

An expression can contain multiple column references or expressions, but it cannot
contain another aggregate or subquery. If an expression evaluates to NULL, the
aggregate is not processed for that value.

The resulting data type of COUNT is INTEGER.

Example

-- Count the number of countries in each region,
-- show only regions that have at least 2
SELECT COUNT (country), region
FROM Countries
GROUP BY region
HAVING COUNT (country) > 1

COUNT(*) function

COUNT(*) is an aggregate function that counts the number of rows accessed. No NULLs
or duplicates are eliminated. COUNT(*) does not operate on an expression.

See Aggregates (set functions) for more information about these functions.

Syntax

COUNT(*)

The resulting data type is INTEGER.

Example

-- Count the number of rows in the Flights table
SELECT COUNT(*)
FROM Flights

CURRENT DATE function

CURRENT DATE is a synonym for CURRENT_DATE.

See CURRENT_DATE function for details.

CURRENT_DATE function

The CURRENT_DATE function returns the current date; the value returned does not
change if it is executed more than once in a single statement.

This means the value is fixed even if there is a long delay between fetching rows in a
cursor.

Syntax

CURRENT_DATE

or, alternately

Derby Reference Manual

140

CURRENT DATE

Example

-- find available future flights:
SELECT * FROM Flightavailability where flight_date > CURRENT_DATE;

CURRENT ISOLATION function

The CURRENT ISOLATION function returns the current isolation level as a CHAR(2)
value of either "" (blank), "UR", "CS", "RS", or "RR".

Syntax

CURRENT ISOLATION

Example

VALUES CURRENT ISOLATION

CURRENT_ROLE function

The CURRENT_ROLE function returns the authorization identifier of the current role. If
there is no current role, it returns NULL.

This function returns a string of up to 258 characters. This is twice the length of an
identifier (128*2) + 2, to allow for quoting.

Syntax

CURRENT_ROLE

Example

VALUES CURRENT_ROLE

CURRENT SCHEMA function

The CURRENT SCHEMA function returns the schema name used to qualify unqualified
database object references.

Note: CURRENT SCHEMA and CURRENT SQLID are synonyms.

These functions return a string of up to 128 characters.

Syntax

CURRENT SCHEMA

or, alternately

CURRENT SQLID

Example

-- Set the name column default to the current schema:
CREATE TABLE mytable (id int, name VARCHAR(128) DEFAULT CURRENT SQLID)
-- Inserts default value of current schema value into the table:
INSERT INTO mytable(id) VALUES (1)
-- Returns the rows with the same name as the current schema:
SELECT name FROM mytable WHERE name = CURRENT SCHEMA

CURRENT TIME function

Derby Reference Manual

141

CURRENT TIME is a synonym for CURRENT_TIME.

See CURRENT_TIME function for details.

CURRENT_TIME function

The CURRENT_TIME function returns the current time; the value returned does not
change if it is executed more than once in a single statement.

This means the value is fixed even if there is a long delay between fetching rows in a
cursor.

Syntax

CURRENT_TIME

or, alternately

CURRENT TIME

Examples

VALUES CURRENT_TIME

-- or, alternately:

VALUES CURRENT TIME

CURRENT TIMESTAMP function

CURRENT TIMESTAMP is a synonym for CURRENT_TIMESTAMP.

See CURRENT_TIMESTAMP function for details.

CURRENT_TIMESTAMP function

The CURRENT_TIMESTAMP function returns the current timestamp; the value returned
does not change if it is executed more than once in a single statement.

This means the value is fixed even if there is a long delay between fetching rows in a
cursor.

Syntax

CURRENT_TIMESTAMP

or, alternately

CURRENT TIMESTAMP

Examples

VALUES CURRENT_TIMESTAMP

-- or, alternately:

VALUES CURRENT TIMESTAMP

CURRENT_USER function

When used outside stored routines, the CURRENT_USER, USER, and SESSION_USER
functions all return the authorization identifier of the user that created the SQL session.

Derby Reference Manual

142

See USER function and SESSION_USER function for details on those functions.

SESSION_USER also always returns this value when used within stored routines.

If used within a stored routine created with EXTERNAL SECURITY DEFINER, however,
CURRENT_USER and USER return the authorization identifier of the user that owns the
schema of the routine. This is usually the creating user, although the database owner
could be the creator as well.

For information about definer's and invoker's rights, see CREATE PROCEDURE
statement or CREATE FUNCTION statement.

These functions return a string of up to 128 characters.

Syntax

CURRENT_USER

Example

VALUES CURRENT_USER

DATE function

The DATE function returns a date from a value.

The argument must be a date, timestamp, a positive number less than or equal to
2,932,897, a valid string representation of a date or timestamp, or a string of length 7 that
is not a CLOB, LONG VARCHAR, or XML value. If the argument is a string of length 7, it
must represent a valid date in the form yyyynnn, where yyyy are digits denoting a year,
and nnn are digits between 001 and 366, denoting a day of that year. The result of the
function is a date. If the argument can be null, the result can be null; if the argument is
null, the result is the null value.

The other rules depend on the data type of the argument specified:
• If the argument is a date, timestamp, or valid string representation of a date or

timestamp: The result is the date part of the value.
• If the argument is a number: The result is the date that is n-1 days after January 1,

1970, where n is the integral part of the number.
• If the argument is a string with a length of 7: The result is the date represented by

the string.

Syntax

DATE (expression)

Examples

This example results in an internal representation of '1988-12-25'.

VALUES DATE('1988-12-25')

This example results in an internal representation of '1972-02-28'.

VALUES DATE(789)

DAY function

The DAY function returns the day part of a value.

The argument must be a date, timestamp, or a valid character string representation of
a date or timestamp that is not a CLOB, LONG VARCHAR, or XML value. The result of

Derby Reference Manual

143

the function is an integer between 1 and 31. If the argument can be null, the result can be
null; if the argument is null, the result is the null value.

Syntax

DAY (expression)

Example

values day('2007-08-02');

The resulting value is 2.

DEGREES function

The DEGREES function converts a specified number from radians to degrees.

The specified number is an angle measured in radians, which is converted to an
approximately equivalent angle measured in degrees. The specified number must be a
DOUBLE PRECISION number.

Attention: The conversion from radians to degrees is not exact. You should not expect
DEGREES(ACOS(0.5)) to return exactly 60.0.

The data type of the returned value is a DOUBLE PRECISION number.

Syntax

DEGREES (number)

DOUBLE function

The DOUBLE function returns a floating-point number corresponding to a number or a
character string.

The returned value corresponds to a number if the argument is a numeric expression.

The returned value corresponds to a character string representation of a number if the
argument is a string expression.

Numeric to double

DOUBLE [PRECISION] (numericExpression)

numericExpression
The argument is an expression that returns a value of any built-in numeric data type.

The result of the function is a double-precision floating-point number. If the argument
can be null, the result can be null; if the argument is null, the result is the null value.
The result is the same number that would occur if the argument were assigned to a
double-precision floating-point column or variable.

Character string to double

DOUBLE (stringExpression)

stringExpression
The argument can be of type CHAR or VARCHAR in the form of a numeric constant.
Leading and trailing blanks in argument are ignored.

The result of the function is a double-precision floating-point number. The result can be
null; if the argument is null, the result is the null value. The result is the same number that
would occur if the string was considered a constant and assigned to a double-precision
floating-point column or variable.

Derby Reference Manual

144

EXP function

The EXP function returns e raised to the power of the specified number.

The specified number is the exponent that you want to raise e to. The specified number
must be a DOUBLE PRECISION number.

The constant e is the base of the natural logarithms.

The data type of the returned value is a DOUBLE PRECISION number.

Syntax

EXP (number)

FLOOR function

The FLOOR function rounds the specified number down, and returns the largest number
that is less than or equal to the specified number.

The specified number must be a DOUBLE PRECISION number.

• If the specified number is NULL, the result of this function is NULL.
• If the specified number is equal to a mathematical integer, the result of this function

is the same as the specified number.
• If the specified number is zero (0), the result of this function is zero.

The returned value is the largest (closest to positive infinity) double floating point value
that is less than or equal to the specified number. The returned value is equal to a
mathematical integer. The data type of the returned value is a DOUBLE PRECISION
number.

Syntax

FLOOR (number)

HOUR function

The HOUR function returns the hour part of a value.

The argument must be a time, timestamp, or a valid character string representation of a
time or timestamp that is not a CLOB, LONG VARCHAR, or XML value. The result of the
function is an integer between 0 and 24. If the argument can be null, the result can be
null; if the argument is null, the result is the null value.

Syntax

HOUR (expression)

Example

Select all the classes that start in the afternoon from a table called TABLE1.

SELECT * FROM TABLE1 WHERE HOUR(STARTING) BETWEEN 12 AND 17

IDENTITY_VAL_LOCAL function

The IDENTITY_VAL_LOCAL function is a non-deterministic function that returns the most
recently assigned value of an identity column for a connection, where the assignment
occurred as a result of a single row INSERT statement using a VALUES clause.

Syntax

Derby Reference Manual

145

IDENTITY_VAL_LOCAL ()

The IDENTITY_VAL_LOCAL function has no input parameters. The result is a DECIMAL
(31,0), regardless of the actual data type of the corresponding identity column.

The value returned by the IDENTITY_VAL_LOCAL function, for a connection, is the
value assigned to the identity column of the table identified in the most recent single
row INSERT statement. The INSERT statement must contain a VALUES clause on a
table containing an identity column. The function returns a null value when a single row
INSERT statement with a VALUES clause has not been issued for a table containing an
identity column.

The result of the function is not affected by the following:
• A single row INSERT statement with a VALUES clause for a table without an

identity column
• A multiple row INSERT statement with a VALUES clause
• An INSERT statement with a fullselect

If a table with an identity column has an INSERT trigger defined that inserts into another
table with another identity column, then the IDENTITY_VAL_LOCAL function will return
the generated value for the statement table, and not for the table modified by the trigger.

Examples

ij> create table t1(c1 int generated always as identity, c2 int);
0 rows inserted/updated/deleted
ij> insert into t1(c2) values (8);
1 row inserted/updated/deleted
ij> values IDENTITY_VAL_LOCAL();
1

1
1 row selected
ij> select IDENTITY_VAL_LOCAL()+1, IDENTITY_VAL_LOCAL()-1 from t1;
1 |2

2 |0
1 row selected
ij> insert into t1(c2) values (IDENTITY_VAL_LOCAL());
1 row inserted/updated/deleted
ij> select * from t1;
C1 |C2

1 |8
2 |1
2 rows selected
ij> values IDENTITY_VAL_LOCAL();
1

2
1 row selected
ij> insert into t1(c2) values (8), (9);
2 rows inserted/updated/deleted
ij> -- multi-values insert, return value of the function should not
 change
values IDENTITY_VAL_LOCAL();
1

2
1 row selected
ij> select * from t1;
C1 |C2

1 |8
2 |1
3 |8
4 |9

Derby Reference Manual

146

4 rows selected
ij> insert into t1(c2) select c1 from t1;
4 rows inserted/updated/deleted
-- insert with sub-select, return value should not change
ij> values IDENTITY_VAL_LOCAL();
1

2
1 row selected
ij> select * from t1;
C1 |C2

1 |8
2 |1
3 |8
4 |9
5 |1
6 |2
7 |3
8 |4
8 rows selected

INTEGER function

The INTEGER function returns an integer representation of a number or character string
in the form of an integer constant.

Syntax

INT[EGER] (numericExpression | characterExpression)

numericExpression
An expression that returns a value of any built-in numeric data type. If the argument is
a numericExpression, the result is the same number that would occur if the argument
were assigned to a large integer column or variable. If the whole part of the argument
is not within the range of integers, an error occurs. The decimal part of the argument
is truncated if present.

characterExpression
An expression that returns a character string value of length not greater than
the maximum length of a character constant. Leading and trailing blanks are
eliminated and the resulting string must conform to the rules for forming an SQL
integer constant. The character string cannot be a long string. If the argument
is a characterExpression, the result is the same number that would occur if the
corresponding integer constant were assigned to a large integer column or variable.

The result of the function is a large integer. If the argument can be null, the result can be
null; if the argument is null, the result is the null value.

Example
Using the EMPLOYEE table, select a list containing salary (SALARY) divided by
education level (EDLEVEL). Truncate any decimal in the calculation. The list should
also contain the values used in the calculation and employee number (EMPNO). The list
should be in descending order of the calculated value:

SELECT INTEGER (SALARY / EDLEVEL), SALARY, EDLEVEL, EMPNO
FROM EMPLOYEE
ORDER BY 1 DESC

LCASE or LOWER function

The LCASE or LOWER function takes a character expression as a parameter and returns
a string in which all alphabetical characters have been converted to lowercase.

Derby Reference Manual

147

Syntax

LCASE (characterExpression)

LOWER (characterExpression)

A characterExpression is a CHAR, VARCHAR, or LONG VARCHAR data type or any
built-in type that is implicitly converted to a string (except a bit expression).

If the parameter type is CHAR or LONG VARCHAR, the return type is CHAR or LONG
VARCHAR. Otherwise, the return type is VARCHAR.

The length and maximum length of the returned value are the same as the length and
maximum length of the parameter.

If the characterExpression evaluates to null, this function returns null.

Examples

-- returns 'asd1#w'
VALUES LOWER('aSD1#w')

SELECT LOWER(flight_id) FROM Flights

LENGTH function

The LENGTH function is applied to either a character string expression or a bit string
expression and returns the number of characters in the result.

Because all built-in data types are implicitly converted to strings, this function can act on
all built-in data types.

Syntax

LENGTH (characterExpression | bitExpression)

Examples

-- returns 20
VALUES LENGTH('supercalifragilistic')
-- returns 1
VALUES LENGTH(X'FF')
-- returns 4
VALUES LENGTH(1234567890)

LN or LOG function

The LN and LOG functions return the natural logarithm (base e) of the specified number.

The specified number must be a DOUBLE PRECISION number that is greater than zero
(0).

• If the specified number is NULL, the result of these functions is NULL.
• If the specified number is zero or a negative number, an exception is returned that

indicates that the value is out of range (SQL state 22003).

The data type of the returned value is a DOUBLE PRECISION number.

Syntax

LN (number)

LOG (number)

Derby Reference Manual

148

LOG10 function

The LOG10 function returns the base-10 logarithm of the specified number.

The specified number must be a DOUBLE PRECISION number that is greater than zero
(0).

• If the specified number is NULL, the result of this function is NULL.
• If the specified number is zero or a negative number, an exception is returned that

indicates that the value is out of range (SQL state 22003).

The data type of the returned value is a DOUBLE PRECISION number.

Syntax

LOG10 (number)

LOCATE function

The LOCATE function is used to search for a string within another string. If the desired
string is found, LOCATE returns the index at which it is found. If the desired string is not
found, LOCATE returns 0.

Syntax

LOCATE (characterExpression, characterExpression [, startPosition])

There are two required arguments to the LOCATE function, and a third optional
argument.

• The first characterExpression specifies the string to search for.
• The second characterExpression specifies the string in which to search.
• The third argument is the startPosition, which specifies the position in the second

argument at which the search is to start. If the third argument is not provided, the
LOCATE function starts its search at the beginning of the second argument.

The return type for LOCATE is an integer. The LOCATE function returns an integer
indicating the index position within the second argument at which the first argument
was first located. Index positions start with 1. If the first argument is not found in the
second argument, LOCATE returns 0. If the first argument is an empty string (''),
LOCATE returns the value of the third argument (or 1 if it was not provided), even if the
second argument is also an empty string. If a NULL value is passed for either of the
characterExpression arguments, NULL is returned.

Examples

-- returns 2, since 'love' is found at index position 2:
VALUES LOCATE('love', 'clover')

-- returns 0, since 'stove' is not found in 'clover':
VALUES LOCATE('stove', 'clover')

-- returns 5 (note the start position is 4):
VALUES LOCATE('iss', 'Mississippi', 4)

-- returns 1, because the empty string is a special case:
VALUES LOCATE('', 'ABC')

-- returns 0, because 'AAA' is not found in '':
VALUES LOCATE('AAA', '')

-- returns 3
VALUES LOCATE('', '', 3)

Derby Reference Manual

149

LTRIM function

The LTRIM function removes blanks from the beginning of a character string expression.

Syntax

LTRIM (characterExpression)

A characterExpression is a CHAR, VARCHAR, or LONG VARCHAR data type, any
built-in type that is implicitly converted to a string.

LTRIM returns NULL if characterExpression evaluates to null.

Example

-- returns 'asdf '
VALUES LTRIM(' asdf ')

MAX function

MAX is an aggregate function that evaluates the maximum of an expression over a set of
rows.

See Aggregates (set functions) for more information about these functions.

MAX is allowed only on expressions that evaluate to indexable data types (specifically,
those marked with a Y in the second table, "Comparisons allowed by Derby", in Data
type assignments and comparison, sorting, and ordering). This means that MAX cannot
be used with expressions that evaluate to BLOB, CLOB, LONG VARCHAR, LONG
VARCHAR FOR BIT DATA, XML, or user-defined types.

Syntax

MAX ([DISTINCT | ALL] expression)

The DISTINCT and ALL qualifiers eliminate or retain duplicates, but these qualifiers
have no effect in a MAX expression. Only one DISTINCT aggregate expression per
selectExpression is allowed. For example, the following query is not allowed:

SELECT COUNT (DISTINCT flying_time), MAX (DISTINCT miles)
FROM Flights

The expression can contain multiple column references or expressions, but it cannot
contain another aggregate or subquery. It must evaluate to a built-in data type. You can
therefore call methods that evaluate to built-in data types. (For example, a method that
returns a java.lang.Integer or int evaluates to an INTEGER.) If an expression evaluates to
NULL, the aggregate skips that value.

The type's comparison rules determine the maximum value. For CHAR and VARCHAR,
the number of blank spaces at the end of the value can affect how MAX is evaluated. For
example, if the values 'z' and 'z ' are both stored in a column, you cannot control which
one will be returned as the maximum, because blank spaces are ignored for character
comparisons.

The resulting data type is the same as the expression on which it operates (it will never
overflow).

Examples

-- find the latest date in the FlightAvailability table
SELECT MAX (flight_date) FROM FlightAvailability
-- find the longest flight originating from each airport,
-- but only when the longest flight is over 10 hours
SELECT MAX(flying_time), orig_airport

Derby Reference Manual

150

FROM Flights
GROUP BY orig_airport
HAVING MAX(flying_time) > 10

MIN function

MIN is an aggregate function that evaluates the minimum of an expression over a set of
rows.

See Aggregates (set functions) for more information about these functions.

MIN is allowed only on expressions that evaluate to indexable data types (specifically,
those marked with a Y in the second table, "Comparisons allowed by Derby", in Data
type assignments and comparison, sorting, and ordering). This means that MIN cannot
be used with expressions that evaluate to BLOB, CLOB, LONG VARCHAR, LONG
VARCHAR FOR BIT DATA, XML, or user-defined types.

Syntax

MIN ([DISTINCT | ALL] expression)

The DISTINCT and ALL qualifiers eliminate or retain duplicates, but these qualifiers
have no effect in a MIN expression. Only one DISTINCT aggregate expression per
selectExpression is allowed. For example, the following query is not allowed:

SELECT COUNT (DISTINCT flying_time), MIN (DISTINCT miles)
FROM Flights

The expression can contain multiple column references or expressions, but it cannot
contain another aggregate or subquery. It must evaluate to a built-in data type. You can
therefore call methods that evaluate to built-in data types. (For example, a method that
returns a java.lang.Integer or int evaluates to an INTEGER.) If an expression evaluates to
NULL, the aggregate skips that value.

The type's comparison rules determine the minimum value. For CHAR and VARCHAR,
the number of blank spaces at the end of the value can affect how MIN is evaluated. For
example, if the values 'z' and 'z ' are both stored in a column, you cannot control which
one will be returned as the minimum, because blank spaces are ignored for character
comparisons.

The resulting data type is the same as the expression on which it operates (it will never
overflow).

Examples

-- NOT valid:
SELECT DISTINCT flying_time, MIN(DISTINCT miles) from Flights
-- valid:
SELECT COUNT(DISTINCT flying_time), MIN(DISTINCT miles) from Flights
-- find the earliest date:
SELECT MIN (flight_date) FROM FlightAvailability;

MINUTE function

The MINUTE function returns the minute part of a value.

The argument must be a time, timestamp, or a valid character string representation of a
time or timestamp that is not a CLOB, LONG VARCHAR, or XML value. The result of the
function is an integer between 0 and 59. If the argument can be null, the result can be
null; if the argument is null, the result is the null value.

Syntax

Derby Reference Manual

151

MINUTE (expression)

Example

Select all rows from the "flights" table where the "departure_time" is between 6:00 and
6:30 AM:

SELECT * FROM flights
 WHERE HOUR(departure_time) = 6 and MINUTE(departure_time) < 31;

MOD function

The MOD function returns the remainder (modulus) of argument 1 divided by argument 2.
The result is negative only if argument 1 is negative.

Syntax

MOD (integerExpression, integerExpression)

The result of the function is:
• SMALLINT if both arguments are SMALLINT.
• INTEGER if one argument is INTEGER and the other is INTEGER or SMALLINT.
• BIGINT if one integer is BIGINT and the other argument is BIGINT, INTEGER, or

SMALLINT.

The result can be null; if any argument is null, the result is the null value.

MONTH function

The MONTH function returns the month part of a value.

The argument must be a date, timestamp, or a valid character string representation of
a date or timestamp that is not a CLOB, LONG VARCHAR, or XML value. The result of
the function is an integer between 1 and 12. If the argument can be null, the result can be
null; if the argument is null, the result is the null value.

Syntax

MONTH (expression)

Example

Select all rows from the EMPLOYEE table for people who were born (BIRTHDATE) in
DECEMBER.

SELECT * FROM EMPLOYEE WHERE MONTH(BIRTHDATE) = 12

NULLIF function

The NULLIF function can be used for conditional expressions in Derby.

Syntax

NULLIF (expression, expression)

The NULLIF function is very similar to the CASE expression. It returns NULL if the two
arguments are equal, and it returns the first argument if they are not equal. For example,

NULLIF(V1,V2)

is equivalent to the following CASE expression:

CASE WHEN V1=V2 THEN NULL ELSE V1 END

Derby Reference Manual

152

PI function

The PI function returns a value that is closer than any other value to pi.

The constant pi is the ratio of the circumference of a circle to the diameter of a circle.

The data type of the returned value is a DOUBLE PRECISION number.

Syntax

PI ()

RADIANS function

The RADIANS function converts a specified number from degrees to radians.

The specified number is an angle measured in degrees, which is converted to an
approximately equivalent angle measured in radians. The specified number must be a
DOUBLE PRECISION number.

Attention: The conversion from degrees to radians is not exact.

The data type of the returned value is a DOUBLE PRECISION number.

Syntax

RADIANS (number)

RANDOM function

The RANDOM function returns a random number.

The RANDOM function returns a DOUBLE PRECISION number with positive sign,
greater than or equal to zero (0), and less than one (1.0).

Syntax

RANDOM ()

RAND function

The RAND function returns a random number given a seed number

The RAND function returns a DOUBLE PRECISION number with positive sign, greater
than or equal to zero (0), and less than one (1.0), given an INTEGER seed number.

Syntax

RAND (seed)

ROW_NUMBER function

The ROW_NUMBER function returns the row number over a named or unnamed window
specification.

The ROW_NUMBER function does not take any arguments, and for each row over the
window it returns an ever increasing BIGINT. It is normally used to limit the number of
rows returned for a query. A result offset or fetch first clause can be a more efficient way
to perform this task.

The data type of the returned value is BIGINT.

Derby Reference Manual

153

Syntax

ROW_NUMBER () OVER [windowSpecification | windowName]

Currently, the only valid windowSpecification is an empty pair of parentheses (()), which
indicates that the function is evaluated over the entire result set.

If you choose to use a WINDOW clause in a selectExpression to specify a window, you
must specify a windowName to refer to it.

Examples

To limit the number of rows returned from a query to the first 10 rows of table T, use the
following query:

SELECT * FROM (
 SELECT
 ROW_NUMBER() OVER () AS R,
 T.*
 FROM T
) AS TR
 WHERE R <= 10;

To display the result of a query using a window name in a WINDOW clause:

SELECT ROW_NUMBER() OVER R,
 B,
 SUM(A)
FROM T5 GROUP BY B WINDOW R AS ()

RTRIM function

The RTRIM function removes blanks from the end of a character string expression.

Syntax

RTRIM (characterExpression)

A characterExpression is a CHAR, VARCHAR, or LONG VARCHAR data type, any
built-in type that is implicitly converted to a string.

RTRIM returns NULL if characterExpression evaluates to null.

Examples

-- returns ' asdf'
VALUES RTRIM(' asdf ')
-- returns 'asdf'
VALUES RTRIM('asdf ')

SECOND function

The SECOND function returns the seconds part of a value.

The argument must be a time, timestamp, or a valid character string representation of a
time or timestamp that is not a CLOB, LONG VARCHAR, or XML value. The result of the
function is an integer between 0 and 59. If the argument can be null, the result can be
null. If the argument is null, the result is 0.

Syntax

SECOND (expression)

Example

Derby Reference Manual

154

The RECEIVED column contains a timestamp that has an internal value equivalent to
2005-12-25-17.12.30.000000. To return only the seconds part of the timestamp, use the
following syntax:

SECOND(RECEIVED)

The value 30 is returned.

SESSION_USER function

When used outside stored routines, the SESSION_USER, USER, and CURRENT_USER
functions all return the authorization identifier of the user that created the SQL session.

See USER function and CURRENT_USER function for details on those functions.

SESSION_USER also always returns this value when used within stored routines.

If used within a stored routine created with EXTERNAL SECURITY DEFINER, however,
USER and CURRENT_USER return the authorization identifier of the user that owns the
schema of the routine. This is usually the creating user, although the database owner
could be the creator as well.

For information about definer's and invoker's rights, see CREATE PROCEDURE
statement or CREATE FUNCTION statement.

Syntax

SESSION_USER

Example

VALUES SESSION_USER

SIGN function

The SIGN function returns the sign of the specified number.

The specified number is the number you want the sign of. The specified number must be
a DOUBLE PRECISION number.

The data type of the returned value is INTEGER.

• If the specified number is NULL, the result of this function is NULL.
• If the specified number is zero (0), the result of this function is zero (0).
• If the specified number is greater than zero (0), the result of this function is plus one

(+1).
• If the specified number is less than zero (0), the result of this function is minus one

(-1).

Syntax

SIGN (number)

SIN function

The SIN function returns the sine of a specified number.

The specified number is the angle, in radians, that you want the sine for. The specified
number must be a DOUBLE PRECISION number.

• If the specified number is NULL, the result of this function is NULL.
• If the specified number is zero (0), the result of this function is zero.

Derby Reference Manual

155

The data type of the returned value is a DOUBLE PRECISION number.

Syntax

SIN (number)

SINH function

The SINH function returns the hyperbolic sine of a specified number.

The specified number is the angle, in radians, that you want the hyperbolic sine for. The
specified number must be a DOUBLE PRECISION number.

• If the specified number is NULL, the result of this function is NULL.
• If the specified number is zero (0), the result of this function is zero.

The data type of the returned value is a DOUBLE PRECISION number.

Syntax

SINH (number)

SMALLINT function

The SMALLINT function returns a small integer representation of a number or character
string in the form of a small integer constant.

Syntax

SMALLINT (numericExpression | characterExpression)

numericExpression
An expression that returns a value of any built-in numeric data type. If the argument is
a numericExpression, the result is the same number that would occur if the argument
were assigned to a small integer column or variable. If the whole part of the argument
is not within the range of small integers, an error occurs. The decimal part of the
argument is truncated if present.

characterExpression
An expression that returns a character string value of length not greater than
the maximum length of a character constant. Leading and trailing blanks are
eliminated and the resulting string must conform to the rules for forming an SQL
integer constant. However, the value of the constant must be in the range of
small integers. The character string cannot be a long string. If the argument is
a characterExpression, the result is the same number that would occur if the
corresponding integer constant were assigned to a small integer column or variable.

The result of the function is a small integer. If the argument can be null, the result can be
null. If the argument is null, the result is the null value.

Examples
To determine the small integer representation of the number 32767.99, use this clause:

VALUES SMALLINT (32767.99)

The result is 32767.

To determine the small integer representation of the number 1, use this clause:

VALUES SMALLINT (1)

The result is 1.

Derby Reference Manual

156

SQRT function

The SQRT function returns the square root of a floating-point number; only the built-in
types REAL, FLOAT, and DOUBLE PRECISION are supported.

The return type for SQRT is the type of the parameter.

Note: To execute SQRT on other data types, you must cast them to floating-point types.

Syntax

SQRT (number)

Examples

-- throws an exception if any row stores a negative number:
VALUES SQRT(3421E+09)

-- returns the square root of an INTEGER after casting it as a
-- floating-point data type:
SELECT SQRT(myDoubleColumn) FROM MyTable

VALUES SQRT (CAST(25 AS FLOAT));

SUBSTR function

The SUBSTR function acts on a character string expression or a bit string expression.

The type of the result is a VARCHAR in the first case and a VARCHAR FOR BIT DATA in
the second case. The length of the result is the maximum length of the source type.

Syntax

SUBSTR(characterExpression, startPosition [, lengthOfString])

The parameter startPosition and the optional parameter lengthOfString are both integer
expressions. The first character or bit has a startPosition of 1. If you specify 0, Derby
assumes that you mean 1.

The parameter characterExpression is a CHAR, VARCHAR, or LONG VARCHAR data
type or any built-in type that is implicitly converted to a string (except a bit expression).

For character expressions, the startPosition and lengthOfString parameters refer to
characters. For bit expressions, the startPosition and lengthOfString parameters refer to
bits.

If the startPosition is positive, it refers to position from the start of the source expression
(counting the first character as 1). The startPosition cannot be a negative number.

If the lengthOfString is not specified, SUBSTR returns the substring of the expression
from the startPosition to the end of the source expression. If lengthOfString is specified,
SUBSTR returns a VARCHAR or VARBIT of length lengthOfString starting at the
startPosition. The SUBSTR function returns an error if you specify a negative number for
the parameter lengthOfString.

Examples
To return a substring of the word hello, starting at the second character and continuing
until the end of the word, use the following clause:

VALUES SUBSTR('hello', 2)

The result is 'ello'.

To return a substring of the word hello, starting at the first character and continuing for
two characters, use the following clause:

Derby Reference Manual

157

VALUES SUBSTR('hello',1,2)

The result is 'he'.

SUM function

SUM is an aggregate function that evaluates the sum of the expression over a set of
rows.

See Aggregates (set functions) for more information about these functions.

SUM is allowed only on expressions that evaluate to numeric data types.

Syntax

SUM ([DISTINCT | ALL] expression)

The DISTINCT and ALL qualifiers eliminate or retain duplicates. ALL is assumed if
neither ALL nor DISTINCT is specified. For example, if a column contains the values 1, 1,
1, 1, and 2, SUM(col) returns a greater value than SUM(DISTINCT col).

Only one DISTINCT aggregate expression per selectExpression is allowed. For example,
the following query is not allowed:

SELECT AVG (DISTINCT flying_time), SUM (DISTINCT miles)
FROM Flights

The expression can contain multiple column references or expressions, but it cannot
contain another aggregate or subquery. It must evaluate to a built-in numeric data type. If
an expression evaluates to NULL, the aggregate skips that value.

The resulting data type is the same as the expression on which it operates (it might
overflow).

Examples

-- find all economy seats available:
SELECT SUM (economy_seats) FROM Airlines;

-- use SUM on multiple column references
-- (find the total number of all seats purchased):
SELECT SUM (economy_seats_taken + business_seats_taken +
 firstclass_seats_taken)
as seats_taken FROM FLIGHTAVAILABILITY;

TAN function

The TAN function returns the tangent of a specified number.

The specified number is the angle, in radians, that you want the tangent for. The
specified number must be a DOUBLE PRECISION number.

• If the specified number is NULL, the result of this function is NULL.
• If the specified number is zero (0), the result of this function is zero.

The data type of the returned value is a DOUBLE PRECISION number.

Syntax

TAN (number)

TANH function

The TANH function returns the hyperbolic tangent of a specified number.

Derby Reference Manual

158

The specified number is the angle, in radians, that you want the hyperbolic tangent for.
The specified number must be a DOUBLE PRECISION number.

• If the specified number is NULL, the result of this function is NULL.
• If the specified number is zero (0), the result of this function is zero.

The data type of the returned value is a DOUBLE PRECISION number.

Syntax

TANH (number)

TIME function

The TIME function returns a time from a value.

The argument must be a time, timestamp, or a valid string representation of a time
or timestamp that is not a CLOB, LONG VARCHAR, or XML value. The result of the
function is a time. If the argument can be null, the result can be null; if the argument is
null, the result is the null value.

The other rules depend on the data type of the argument specified:
• If the argument is a time: The result is that time.
• If the argument is a timestamp: The result is the time part of the timestamp.
• If the argument is a string: The result is the time represented by the string.

Syntax

TIME (expression)

Example

values time(current_timestamp)

If the current time is 5:03 PM, the value returned is 17:03:00.

TIMESTAMP function

The TIMESTAMP function returns a timestamp from a value or a pair of values.

The rules for the arguments depend on whether the second argument is specified:
• If only one argument is specified: It must be a timestamp, a valid string

representation of a timestamp, or a string of length 14 that is not a CLOB, LONG
VARCHAR, or XML value. A string of length 14 must be a string of digits that
represents a valid date and time in the form yyyyxxddhhmmss, where yyyy is the
year, xx is the month, dd is the day, hh is the hour, mm is the minute, and ss is the
seconds.

• If both arguments are specified: The first argument must be a date or a valid string
representation of a date and the second argument must be a time or a valid string
representation of a time.

The other rules depend on whether the second argument is specified:
• If both arguments are specified: The result is a timestamp with the date specified by

the first argument and the time specified by the second argument. The microsecond
part of the timestamp is zero.

• If only one argument is specified and it is a timestamp: The result is that timestamp.
• If only one argument is specified and it is a string: The result is the timestamp

represented by that string. If the argument is a string of length 14, the timestamp
has a microsecond part of zero.

Syntax

TIMESTAMP (expression [, expression])

Derby Reference Manual

159

Examples
The second column in table records_table contains dates (such as 1998-12-25) and
the third column contains times of day (such as 17:12:30). You can return the timestamp
with this statement:

SELECT TIMESTAMP(col2, col3) FROM records_table

The following clause returns the value 1998-12-25-17:12:30.0:

VALUES TIMESTAMP('1998-12-25', '17.12.30');
1

1998-12-25 17:12:30.0

TRIM function

The TRIM function takes a character expression and returns that expression with leading
and/or trailing pad characters removed.

Optional parameters indicate whether leading, or trailing, or both leading and trailing pad
characters should be removed, and specify the pad character that is to be removed.

Syntax

TRIM([trimOperands] trimSource)

The trimSource is a characterExpression.

trimOperands

{ trimType [trimCharacter] FROM | trimCharacter FROM }

The trimCharacter is a characterExpression.

trimType

{ LEADING | TRAILING | BOTH }

If trimType is not specified, it defaults to BOTH. If trimCharacter is not specified, it will
default to the space character (' '). Otherwise the trimCharacter expression must evaulate
to one of the following:

• A character string whose length is exactly one
• NULL

If either trimCharacter or trimSource evaluates to NULL, the result of the TRIM function is
NULL. Otherwise, the result of the TRIM function is defined as follows:

• If trimType is LEADING, the result will be the trimSource value with all leading
occurrences of trimCharacter removed.

• If trimType is TRAILING, the result will be the trimSource value with all trailing
occurrences of trimCharacter removed.

• If trimType is BOTH, the result will be the trimSource value with all leading and
trailing occurrences of trimCharacter removed.

If trimSource's data type is CHAR or VARCHAR, the return type of the TRIM function will
be VARCHAR. Otherwise the return type of the TRIM function will be CLOB.

Examples

-- returns 'derby' (no spaces)
VALUES TRIM(' derby ')

-- returns 'derby' (no spaces)
VALUES TRIM(BOTH ' ' FROM ' derby ')

Derby Reference Manual

160

-- returns 'derby ' (with a space at the end)
VALUES TRIM(LEADING ' ' FROM ' derby ')

-- returns ' derby' (with two spaces at the beginning)
VALUES TRIM(TRAILING ' ' FROM ' derby ')

-- returns NULL
VALUES TRIM(cast (null as char(1)) FROM ' derby ')

-- returns NULL
VALUES TRIM(' ' FROM cast(null as varchar(30)))

-- returns ' derb' (with a space at the beginning)
VALUES TRIM('y' FROM ' derby')

-- results in an error because trimCharacter can only be 1 character
VALUES TRIM('by' FROM ' derby')

UCASE or UPPER function

The UCASE or UPPER function takes a character expression as a parameter and returns
a string in which all alphabetical characters have been converted to uppercase.

Syntax

UCASE (characterExpression)

UPPER (characterExpression)

If the parameter type is CHAR, the return type is CHAR. Otherwise, the return type is
VARCHAR.
Note: UPPER and LOWER follow the database locale. See territory=ll_CC attribute for
more information about specifying locale.

The length and maximum length of the returned value are the same as the length and
maximum length of the parameter.

Example
To return the string aSD1#w in uppercase, use the following clause:

VALUES UPPER('aSD1#w')

The value returned is ASD1#W.

USER function

When used outside stored routines, the USER, CURRENT_USER, and SESSION_USER
functions all return the authorization identifier of the user that created the SQL session.

See CURRENT_USER function and SESSION_USER function for details on those
functions.

SESSION_USER also always returns this value when used within stored routines.

If used within a stored routine created with EXTERNAL SECURITY DEFINER, however,
USER and CURRENT_USER return the authorization identifier of the user that owns the
schema of the routine. This is usually the creating user, although the database owner
could be the creator as well.

For information about definer's and invoker's rights, see CREATE PROCEDURE
statement or CREATE FUNCTION statement.

Syntax

Derby Reference Manual

161

USER

Example

VALUES USER

VARCHAR function

The VARCHAR function returns a varying-length character string representation of a
character string.

Character to varchar syntax

VARCHAR (characterStringExpression)

characterStringExpression
An expression whose value must be of a character-string data type with a maximum
length of 32,672 bytes.

Datetime to varchar syntax

VARCHAR (datetimeExpression)

datetimeExpression
An expression whose value must be of a date, time, or timestamp data type.

Example
Using the EMPLOYEE table, select the job description (JOB defined as CHAR(8)) for
Dolores Quintana as a VARCHAR equivelant:

SELECT VARCHAR(JOB)
FROM EMPLOYEE
WHERE LASTNAME = 'QUINTANA'

XMLEXISTS operator

XMLEXISTS is an SQL/XML operator that you can use to query XML values in SQL.

The XMLEXISTS operator has two arguments, an XML query expression and a Derby
XML value.

See "XML data types and operators" in the Derby Developer's Guide for more
information.

Syntax

XMLEXISTS (xqueryStringLiteral
 PASSING BY REF xmlValueExpression [BY REF])

xqueryStringLiteral
Must be specified as a string literal. If this argument is specified as a parameter,
an expression that is not a literal, or a literal that is not a string (for example an
integer), Derby throws an error. The xqueryStringLiteral argument must also be an
XPath expression. Derby does not support full XQuery, only the XPath subset. If it
cannot compile or execute the query argument, Derby throws an SQLException. See
http://www.w3.org/TR/xpath for more information on XPath expressions.

xmlValueExpression
Must be an XML data value and must constitute a well-formed SQL/XML document.
The xmlValueExpression argument cannot be a parameter. Derby does not perform
implicit parsing nor casting of XML values, so use of strings or any other data
type results in an error. If the argument is a sequence that is returned by the

http://www.w3.org/TR/xpath

Derby Reference Manual

162

DerbyXMLQUERY operator, the argument is accepted if it is a sequence of exactly
one node that is a document node. Otherwise Derby throws an error.

BY REF
Optional keywords that describe the only value passing mechanism supported by
Derby. Since BY REF is also the default passing mechanism, the XMLEXISTS
operator behaves the same whether the keywords are present or not. For more
information on passing mechanisms, see the SQL/XML specification.

Operator results and combining with other operators
The result of the XMLEXISTS operator is a SQL boolean value that is based on the
results from evaluating the xqueryStringLiteral against the xmlValueExpression. The
XMLEXISTS operator returns:
UNKNOWN

When the xmlValueExpression is null.
TRUE

When the evaluation of the specified query expression against the specified
xmlValueExpression returns a non-empty sequence of nodes or values.

FALSE
When evaluation of the specified query expression against the specified
xmlValueExpression returns an empty sequence.

The XMLEXISTS operator does not return the actual results from the evaluation of the
query. You must use the XMLQUERY operator to retrieve the actual results.

Since the result of the XMLEXISTS operator is an SQL boolean data type, you can use
the XMLEXISTS operator wherever a boolean function is allowed. For example, you
can use the XMLEXISTS operator as a check constraint in a table declaration or as a
predicate in a WHERE clause.

Examples
In the x_table table, to determine if the xcol XML column for each row has an element
called student with an age attribute equal to 20, use this statement:

SELECT id, XMLEXISTS('//student[@age=20]' PASSING BY REF xcol)
 FROM x_table

In the x_table table, to return the ID for every row whose xcol XML column is non-null
and contains the element /roster/student, use this statement:

SELECT id FROM x_table WHERE XMLEXISTS('/roster/student' PASSING BY REF
 xcol)

You can create the x_table table with a check constraint that limits which XML values
can be inserted into the xcol XML column. In this example, the constraint is that the
column has at least one student element with an age attribute with a value that is less
than 25. To create the table, use this statement:

CREATE TABLE x_table (id INT, xcol XML
 CHECK (XMLEXISTS ('//student[@age < 25]' PASSING BY REF xcol)))

XMLPARSE operator

XMLPARSE is a SQL/XML operator that you use to parse a character string expression
into a Derby XML value.

You can use the result of this operator temporarily or you can store the result
permanently in Derby XML columns. Whether temporary or permanent, you can use
the XML value as an input to the other Derby XML operators, such as XMLEXISTS and
XMLQUERY.

Derby Reference Manual

163

See "XML data types and operators" in the Derby Developer's Guide for more
information.

Syntax

XMLPARSE (DOCUMENT stringValueExpression PRESERVE WHITESPACE)

DOCUMENT
Required keyword that describes the type of XML input that Derby can parse. Derby
can only parse string expressions that constitute well-formed XML documents,
because Derby uses a parser from the javax.xml.parsers package to parse all string
values. The parser expects the stringValueExpression to constitute a well-formed
XML document. If the string does not constitute a well-formed document, the parser
throws an error. Derby catches the error and throws the error as an SQLException.

stringValueExpression
Any expression that evaluates to a SQL character type, such as CHAR, VARCHAR,
LONG VARCHAR, or CLOB. The stringValueExpression argument can also be
a parameter. You must use the CAST function when you specify the parameter
to indicate the type of value that is bound into the parameter. Derby must verify
that the parameter is the correct data type before the value is parsed as an XML
document. If a parameter is specified without the CAST function, or if the CAST is to
a non-character datatype, Derby throws an error.

PRESERVE WHITESPACE
Required keywords that describe how Derby handles whitespace between
consecutive XML nodes. When the PRESERVE WHITESPACE keywords are
used, Derby preserves whitespace as dictated by the SQL/XML rules for preserving
whitespace.

For more information on what constitutes a well-formed XML document, see the following
specification: http://www.w3.org/TR/REC-xml/#sec-well-formed.

Restriction: The SQL/XML standard dictates that the argument to the XMLPARSE
operator can also be a binary string. However, Derby only supports character string input
for the XMLPARSE operator.

Examples
To insert a simple XML document into the xcol XML column in the x_table table, use
the following statement:

INSERT INTO x_table VALUES (1, XMLPARSE(DOCUMENT '
 <roster>
 <student age="18">AB</student>
 <student age="23">BC</student>
 <student>NOAGE</student>
 </roster>'
 PRESERVE WHITESPACE)
)

To insert a large XML document into the xcol XML column in the x_table table, from
JDBC use the following statement:

INSERT INTO x_table VALUES(2, XMLPARSE (DOCUMENT
 CAST (? AS CLOB)
 PRESERVE WHITESPACE)
)

You should bind into the statement using the setCharacterStream() method, or any other
JDBC setXXX method that works for the CAST target type.

XMLQUERY operator

http://www.w3.org/TR/REC-xml/#sec-well-formed

Derby Reference Manual

164

XMLQUERY is a SQL/XML operator that you can use to query XML values in SQL.

The XMLQUERY operator has two arguments, an XML query expression and a Derby
XML value.

See "XML data types and operators" in the Derby Developer's Guide for more
information.

Syntax

XMLQUERY (xqueryStringLiteral
 PASSING BY REF xmlValueExpression
 [RETURNING SEQUENCE [BY REF]]
 EMPTY ON EMPTY
)

xqueryStringLiteral
Must be specified as a string literal. If this argument is specified as a parameter,
an expression that is not a literal, or a literal that is not a string (for example an
integer), Derby throws an error. The xqueryStringLiteral argument must also be an
XPath expression. Derby does not support full XQuery, only the XPath subset. If it
cannot compile or execute the query argument, Derby throws an SQLException. See
http://www.w3.org/TR/xpath for more information on XPath expressions.

xmlValueExpression
Must be an XML data value and must constitute a well-formed SQL/XML document.
The xmlValueExpression argument cannot be a parameter. Derby does not perform
implicit parsing nor casting of XML values, so use of strings or any other data
type results in an error. If the argument is a sequence that is returned by a Derby
XMLQUERY operation, the argument is accepted if it is a sequence of exactly one
node that is a document node. Otherwise Derby throws an error.

BY REF
Optional keywords that describe the only value passing mechanism supported by
Derby. Since BY REF is also the default passing mechanism, the XMLQUERY
operator behaves the same whether the keywords are present or not. For more
information on passing mechanisms, see the SQL/XML specification.

RETURNING SEQUENCE
Optional keywords that describe the only XML type returned by the Derby
XMLQUERY operator. Since SEQUENCE is also the default return type, the
XMLQUERY operator behaves the same whether the keywords are present or
not. For more information on the different XML return types, see the SQL/XML
specification.

EMPTY ON EMPTY
Required keywords that describe the way in which XMLQUERY handles an empty
result sequence. The XMLQUERY operator returns an empty sequence exactly as
the sequence is. The XMLQUERY operator does not convert the empty sequence
to a null value. When an empty result sequence is serialized, the result is an empty
string. Derby does not consider an empty result sequence to be a well-formed XML
document.

The result of the XMLQUERY operator is a value of type XML. The result represents a
sequence of XML nodes or values. Atomic values, such as strings, can be part of the
result sequence. The result of an XMLQUERY operator is not guaranteed to represent
a well-formed XML document and it might not be possible to insert the result of an
XMLQUERY operator into an XML column. To store the result in an XML column, the
result must be a sequence with exactly one item in the sequence and the item must be a
well-formed document node. The result can be viewed only in serialized form by explicitly
using the XMLSERIALIZE operator.

Examples

http://www.w3.org/TR/xpath

Derby Reference Manual

165

In the x_table table, to search the XML column xcol and return the students that have
an age attribute that is greater than 20, use the following statement:

SELECT ID,
 XMLSERIALIZE(
 XMLQUERY('//student[@age>20]' PASSING BY REF xcol EMPTY ON EMPTY)
 AS VARCHAR(50))
FROM x_table

The result set for this query contains a row for every row in x_table, regardless of
whether or not the XMLQUERY operator actually returns results.

In the x_table table, to search the XML column xcol and return the ages for any
students named BC, use the following statement:

SELECT ID,
 XMLSERIALIZE(
 XMLQUERY('string(//student[text() = "BC"]/@age)' PASSING BY REF
 xcol EMPTY ON EMPTY)
 AS VARCHAR(50))
FROM x_table
WHERE
 XMLEXISTS('//student[text() = "BC"]' PASSING BY REF xcol)

The result set for this query contains a row for only the rows in x_table that have a
student whose name is BC.

XMLSERIALIZE operator

XMLSERIALIZE is a SQL/XML operator that you can use to convert an XML type to a
character type. There is no other way to convert the type of a Derby XML value.

Attention: Serialization is performed based on the SQL/XML serialization rules. These
rules, combined with the fact that Derby supports only a subset of the XMLSERIALIZE
syntax, dictate that the results of an XMLSERIALIZE operation are not guaranteed to be
in-tact copies of the original XML text. For example, assume that [xString] is a textual
representation of a well-formed XML document. You issue the following statements:

INSERT INTO x_table (id, xcol)
 VALUES (3, XMLPARSE(DOCUMENT '[xString]' PRESERVE WHITESPACE));

SELECT id, XMLSERIALIZE(xcol AS VARCHAR(100))
 FROM x_table WHERE id = 3;

There is no guarantee that the result of the XMLSERIALIZE operator will be identical
to the original [xString] representation. Certain transformations can occur as part
of XMLSERIALIZE processing, and those transformations are defined in the SQL/XML
specification. In some cases the result of XMLSERIALIZE might actually be the same as
the original textual representation, but that is not guaranteed.

When an XMLSERIALIZE operator is specified as part of the top-level result set for a
query, the result can be accessed from JDBC by using whatever JDBC getXXX methods
are allowed on the stringDataType argument that is included in the XMLSERIALIZE
syntax. If you attempt to select the contents of an XML value from a top-level result
set without using the XMLSERIALIZE operator, Derby throws an error. Derby does not
implicitly serialize XML values.

See "XML data types and operators" in the Derby Developer's Guide for more
information.

Syntax

XMLSERIALIZE (xmlValueExpression AS stringDataType)

Derby Reference Manual

166

xmlValueExpression
Can be any Derby XML value, including an XML result sequence generated by the
XMLQUERY operator. The xmlValueExpression argument cannot be a parameter.

stringDataType
Must be a SQL character string type, such as CHAR, VARCHAR, LONG VARCHAR,
or CLOB. If you specify a type that is not a valid character string type, Derby throws
an error.

Examples
In the x_table table, to display the contents of the xcol XML column, use this
statement:

SELECT ID,
 XMLSERIALIZE(xcol AS CLOB)
FROM x_table

To retrieve the results from JDBC, you can use the JDBC getCharacterStream() or
getString() method.

To display the results of an XMLQUERY operation, use the following statement:

SELECT ID,
 XMLSERIALIZE(
 XMLQUERY('//student[@age>20]'
 PASSING BY REF xcol EMPTY ON EMPTY)
 AS VARCHAR(50))
FROM x_table

YEAR function

The YEAR function returns the year part of a value.

The argument must be a date, timestamp, or a valid character string representation of
a date or timestamp. The result of the function is an integer between 1 and 9,999. If the
argument can be null, the result can be null; if the argument is null, the result is the null
value.

Syntax

YEAR (expression)

Example

Select all the projects in the PROJECT table that are scheduled to start (PRSTDATE)
and end (PRENDATE) in the same calendar year.

SELECT * FROM PROJECT WHERE YEAR(PRSTDATE) = YEAR(PRENDATE)

Built-in system functions
This section describes the different built-in system functions available with Derby.

SYSCS_UTIL.SYSCS_CHECK_TABLE system function

The SYSCS_UTIL.SYSCS_CHECK_TABLE function checks the specified table, ensuring
that all of its indexes are consistent with the base table.

If the table and indexes are consistent, the method returns a SMALLINT with value 1. If
the table and indexes are inconsistent, the function will throw an exception.

Derby Reference Manual

167

It is recommended that you run SYSCS_UTIL.SYSCS_CHECK_TABLE on the tables in a
database offline after you back it up. Do not discard the previous backup until you have
verified the consistency of the current one. Otherwise, check consistency only if there
are indications that such a check is needed (for example, if you experience hardware or
operating system failure), because a consistency check can take a long time on a large
database. See "Checking database consistency" in the Derby Server and Administration
Guide for more information.

Syntax

SMALLINT SYSCS_UTIL.SYSCS_CHECK_TABLE(IN SCHEMANAME VARCHAR(128),
IN TABLENAME VARCHAR(128))

An error will occur if either SCHEMANAME or TABLENAME are null.

Execute privileges

If authentication and SQL authorization are both enabled, only the database owner has
execute privileges on this function by default. See "Configuring user authentication" and
"Configuring user authorization" in the Derby Security Guide for more information. The
database owner can grant access to other users.

Examples

Check a single table:

VALUES SYSCS_UTIL.SYSCS_CHECK_TABLE('SALES', 'ORDERS');

Check all tables:

SELECT schemaname, tablename,
 SYSCS_UTIL.SYSCS_CHECK_TABLE(schemaname, tablename)
 FROM sys.sysschemas s, sys.systables t
 WHERE s.schemaid = t.schemaid;

SYSCS_UTIL.SYSCS_GET_DATABASE_PROPERTY system function

The SYSCS_UTIL.SYSCS_GET_DATABASE_PROPERTY function fetches the value of the
specified property of the database on the current connection.

If the value that was set for the property is invalid, the
SYSCS_UTIL.SYSCS_GET_DATABASE_PROPERTY function returns the invalid value, but
Derby uses the default value.

Syntax

VARCHAR(32672) SYSCS_UTIL.SYSCS_GET_DATABASE_PROPERTY(IN KEY
 VARCHAR(128))

An error will be returned if KEY is null.

Execute privileges

If authentication and SQL authorization are both enabled, only the database owner has
execute privileges on this function by default. See "Configuring user authentication" and
"Configuring user authorization" in the Derby Security Guide for more information. The
database owner can grant access to other users.

SQL example

Retrieve the value of the derby.locks.deadlockTimeout property:

VALUES
 SYSCS_UTIL.SYSCS_GET_DATABASE_PROPERTY('derby.locks.deadlockTimeout');

Derby Reference Manual

168

SYSCS_UTIL.SYSCS_GET_RUNTIMESTATISTICS system function

The SYSCS_UTIL.SYSCS_GET_RUNTIMESTATISTICS function returns a
VARCHAR(32672) value representing the query execution plan and runtime statistics for
a java.sql.ResultSet.

A query execution plan is a tree of execution nodes. There are a number of possible
node types. Statistics are accumulated during execution at each node. The types
of statistics include the amount of time spent in specific operations, the number
of rows passed to the node by its children, and the number of rows returned
by the node to its parent. (The exact statistics are specific to each node type.)
SYSCS_UTIL.SYSCS_GET_RUNTIMESTATISTICS is most meaningful for DML
statements such as SELECT, INSERT, DELETE and UPDATE.

Syntax

VARCHAR(32672) SYSCS_UTIL.SYSCS_GET_RUNTIMESTATISTICS()

Execute privileges

By default, all users have execute privileges on this function.

Example

VALUES SYSCS_UTIL.SYSCS_GET_RUNTIMESTATISTICS()

SYSCS_UTIL.SYSCS_GET_USER_ACCESS system function

The SYSCS_UTIL.SYSCS_GET_USER_ACCESS function returns the current connection
access permission for the user specified.

If no permission is explicitly set for the user, the access permission for the user is the
value of the default connection mode. The default connection mode is set by using the
derby.database.defaultConnectionMode property.

Syntax

SYSCS_UTIL.SYSCS_GET_USER_ACCESS (USERNAME VARCHAR(128)) RETURNS
 VARCHAR(128)

USERNAME
An input argument of type VARCHAR(128) that specifies the user ID in the Derby
database.

The value that is returned by this function is either fullAccess, readOnlyAccess, or
noAccess.

A return value of noAccess means that the connection attempt by the user will be
denied because neither the derby.database.fullAccessUsers property nor the
derby.database.readOnlyAccessUsers property is set for the user, and the
derby.database.defaultConnectionMode property is set to noAccess.

The names of the connection permissions match the existing names in use by Derby.

Execute privileges

If authentication and SQL authorization are both enabled, only the database owner has
execute privileges on this function by default. See "Enabling user authentication" and
"Setting the SQL standard authorization mode" in the Derby Developer's Guide for more
information. The database owner can grant access to other users.

Example

Derby Reference Manual

169

VALUES SYSCS_UTIL.SYSCS_GET_USER_ACCESS ('BRUNNER')

SYSCS_UTIL.SYSCS_GET_XPLAIN_MODE system function

The SYSCS_UTIL.SYSCS_GET_XPLAIN_MODE function returns the current XPLAIN
mode.

If the XPLAIN mode is non-zero, then statements are not actually executed, but are
just compiled, and their statistics recorded in the SYSXPLAIN_* database tables. If the
XPLAIN mode is zero (the default), then statements are executed normally.

See "Working with RunTimeStatistics" in Tuning Derby for additional information.

Syntax

SYSCS_UTIL.SYSCS_GET_XPLAIN_MODE() RETURNS INTEGER

Execute privileges

If authentication and SQL authorization are both enabled, only the database owner has
execute privileges on this function by default. See "Configuring user authentication" and
"Configuring user authorization" in the Derby Security Guide for more information. The
database owner can grant access to other users.

Example

To determine the current value of the XPLAIN mode:

 values syscs_util.syscs_get_xplain_mode();

SYSCS_UTIL.SYSCS_GET_XPLAIN_SCHEMA system function

The SYSCS_UTIL.SYSCS_GET_XPLAIN_SCHEMA function returns the XPLAIN schema
for the connection.

The default XPLAIN schema is empty, so if the XPLAIN style has not been set,
the function returns the empty string. If the XPLAIN schema has been set using
SYSCS_UTIL.SYSCS_SET_XPLAIN_SCHEMA, the function returns the XPLAIN schema
that was set. If the XPLAIN schema is set to a non-empty value, and runtime statistics
are being captured, then the runtime statistics will be stored into the SYSXPLAIN_*
database tables in that schema for later analysis.

See "Working with RunTimeStatistics" in Tuning Derby for additional information.

Syntax

SYSCS_UTIL.SYSCS_GET_XPLAIN_SCHEMA () RETURNS VARCHAR

Execute privileges

If authentication and SQL authorization are both enabled, only the database owner has
execute privileges on this function by default. See "Configuring user authentication" and
"Configuring user authorization" in the Derby Security Guide for more information. The
database owner can grant access to other users.

Example

To determine the current value of the XPLAIN schema:

 values syscs_util.syscs_get_xplain_schema();

Derby Reference Manual

170

SYSCS_UTIL.SYSCS_PEEK_AT_IDENTITY system function

The SYSCS_UTIL.SYSCS_PEEK_AT_IDENTITY function allows users to observe the
next value which will be issued for an identity column.

This function can be used in databases which have been fully upgraded to Derby
Release 10.11 or higher. (See "Upgrading a database" in the Derby Developer's Guide
for more information.) In a database which has been fully upgraded to Release 10.11 or
higher, identity values are produced by internal, system-managed sequence generators.
SYSCS_UTIL.SYSCS_PEEK_AT_IDENTITY allows users to observe the next identity
value without having to query the SYSSEQUENCES system table.

This function has no meaning in a database which is at Release 10.10 or earlier.

Querying the SYSSEQUENCES system table does not actually return the current
identity value; it only returns an upper bound on that value, that is, the end of the
chunk of identity values which has been preallocated but not actually used. The
SYSCS_UTIL.SYSCS_PEEK_AT_IDENTITY function shows you the very next
value which will be inserted into a table. Users should never directly query the
SYSSEQUENCES table, because that will cause sequence generator concurrency to
slow drastically.

Syntax

BIGINT SYSCS_UTIL.SYSCS_PEEK_AT_IDENTITY(IN SCHEMANAME VARCHAR(128),
IN TABLENAME VARCHAR(128))

As with all system functions, schema and object name arguments are case-sensitive.

Execute privileges

By default, all users have execute privileges on this function.

Example

VALUES SYSCS_UTIL.SYSCS_PEEK_AT_IDENTITY('APP', 'orders');

SYSCS_UTIL.SYSCS_PEEK_AT_SEQUENCE system function

The SYSCS_UTIL.SYSCS_PEEK_AT_SEQUENCE function allows users to observe
the instantaneous current value of a sequence generator without having to query the
SYSSEQUENCES system table.

Querying the SYSSEQUENCES system table does not actually return the current
value; it only returns an upper bound on that value, that is, the end of the chunk
of sequence values which has been preallocated but not actually used. The
SYSCS_UTIL.SYSCS_PEEK_AT_SEQUENCE function shows you the very next value
which will be returned by a NEXT VALUE FOR clause. Users should never directly query
the SYSSEQUENCES table, because that will cause sequence generator concurrency to
slow drastically.

Syntax

BIGINT SYSCS_UTIL.SYSCS_PEEK_AT_SEQUENCE(IN SCHEMANAME VARCHAR(128),
IN SEQUENCENAME VARCHAR(128))

As with all system functions, schema and object name arguments are case-sensitive.

Execute privileges

By default, all users have execute privileges on this function.

Example

Derby Reference Manual

171

VALUES SYSCS_UTIL.SYSCS_PEEK_AT_SEQUENCE('APP', 'order_entry_id');

Built-in system procedures
Some built-in procedures are not compatible with SQL syntax used by other relational
databases. These procedures can only be used with Derby.

SYSCS_UTIL.SYSCS_BACKUP_DATABASE system procedure

The SYSCS_UTIL.SYSCS_BACKUP_DATABASE system procedure backs up the
database to a specified backup directory.

See "Using the backup procedures to perform an online backup" in the Derby Server and
Administration Guide for more information on using this procedure.

Syntax

SYSCS_UTIL.SYSCS_BACKUP_DATABASE(IN BACKUPDIR VARCHAR())

No result is returned from the procedure.

BACKUPDIR
An input argument of type VARCHAR(32672) that specifies the path to a directory,
where the backup should be stored. Relative paths are resolved based on the current
user directory, user.dir, of the JVM where the database backup is occurring.
Relative paths are not resolved based on the derby home directory. To avoid
confusion, use the absolute path.

Execute privileges

If authentication and SQL authorization are both enabled, only the database owner has
execute privileges on this procedure by default. See "Configuring user authentication"
and "Configuring user authorization" in the Derby Security Guide for more information.
The database owner can grant access to other users.

JDBC example

The following example backs up the database to the c:/backupdir directory:

CallableStatement cs = conn.prepareCall
("CALL SYSCS_UTIL.SYSCS_BACKUP_DATABASE(?)");
cs.setString(1, "c:/backupdir");
cs.execute();
cs.close();

SQL example

The following example backs up the database to the c:/backupdir directory:

CALL SYSCS_UTIL.SYSCS_BACKUP_DATABASE('c:/backupdir');

SYSCS_UTIL.SYSCS_BACKUP_DATABASE_AND_ENABLE_LOG_ARCHIVE_MODE
system procedure

The SYSCS_UTIL.SYSCS_BACKUP_DATABASE_AND_ENABLE_LOG_ARCHIVE_MODE
system procedure backs up the database to a specified backup directory and enables the
database for log archive mode.

See "Roll-forward recovery" in the Derby Server and Administration Guide for more
information on using this procedure.

Syntax

Derby Reference Manual

172

SYSCS_UTIL.SYSCS_BACKUP_DATABASE_AND_ENABLE_LOG_ARCHIVE_MODE
(IN BACKUPDIR VARCHAR(32672), IN SMALLINT DELETE_ARCHIVED_LOG_FILES)

No result is returned from the procedure.

BACKUPDIR
An input argument of type VARCHAR(32672) that specifies the path to a directory,
where the backup should be stored. Relative paths are resolved based on the current
user directory, user.dir, of the JVM where the database backup is occurring.
Relative paths are not resolved based on the derby home directory. To avoid
confusion, use the absolute path

DELETE_ARCHIVED_LOG_FILES
If the input parameter value for the DELETE_ARCHIVED_LOG_FILES parameter is a
non-zero value, online archived log files that were created before this backup will be
deleted. The log files are deleted only after a successful backup.

Execute privileges

If authentication and SQL authorization are both enabled, only the database owner has
execute privileges on this procedure by default. See "Configuring user authentication"
and "Configuring user authorization" in the Derby Security Guide for more information.
The database owner can grant access to other users.

JDBC example

The following example backs up the database to the c:/backupdir directory:

CallableStatement cs = conn.prepareCall
("CALL SYSCS_UTIL.SYSCS_BACKUP_DATABASE_AND_ENABLE_LOG_ARCHIVE_MODE(?,
 ?)");
cs.setString(1, "c:/backupdir");
cs.setInt(2, 0);
cs.execute();

SQL examples

The following example backs up the database to the c:/backupdir directory, enables
log archive mode, and does not delete any existing online archived log files:

SYSCS_UTIL.SYSCS_BACKUP_DATABASE_AND_ENABLE_LOG_ARCHIVE_MODE('c:/
backupdir', 0)

The following example backs up the database to the c:/backupdir directory and, if this
backup is successful, deletes existing online archived log files:

SYSCS_UTIL.SYSCS_BACKUP_DATABASE_AND_ENABLE_LOG_ARCHIVE_MODE('c:/
backupdir', 1)

SYSCS_UTIL.SYSCS_BACKUP_DATABASE_AND_ENABLE_LOG_ARCHIVE_MODE_NOWAIT
system procedure

The
SYSCS_UTIL.SYSCS_BACKUP_DATABASE_AND_ENABLE_LOG_ARCHIVE_MODE_NOWAIT
system procedure backs up the database to a specified backup directory and enables the
database for log archive mode.

This procedure returns an error if there are any transactions in progress that have
unlogged operations at the start of the backup, instead of waiting for those transactions to
complete.

Syntax

SYSCS_UTIL.SYSCS_BACKUP_DATABASE_AND_ENABLE_LOG_ARCHIVE_MODE_NOWAIT

Derby Reference Manual

173

(IN BACKUPDIR VARCHAR(32672),
IN SMALLINT DELETE_ARCHIVED_LOG_FILES)

No result is returned from the procedure.

BACKUPDIR
An input argument of type VARCHAR(32672) that specifies the path to a directory,
where the backup should be stored. Relative paths are resolved based on the current
user directory, user.dir, of the JVM where the database backup is occurring.
Relative paths are not resolved based on the derby home directory. To avoid
confusion, use the absolute path.

DELETE_ARCHIVED_LOG_FILES
If the input parameter value for the DELETE_ARCHIVED_LOG_FILES parameter is a
non-zero value, online archived log files that were created before this backup will be
deleted. The log files are deleted only after a successful backup.

Execute privileges

If authentication and SQL authorization are both enabled, only the database owner has
execute privileges on this procedure by default. See "Configuring user authentication"
and "Configuring user authorization" in the Derby Security Guide for more information.
The database owner can grant access to other users.

JDBC example

The following example backs up the database to the c:/backupdir directory and
enables log archive mode:

CallableStatement cs = conn.prepareCall
("CALL
 SYSCS_UTIL.SYSCS_BACKUP_DATABASE_AND_ENABLE_LOG_ARCHIVE_MODE_NOWAIT(?,
 ?)");
cs.setString(1, "c:/backupdir");
cs.setInt(2, 0);
cs.execute();

SQL examples

The following example backs up the database to the c:/backupdir directory, enables
log archive mode, and does not delete any existing online archived log files:

SYSCS_UTIL.SYSCS_BACKUP_DATABASE_AND_ENABLE_LOG_ARCHIVE_MODE_NOWAIT('c:/
backupdir', 0)

The following example backs up the database to the c:/backupdir directory and, if this
backup is successful, deletes existing online archived log files:

SYSCS_UTIL.SYSCS_BACKUP_DATABASE_AND_ENABLE_LOG_ARCHIVE_MODE_NOWAIT('c:/
backupdir', 1)

SYSCS_UTIL.SYSCS_BACKUP_DATABASE_NOWAIT system procedure

The SYSCS_UTIL.SYSCS_BACKUP_DATABASE_NOWAIT system procedure backs up the
database to a specified backup directory.

If there are any transactions in progress with unlogged operations at the start of the
backup, the SYSCS_UTIL.SYSCS_BACKUP_DATABASE_NOWAIT system procedure
returns an error immediately, instead of waiting for those transactions to complete.

Syntax

SYSCS_UTIL.SYSCS_BACKUP_DATABASE_NOWAIT(IN BACKUPDIR VARCHAR())

No result is returned from the procedure.

Derby Reference Manual

174

BACKUPDIR
An input argument of type VARCHAR(32672) that specifies the path to a directory,
where the backup should be stored. Relative paths are resolved based on the current
user directory, user.dir, of the JVM where the database backup is occurring.
Relative paths are not resolved based on the derby home directory. To avoid
confusion, use the absolute path.

Execute privileges

If authentication and SQL authorization are both enabled, only the database owner has
execute privileges on this procedure by default. See "Configuring user authentication"
and "Configuring user authorization" in the Derby Security Guide for more information.
The database owner can grant access to other users.

JDBC example

The following example backs up the database to the c:/backupdir directory:

CallableStatement cs = conn.prepareCall
("CALL SYSCS_UTIL.SYSCS_BACKUP_DATABASE_NOWAIT(?)");
cs.setString(1, "c:/backupdir");
cs.execute();
cs.close();

SQL example

The following example backs up the database to the c:/backupdir directory:

CALL SYSCS_UTIL.SYSCS_BACKUP_DATABASE_NOWAIT('c:/backupdir');

SYSCS_UTIL.SYSCS_CHECKPOINT_DATABASE system procedure

The SYSCS_UTIL.SYSCS_CHECKPOINT_DATABASE system procedure checkpoints the
database by flushing all cached data to disk.

Syntax

SYSCS_UTIL.SYSCS_CHECKPOINT_DATABASE()

No result is returned by this procedure.

Execute privileges

If authentication and SQL authorization are both enabled, only the database owner has
execute privileges on this procedure by default. See "Configuring user authentication"
and "Configuring user authorization" in the Derby Security Guide for more information.
The database owner can grant access to other users.

JDBC example

CallableStatement cs = conn.prepareCall
("CALL SYSCS_UTIL.SYSCS_CHECKPOINT_DATABASE()");
cs.execute();
cs.close();

SQL Example

CALL SYSCS_UTIL.SYSCS_CHECKPOINT_DATABASE();

SYSCS_UTIL.SYSCS_COMPRESS_TABLE system procedure

Use the SYSCS_UTIL.SYSCS_COMPRESS_TABLE system procedure to reclaim unused,
allocated space in a table and its indexes.

Derby Reference Manual

175

Typically, unused allocated space exists when a large amount of data is deleted from
a table, or indexes are updated. By default, Derby does not return unused space to the
operating system. For example, once a page has been allocated to a table or index, it is
not automatically returned to the operating system until the table or index is destroyed.
SYSCS_UTIL.SYSCS_COMPRESS_TABLE allows you to return unused space to the
operating system.

The SYSCS_UTIL.SYSCS_COMPRESS_TABLE system procedure updates statistics on all
indexes as part of the index rebuilding process.

Syntax

SYSCS_UTIL.SYSCS_COMPRESS_TABLE (IN SCHEMANAME VARCHAR(128),
IN TABLENAME VARCHAR(128), IN SEQUENTIAL SMALLINT)

SCHEMANAME
An input argument of type VARCHAR(128) that specifies the schema of the table.
Passing a null will result in an error.

TABLENAME
An input argument of type VARCHAR(128) that specifies the table name of the table.
The string must exactly match the case of the table name, and the argument of "Fred"
will be passed to SQL as the delimited identifier 'Fred'. Passing a null will result in an
error.

SEQUENTIAL
A non-zero input argument of type SMALLINT will force the operation to run in
sequential mode, while an argument of 0 will force the operation not to run in
sequential mode. Passing a null will result in an error.

Execute privileges

If authentication and SQL authorization are both enabled, all users have execute
privileges on this procedure. However, in order for the procedure to run successfully
on a given table, the user must be the owner of either the database or the schema in
which the table resides. See "Configuring user authentication" and "Configuring user
authorization" in the Derby Security Guide for more information.

SQL example

To compress a table called CUSTOMER in a schema called US, using the SEQUENTIAL
option:

call SYSCS_UTIL.SYSCS_COMPRESS_TABLE('US', 'CUSTOMER', 1)

Java example

To compress a table called CUSTOMER in a schema called US, using the SEQUENTIAL
option:

CallableStatement cs = conn.prepareCall
("CALL SYSCS_UTIL.SYSCS_COMPRESS_TABLE(?, ?, ?)");
cs.setString(1, "US");
cs.setString(2, "CUSTOMER");
cs.setShort(3, (short) 1);
cs.execute();

If the SEQUENTIAL parameter is not specified, Derby rebuilds all indexes concurrently
with the base table. If you do not specify the SEQUENTIAL argument, this procedure
can be memory-intensive and use a lot of temporary disk space (an amount equal to
approximately two times the used space plus the unused, allocated space). This is
because Derby compresses the table by copying active rows to newly allocated space
(as opposed to shuffling and truncating the existing space). The extra space used is
returned to the operating system on COMMIT.

Derby Reference Manual

176

When SEQUENTIAL is specified, Derby compresses the base table and then
compresses each index sequentially. Using SEQUENTIAL uses less memory and disk
space, but is more time-intensive. Use the SEQUENTIAL argument to reduce memory
and disk space usage.

SYSCS_UTIL.SYSCS_COMPRESS_TABLE cannot release any permanent disk space
back to the operating system until a COMMIT is issued. This means that the space
occupied by both the base table and its indexes cannot be released. Only the disk space
that is temporarily claimed by an external sort can be returned to the operating system
prior to a COMMIT.
Tip: We recommend that you issue the SYSCS_UTIL.SYSCS_COMPRESS_TABLE
system procedure in the auto-commit mode.

Note: This procedure acquires an exclusive table lock on the table being compressed.
All statement plans dependent on the table or its indexes are invalidated. For information
on identifying unused space, see the Derby Server and Administration Guide.

SYSCS_UTIL.SYSCS_CREATE_USER system procedure

The SYSCS_UTIL.SYSCS_CREATE_USER system procedure adds a new user account to
a database.

This procedure creates users for use with NATIVE authentication. For details about
NATIVE authentication, see derby.authentication.provider and "Configuring NATIVE
authentication" in the Derby Security Guide.

If NATIVE authentication is not already turned on when you call this procedure:

• The first user whose credentials are stored must be the database owner.
• Calling this procedure will turn on NATIVE authentication the next time the database

is booted.
• Once you turn on NATIVE authentication with this procedure, it remains turned on

permanently. There is no way to turn it off.

Syntax

SYSCS_UTIL.SYSCS_CREATE_USER(IN USERNAME VARCHAR(128),
IN PASSWORD VARCHAR(32672))

No result set is returned by this procedure.

USERNAME
A user name that is case-sensitive if you place the name string in double quotes.
This user name is an authorization identifier. See "Authorization identifiers, user
authentication, and user authorization" in the Derby Security Guide for more
information about how these names are treated.

PASSWORD
A case-sensitive password.

Execute privileges

If authentication and SQL authorization are both enabled, only the database owner
has execute privileges on this procedure by default. See "Configuring NATIVE
authentication," "Configuring user authentication," and "Configuring user authorization" in
the Derby Security Guide for more information. The database owner can grant access to
other users.

JDBC example

Create a user named FRED:

CallableStatement cs = conn.prepareCall
("CALL SYSCS_UTIL.SYSCS_CREATE_USER(?, ?)");

Derby Reference Manual

177

cs.setString(1, "fred");
cs.setString(2, "fredpassword");
cs.execute();
cs.close();

Create a user named FreD:

CallableStatement cs = conn.prepareCall
("CALL SYSCS_UTIL.SYSCS_CREATE_USER(?, ?)");
cs.setString(1, "\"FreD\"");
cs.setString(2, "fredpassword");
cs.execute();
cs.close();

SQL example

Create a user named FRED:

CALL SYSCS_UTIL.SYSCS_CREATE_USER('fred', 'fredpassword')

Create a user named FreD:

CALL SYSCS_UTIL.SYSCS_CREATE_USER('"FreD"', 'fredpassword')

SYSCS_UTIL.SYSCS_DISABLE_LOG_ARCHIVE_MODE system procedure

The SYSCS_UTIL.SYSCS_DISABLE_LOG_ARCHIVE_MODE system procedure
disables the log archive mode and deletes any existing online archived log files if the
DELETE_ARCHIVED_LOG_FILES input parameter is non-zero.

See "Roll-forward recovery" in the Derby Server and Administration Guide for more
information on using this procedure.

Syntax

SYSCS_UTIL.SYSCS_DISABLE_LOG_ARCHIVE_MODE(IN SMALLINT
 DELETE_ARCHIVED_LOG_FILES)

No result is returned from the procedure.

DELETE_ARCHIVED_LOG_FILES
If the input parameter value for the DELETE_ARCHIVED_LOG_FILES parameter is a
non-zero value, then all existing online archived log files are deleted. If the parameter
value is zero, then existing online archived log files are not deleted.

Execute privileges

If authentication and SQL authorization are both enabled, only the database owner has
execute privileges on this procedure by default. See "Configuring user authentication"
and "Configuring user authorization" in the Derby Security Guide for more information.
The database owner can grant access to other users.

JDBC example

The following example disables log archive mode for the database and deletes any
existing log archive files.

CallableStatement cs = conn.prepareCall
("CALL SYSCS_UTIL.SYSCS_DISABLE_LOG_ARCHIVE_MODE(?)");
cs.setInt(1, 1);
cs.execute();
cs.close();

SQL examples

Derby Reference Manual

178

The following example disables log archive mode for the database and retains any
existing log archive files:

CALL SYSCS_UTIL.SYSCS_DISABLE_LOG_ARCHIVE_MODE(0);

The following example disables log archive mode for the database and deletes any
existing log archive files:

CALL SYSCS_UTIL.SYSCS_DISABLE_LOG_ARCHIVE_MODE(1);

SYSCS_UTIL.SYSCS_DROP_STATISTICS system procedure

The SYSCS_UTIL.SYSCS_DROP_STATISTICS system procedure drops all existing
cardinality statistics for the index that you specify or for all of the indexes on a table.

You may want to drop the statistics if you are no longer using
them or if they become incorrect for some reason. You can
call the SYSCS_UTIL.SYSCS_UPDATE_STATISTICS or
SYSCS_UTIL.SYSCS_COMPRESS_TABLE system procedure to recreate them, or you
can wait for automatic statistics generation to begin again.

For more information on cardinality statistics, see "Working with cardinality statistics" in
the Tuning Derby guide.

Syntax

SYSCS_UTIL.SYSCS_DROP_STATISTICS(IN SCHEMANAME VARCHAR(128),
 IN TABLENAME VARCHAR(128),
 IN INDEXNAME VARCHAR(128))

Note: You can specify null for the INDEXNAME to drop all existing statistics.

Execute privileges

If authentication and SQL authorization are both enabled, all users have execute
privileges on this procedure. However, in order for the procedure to run successfully
on a given table, the user must be the owner of either the database or the schema in
which the table resides. See "Configuring user authentication" and "Configuring user
authorization" in the Derby Security Guide for more information.

Examples

In the following example, the system procedure drops statistics for the index PAY_DESC
on the SAMP.EMPLOYEE table:

CALL SYSCS_UTIL.SYSCS_DROP_STATISTICS('SAMP','EMPLOYEE','PAY_DESC');

In the following example, null is specified instead of an index name. For all of the
indexes on the EMPLOYEE table in the SAMP schema, the existing statistics are
dropped.

CALL SYSCS_UTIL.SYSCS_DROP_STATISTICS('SAMP', 'EMPLOYEE', null);

SYSCS_UTIL.SYSCS_DROP_USER system procedure

The SYSCS_UTIL.SYSCS_DROP_USER system procedure removes a user account from
a database.

This procedure is used in conjunction with NATIVE authentication. For details about
NATIVE authentication, see derby.authentication.provider and "Configuring NATIVE
authentication" in the Derby Security Guide.

You are not allowed to remove the user account of the database owner.

Derby Reference Manual

179

If you use this procedure to remove a user account, the schemas and data objects owned
by the user remain in the database and can be accessed only by the database owner or
by other users who have been granted access to them. If the user is created again, the
user regains access to the schemas and data objects.

Syntax

SYSCS_UTIL.SYSCS_DROP_USER(IN USERNAME VARCHAR(128))

No result set is returned by this procedure.

USERNAME
A user name that is case-sensitive if you place the name string in double quotes.
This user name is an authorization identifier. See "Authorization identifiers, user
authentication, and user authorization" in the Derby Security Guide for more
information about how these names are treated. If the user name is that of the
database owner, an error is raised.

Execute privileges

If authentication and SQL authorization are both enabled, only the database owner
has execute privileges on this procedure by default. See "Configuring NATIVE
authentication," "Configuring user authentication," and "Configuring user authorization" in
the Derby Security Guide for more information. The database owner can grant access to
other users.

JDBC example

Drop a user named FRED:

CallableStatement cs = conn.prepareCall
("CALL SYSCS_UTIL.SYSCS_DROP_USER('fred')");
cs.execute();
cs.close();

SQL example

Drop a user named FreD:

CALL SYSCS_UTIL.SYSCS_DROP_USER('"FreD"')

SYSCS_UTIL.SYSCS_EMPTY_STATEMENT_CACHE system procedure

The SYSCS_UTIL.SYSCS_EMPTY_STATEMENT_CACHE stored procedure removes as
many compiled statements (plans) as possible from the database-wide statement cache.

The procedure does not remove statements related to currently executing queries or to
activations that are about to be garbage collected, so the cache is not guaranteed to be
completely empty after a call to this procedure.

Syntax

SYSCS_UTIL.SYSCS_EMPTY_STATEMENT_CACHE()

Execute privileges

If authentication and SQL authorization are both enabled, only the database owner has
execute privileges on this procedure by default. See "Configuring user authentication"
and "Configuring user authorization" in the Derby Security Guide for more information.
The database owner can grant access to other users.

JDBC Example

CallableStatement cs = conn.prepareCall

Derby Reference Manual

180

("CALL SYSCS_UTIL.SYSCS_EMPTY_STATEMENT_CACHE()");
cs.execute();
cs.close();

SQL Example

CALL SYSCS_UTIL.SYSCS_EMPTY_STATEMENT_CACHE();

SYSCS_UTIL.SYSCS_EXPORT_QUERY system procedure

The SYSCS_UTIL.SYSCS_EXPORT_QUERY system procedure exports the results of a
SELECT statement to an operating system file.

For security concerns, and to avoid accidental file damage, this EXPORT procedure
does not export data into an existing file. You must specify a filename in the EXPORT
procedure that does not exist. When you run the procedure the file is created and the
data is exported into the new file.

The data is exported using a delimited file format.

Derby issues a COMMIT or a ROLLBACK statement after each import and export
procedure is run (a COMMIT if the procedure completes successfully, a ROLLBACK if
it fails). For this reason, you should issue either a COMMIT or ROLLBACK statement to
complete all transactions and release all table-level locks before you invoke an import or
export procedure.

For more information on using this procedure, see the section "Importing and exporting
data" in the Derby Server and Administration Guide.

Syntax

SYSCS_UTIL.SYSCS_EXPORT_QUERY(IN SELECTSTATEMENT VARCHAR(32672),
IN FILENAME VARCHAR(32672), IN COLUMNDELIMITER CHAR(1),
IN CHARACTERDELIMITER CHAR(1), IN CODESET VARCHAR(128))

No result is returned from the procedure.

SELECTSTATEMENT
An input argument of type VARCHAR(32672) that specifies the select statement
(query) that will return the data to be exported. Passing a NULL value will result in an
error.

FILENAME
Specifies the name of a new file to which the data is to be exported. If the path
is omitted, the current working directory is used. If the name of a file that already
exists is specified, the export procedure returns an error. The specified location of
the file should refer to the server-side location if you are using the Network Server.
Specifying a NULL value results in an error. The FILENAME parameter takes an input
argument that is a VARCHAR (32672) data type.

COLUMNDELIMITER
An input argument of type CHAR(1) that specifies a column delimiter. The specified
character is used in place of a comma to signal the end of a column. Passing a NULL
value will use the default value; the default value is a comma (,).

CHARACTERDELIMITER
An input argument of type CHAR(1) that specifies a character delimiter. The specified
character is used in place of double quotation marks to enclose a character string.
Passing a NULL value will use the default value; the default value is a double
quotation mark (").

CODESET
An input argument of type VARCHAR(128) that specifies the code set of the data
in the exported file. The name of the code set should be one of the Java-supported
character encodings. Data is converted from the database code set to the specified

Derby Reference Manual

181

code set before writing to the file. Passing a NULL value will write the data in the
same code set as the JVM in which it is being executed.

Execute privileges

If authentication and SQL authorization are both enabled, only the database owner has
execute privileges on this procedure by default. See "Configuring user authentication"
and "Configuring user authorization" in the Derby Security Guide for more information.
The database owner can grant access to other users. The user must also have SELECT
privileges on the table.

Example

The following example shows how to export the information about employees in
Department 20 from the STAFF table in the SAMPLE database to the myfile.del file.

CALL SYSCS_UTIL.SYSCS_EXPORT_QUERY('select * from staff where dept =20',
 'c:/output/awards.del', null, null, null);

SYSCS_UTIL.SYSCS_EXPORT_QUERY_LOBS_TO_EXTFILE system procedure

Use the SYSCS_UTIL.SYSCS_EXPORT_QUERY_LOBS_TO_EXTFILE system procedure
to export the result of a SELECT statement to a main export file, and place the LOB data
into a separate export file. A reference to the location of the LOB data is placed in the
LOB column in the main export file.

For security concerns, and to avoid accidental file damage, this EXPORT procedure
does not export data into an existing file. You must specify a filename in the EXPORT
procedure that does not exist. When you run the procedure the file is created and the
data is exported into the new file.

The data is exported using a delimited file format.

Derby issues a COMMIT or a ROLLBACK statement after each import and export
procedure is run (a COMMIT if the procedure completes successfully, a ROLLBACK if
it fails). For this reason, you should issue either a COMMIT or ROLLBACK statement to
complete all transactions and release all table-level locks before you invoke an import or
export procedure.

For more information on using this procedure, see the section "Importing and exporting
data" in the Derby Server and Administration Guide.

Syntax

SYSCS_UTIL.SYSCS_EXPORT_QUERY_LOBS_TO_EXTFILE (
 IN SELECTSTATEMENT VARCHAR(32672),
 IN FILENAME VARCHAR(32672),
 IN COLUMNDELIMITER CHAR(1),
 IN CHARACTERDELIMITER CHAR(1),
 IN CODESET VARCHAR(128)
 IN LOBSFILENAME VARCHAR(32672)
)

When you run this procedure, the column data is written to the main export file in a
delimited data file format.

SELECTSTATEMENT
Specifies the SELECT statement query that returns the data to be exported.
Specifying a NULL value will result in an error. The SELECTSTATEMENT parameter
takes an input argument that is a VARCHAR (32672) data type.

FILENAME
Specifies the name of a new file to which the data is to be exported. If the path
is omitted, the current working directory is used. If the name of a file that already

Derby Reference Manual

182

exists is specified, the export procedure returns an error. The specified location of
the file should refer to the server-side location if you are using the Network Server.
Specifying a NULL value results in an error. The FILENAME parameter takes an input
argument that is a VARCHAR (32672) data type.

COLUMNDELIMITER
Specifies a column delimiter. The specified character is used in place of a comma to
signify the end of a column. You can specify a NULL value to use the default value of
a comma. The COLUMNDELIMITER parameter must be a CHAR (1) data type.

CHARACTERDELIMITER
Specifies a character delimiter. The specified character is used in place of double
quotation marks to enclose a character string. You can specify a NULL value to
use the default value of a double quotation mark. The CHARACTERDELIMITER
parameter takes an input argument that is a CHAR (1) data type.

CODESET
Specifies the code set of the data in the export file. The code set name should be one
of the Java-supported character encoding sets. Data is converted from the database
code page to the specified code page before writing to the file. You can specify a
NULL value to write the data in the same code page as the JVM in which it is being
executed. The CODESET parameter takes an input argument that is a VARCHAR
(128) data type.

LOBSFILENAME
Specifies the file that the large object data is exported to. If the path is omitted,
the lob file is created in the same directory as the main export file. If you specify
the name of an existing file, the export utility overwrites the contents of the file.
The data is not appended to the file. If you are using the Network Server, the file
should be in a server-side location. Specifying a NULL value results in an error. The
LOBSFILENAME parameter takes an input argument that is a VARCHAR (32672)
data type.

Execute privileges

If authentication and SQL authorization are both enabled, only the database owner has
execute privileges on this procedure by default. See "Configuring user authentication"
and "Configuring user authorization" in the Derby Security Guide for more information.
The database owner can grant access to other users. The user must also have SELECT
privileges on the table.

Example exporting data from a query using a separate export file for the LOB data
The following example shows how to export employee data in department 20 from the
STAFF table in a sample database to the main file staff.del and the lob data to the
file pictures.dat.

CALL SYSCS_UTIL.SYSCS_EXPORT_QUERY_LOBS_TO_EXTFILE(
 'SELECT * FROM STAFF WHERE dept=20',
 'c:\data\staff.del', ',' ,'"',
 'UTF-8','c:\data\pictures.dat');

SYSCS_UTIL.SYSCS_EXPORT_TABLE system procedure

The SYSCS_UTIL.SYSCS_EXPORT_TABLE system procedure exports all of the data
from a table to an operating system file.

For security concerns, and to avoid accidental file damage, this EXPORT procedure
does not export data into an existing file. You must specify a filename in the EXPORT
procedure that does not exist. When you run the procedure the file is created and the
data is exported into the new file.

The data is exported using a delimited file format.

Derby Reference Manual

183

Derby issues a COMMIT or a ROLLBACK statement after each import and export
procedure is run (a COMMIT if the procedure completes successfully, a ROLLBACK if
it fails). For this reason, you should issue either a COMMIT or ROLLBACK statement to
complete all transactions and release all table-level locks before you invoke an import or
export procedure.

For more information on using this procedure, see the section "Importing and exporting
data" in the Derby Server and Administration Guide.

Syntax

SYSCS_UTIL.SYSCS_EXPORT_TABLE (IN SCHEMANAME VARCHAR(128),
IN TABLENAME VARCHAR(128), IN FILENAME VARCHAR(32672),
IN COLUMNDELIMITER CHAR(1), IN CHARACTERDELIMITER CHAR(1),
IN CODESET VARCHAR(128))

No result is returned from the procedure.

SCHEMANAME
An input argument of type VARCHAR(128) that specifies the schema name of the
table. Passing a NULL value will use the default schema name.

TABLENAME
An input argument of type VARCHAR(128) that specifies the name of the table/view
from which the data is to be exported. Passing a null will result in an error.

FILENAME
Specifies the name of a new file to which the data is to be exported. If the path
is omitted, the current working directory is used. If the name of a file that already
exists is specified, the export procedure returns an error. The specified location of
the file should refer to the server-side location if you are using the Network Server.
Specifying a NULL value results in an error. The FILENAME parameter takes an input
argument that is a VARCHAR (32672) data type.

COLUMNDELIMITER
An input argument of type CHAR(1) that specifies a column delimiter. The specified
character is used in place of a comma to signal the end of a column. Passing a NULL
value will use the default value; the default value is a comma (,).

CHARACTERDELIMITER
An input argument of type CHAR(1) that specifies a character delimiter. The specified
character is used in place of double quotation marks to enclose a character string.
Passing a NULL value will use the default value; the default value is a double
quotation mark (").

CODESET
An input argument of type VARCHAR(128) that specifies the code set of the data
in the exported file. The name of the code set should be one of the Java-supported
character encodings. Data is converted from the database code set to the specified
code set before writing to the file. Passing a NULL value will write the data in the
same code set as the JVM in which it is being executed.

If you create a schema or table name as a non-delimited identifier, you must pass the
name to the export procedure using all uppercase characters. If you created a schema,
table, or column name as a delimited identifier, you must pass the name to the export
procedure using the same case that was used when it was created.

Execute privileges

If authentication and SQL authorization are both enabled, only the database owner has
execute privileges on this procedure by default. See "Configuring user authentication"
and "Configuring user authorization" in the Derby Security Guide for more information.
The database owner can grant access to other users. The user must also have SELECT
privileges on the table.

Example

Derby Reference Manual

184

The following example shows how to export information from the STAFF table in a
SAMPLE database to the myfile.del file.

CALL SYSCS_UTIL.SYSCS_EXPORT_TABLE (null, 'STAFF', 'myfile.del', null,
 null, null);

SYSCS_UTIL.SYSCS_EXPORT_TABLE_LOBS_TO_EXTFILE system procedure

Use the SYSCS_UTIL.SYSCS_EXPORT_TABLE_LOBS_TO_EXTFILE system procedure
to export all the data from a table, and place the LOB data into a separate export file. A
reference to the location of the LOB data is placed in the LOB column in the main export
file.

For security concerns, and to avoid accidental file damage, this EXPORT procedure
does not export data into an existing file. You must specify a filename in the EXPORT
procedure that does not exist. When you run the procedure the file is created and the
data is exported into the new file.

The data is exported using a delimited file format.

Derby issues a COMMIT or a ROLLBACK statement after each import and export
procedure is run (a COMMIT if the procedure completes successfully, a ROLLBACK if
it fails). For this reason, you should issue either a COMMIT or ROLLBACK statement to
complete all transactions and release all table-level locks before you invoke an import or
export procedure.

For more information on using this procedure, see the section "Importing and exporting
data" in the Derby Server and Administration Guide.

Syntax

SYSCS_UTIL.SYSCS_EXPORT_TABLE_LOBS_TO_EXTFILE (
 IN SCHEMANAME VARCHAR(128),
 IN TABLENAME VARCHAR(128),
 IN FILENAME VARCHAR(32672),
 IN COLUMNDELIMITER CHAR(1),
 IN CHARACTERDELIMITER CHAR(1),
 IN CODESET VARCHAR(128)
 IN LOBSFILENAME VARCHAR(32672)
)

When you run this procedure, the column data is written to the main export file in a
delimited data file format.

SCHEMANAME
Specifies the schema of the table. You can specify a NULL value to use the default
schema name. The SCHEMANAME parameter takes an input argument that is a
VARCHAR (128) data type.

TABLENAME
Specifies the table name of the table or view from which the data is to be exported.
This table cannot be a system table or a declared temporary table. The string must
exactly match the case of the table name. Specifying a NULL value results in an
error. The TABLENAME parameter takes an input argument that is a VARCHAR
(128) data type.

FILENAME
Specifies the name of a new file to which the data is to be exported. If the path
is omitted, the current working directory is used. If the name of a file that already
exists is specified, the export procedure returns an error. The specified location of
the file should refer to the server-side location if you are using the Network Server.
Specifying a NULL value results in an error. The FILENAME parameter takes an input
argument that is a VARCHAR (32672) data type.

Derby Reference Manual

185

COLUMNDELIMITER
Specifies a column delimiter. The specified character is used in place of a comma to
signify the end of a column. You can specify a NULL value to use the default value of
a comma. The COLUMNDELIMITER parameter must be a CHAR (1) data type.

CHARACTERDELIMITER
Specifies a character delimiter. The specified character is used in place of double
quotation marks to enclose a character string. You can specify a NULL value to
use the default value of a double quotation mark. The CHARACTERDELIMITER
parameter takes an input argument that is a CHAR (1) data type.

CODESET
Specifies the code set of the data in the export file. The code set name should be one
of the Java-supported character encoding sets. Data is converted from the database
code page to the specified code page before writing to the file. You can specify a
NULL value to write the data in the same code page as the JVM in which it is being
executed. The CODESET parameter takes an input argument that is a VARCHAR
(128) data type.

LOBSFILENAME
Specifies the file that the large object data is exported to. If the path is omitted,
the lob file is created in the same directory as the main export file. If you specify
the name of an existing file, the export utility overwrites the contents of the file.
The data is not appended to the file. If you are using the Network Server, the file
should be in a server-side location. Specifying a NULL value results in an error. The
LOBSFILENAME parameter takes an input argument that is a VARCHAR (32672)
data type.

If you create a schema, table, or column name as a non-delimited identifier, you must
pass the name to the export procedure using all uppercase characters. If you created a
schema or table name as a delimited identifier, you must pass the name to the export
procedure using the same case that was used when it was created.

Execute privileges

If authentication and SQL authorization are both enabled, only the database owner has
execute privileges on this procedure by default. See "Configuring user authentication"
and "Configuring user authorization" in the Derby Security Guide for more information.
The database owner can grant access to other users. The user must also have SELECT
privileges on the table.

Example exporting all data from a table, using a separate export file for the LOB
data

The following example shows how to export data from the STAFF table in a sample
database to the main file staff.del and the LOB export file pictures.dat.

CALL SYSCS_UTIL.SYSCS_EXPORT_TABLE_LOBS_TO_EXTFILE(
 'APP', 'STAFF', 'c:\data\staff.del', ',' ,'"',
 'UTF-8', 'c:\data\pictures.dat');

SYSCS_UTIL.SYSCS_FREEZE_DATABASE system procedure

The SYSCS_UTIL.SYSCS_FREEZE_DATABASE system procedure temporarily freezes
the database for backup.

See "Using operating system commands with the freeze and unfreeze system
procedures to perform an online backup" in the Derby Server and Administration Guide
for more information on using this procedure.

Syntax

SYSCS_UTIL.SYSCS_FREEZE_DATABASE()

Derby Reference Manual

186

No result set is returned by this procedure.

Execute privileges

If authentication and SQL authorization are both enabled, only the database owner has
execute privileges on this procedure by default. See "Configuring user authentication"
and "Configuring user authorization" in the Derby Security Guide for more information.
The database owner can grant access to other users.

Example

String backupdirectory = "c:/mybackups/" + JCalendar.getToday();
CallableStatement cs = conn.prepareCall
("CALL SYSCS_UTIL.SYSCS_FREEZE_DATABASE()");
cs.execute();
cs.close();
// user supplied code to take full backup of "backupdirectory"
// now unfreeze the database once backup has completed:
CallableStatement cs = conn.prepareCall
("CALL SYSCS_UTIL.SYSCS_UNFREEZE_DATABASE()");
cs.execute();
cs.close();

SYSCS_UTIL.SYSCS_IMPORT_DATA system procedure

The SYSCS_UTIL.SYSCS_IMPORT_DATA system procedure imports data to a subset of
columns in a table. You choose the subset of columns by specifying insert columns. This
procedure is also used to import a subset of column data from a file by specifying column
indexes.

Derby issues a COMMIT or a ROLLBACK statement after each import and export
procedure is run (a COMMIT if the procedure completes successfully, a ROLLBACK if
it fails). For this reason, you should issue either a COMMIT or ROLLBACK statement to
complete all transactions and release all table-level locks before you invoke an import or
export procedure.

For more information on using this procedure, see the section "Importing and exporting
data" in the Derby Server and Administration Guide.

Syntax

SYSCS_UTIL.SYSCS_IMPORT_DATA (IN SCHEMANAME VARCHAR(128),
IN TABLENAME VARCHAR(128), IN INSERTCOLUMNS VARCHAR(32672),
IN COLUMNINDEXES VARCHAR(32672), IN FILENAME VARCHAR(32672),
IN COLUMNDELIMITER CHAR(1), IN CHARACTERDELIMITER CHAR(1),
IN CODESET VARCHAR(128), IN REPLACE SMALLINT)

No result is returned from the procedure.

SCHEMANAME
An input argument of type VARCHAR(128) that specifies the schema of the table.
Passing a NULL value will use the default schema name.

TABLENAME
An input argument of type VARCHAR(128) that specifies the table name of the
table into which the data is to be imported. This table cannot be a system table or a
declared temporary table. Passing a null will result in an error.

INSERTCOLUMNS
An input argument of type VARCHAR(32672) that specifies the column names
(separated by commas) of the table into which the data is to be imported. Passing a
NULL value will import the data into all of the columns of the table.

COLUMNINDEXES

Derby Reference Manual

187

An input argument of type VARCHAR(32672) that specifies the indexes (numbered
from 1 and separated by commas) of the input data fields to be imported. Passing a
NULL value will use all of the input data fields in the file.

FILENAME
An input argument of type VARCHAR(32672) that specifies the file that contains
the data to be imported. If you do not specify a path, the current working directory is
used. Passing a NULL value will result in an error.

COLUMNDELIMITER
An input argument of type CHAR(1) that specifies a column delimiter. The specified
character is used in place of a comma to signal the end of a column. Passing a NULL
value will use the default value; the default value is a comma (,).

CHARACTERDELIMITER
An input argument of type CHAR(1) that specifies a character delimiter. The specified
character is used in place of double quotation marks to enclose a character string.
Passing a NULL value will use the default value; the default value is a double
quotation mark (").

CODESET
An input argument of type VARCHAR(128) that specifies the code set of the data
in the input file. The name of the code set should be one of the Java-supported
character encodings. Data is converted from the specified code set to the database
code set (utf-8). Passing a NULL value will interpret the data file in the same code set
as the JVM in which it is being executed.

REPLACE
A input argument of type SMALLINT. A non-zero value will run in REPLACE mode,
while a value of zero will run in INSERT mode. REPLACE mode deletes all existing
data from the table by truncating the data object, and inserts the imported data.
The table definition and the index definitions are not changed. You can only use the
REPLACE mode if the table exists. INSERT mode adds the imported data to the table
without changing the existing table data. Passing a NULL will result in an error.

If you create a schema, table, or column name as a non-delimited identifier, you must
pass the name to the import procedure using all uppercase characters. If you created a
schema, table, or column name as a delimited identifier, you must pass the name to the
import procedure using the same case that was used when it was created.

Execute privileges

If authentication and SQL authorization are both enabled, only the database owner has
execute privileges on this procedure by default. See "Configuring user authentication"
and "Configuring user authorization" in the Derby Security Guide for more information.
The database owner can grant access to other users. The user must also have INSERT
privileges on the table.

Example
The following example imports some of the data fields from a delimited data file called
data.del into the STAFF table:

CALL SYSCS_UTIL.SYSCS_IMPORT_DATA
 (NULL, 'STAFF', null, '1,3,4', 'data.del', null, null, null,0)

SYSCS_UTIL.SYSCS_IMPORT_DATA_LOBS_FROM_EXTFILE system procedure

Use the SYSCS_UTIL.SYSCS_IMPORT_DATA_LOBS_FROM_EXTFILE system procedure
to import data to a subset of columns in a table, where the LOB data is stored in a
separate file. The main import file contains all of the other data and a reference to the
location of the LOB data.

Derby Reference Manual

188

Derby issues a COMMIT or a ROLLBACK statement after each import and export
procedure is run (a COMMIT if the procedure completes successfully, a ROLLBACK if
it fails). For this reason, you should issue either a COMMIT or ROLLBACK statement to
complete all transactions and release all table-level locks before you invoke an import or
export procedure.

For more information on using this procedure, see the section "Importing and exporting
data" in the Derby Server and Administration Guide.

Syntax

SYSCS_UTIL.SYSCS_IMPORT_DATA_LOBS_FROM_EXTFILE (
 IN SCHEMANAME VARCHAR(128),
 IN TABLENAME VARCHAR(128),
 IN INSERTCOLUMNS VARCHAR(32672),
 IN COLUMNINDEXES VARCHAR(32672),
 IN FILENAME VARCHAR(32672),
 IN COLUMNDELIMITER CHAR(1),
 IN CHARACTERDELIMITER CHAR(1),
 IN CODESET VARCHAR(128),
 IN REPLACE SMALLINT)
)

The import utility looks in the main import file for a reference to the location of the LOB
data.

SCHEMANAME
Specifies the schema of the table. You can specify a NULL value to use the default
schema name. The SCHEMANAME parameter takes an input argument that is a
VARCHAR(128) data type.

TABLENAME
Specifies the name of the table into which the data is to be imported. This table
cannot be a system table or a declared temporary table. The string must exactly
match case of the table name. Specifying a NULL value results in an error. The
TABLENAME parameter takes an input argument that is a VARCHAR(128) data type.

INSERTCOLUMNS
Specifies the comma separated column names of the table into which the data will be
imported. You can specify a NULL value to import into all columns of the table. The
INSERTCOLUMNS parameter takes an input argument that is a VARCHAR(32672)
data type.

COLUMNINDEXES
Specifies the comma separated column indexes (numbered from one) of the input
data fields that will be imported. You can specify a NULL value to use all input data
fields in the file. The COLUMNINDEXES parameter takes an input argument that is a
VARCHAR(32672) data type.

FILENAME
Specifies the name of the file that contains the data to be imported. If the path is
omitted, the current working directory is used. The specified location of the file should
refer to the server side location if using the Network Server. Specifying a NULL
value results in an error. The fileName parameter takes an input argument that is a
VARCHAR(32672) data type.

COLUMNDELIMITER
Specifies a column delimiter. The specified character is used in place of a comma to
signify the end of a column. You can specify a NULL value to use the default value
of a comma. The COLUMNDELIMITER parameter takes an input argument that is a
CHAR(1) data type.

CHARACTERDELIMITER
Specifies a character delimiter. The specified character is used in place of double
quotation marks to enclose a character string. You can specify a NULL value to

Derby Reference Manual

189

use the default value of a double quotation mark. The CHARACTERDELIMITER
parameter takes an input argument that is a CHAR(1) data type.

CODESET
Specifies the code set of the data in the input file. The code set name should be one
of the Java-supported character encoding sets. Data is converted from the specified
code set to the database code set (UTF-8). You can specify a NULL value to interpret
the data file in the same code set as the JVM in which it is being executed. The
CODESET parameter takes an input argument that is a VARCHAR(128) data type.

REPLACE
A non-zero value for the replace parameter will import in REPLACE mode, while
a zero value will import in INSERT mode. REPLACE mode deletes all existing
data from the table by truncating the table and inserts the imported data. The table
definition and the index definitions are not changed. You can only import with
REPLACE mode if the table already exists. INSERT mode adds the imported data to
the table without changing the existing table data. Specifying a NULL value results in
an error. The REPLACE parameter takes an input argument that is a SMALLINT data
type.

If you create a schema, table, or column name as a non-delimited identifier, you must
pass the name to the import procedure using all uppercase characters. If you created a
schema, table, or column name as a delimited identifier, you must pass the name to the
import procedure using the same case that was used when it was created.

Execute privileges

If authentication and SQL authorization are both enabled, only the database owner has
execute privileges on this procedure by default. See "Configuring user authentication"
and "Configuring user authorization" in the Derby Security Guide for more information.
The database owner can grant access to other users. The user must also have INSERT
privileges on the table.

Usage

This procedure will read the LOB data using the reference that is stored in the main
import file. The format of the reference to the LOB stored in the main import file must be
lobsFileName.Offset.length/.

• Offset is position in the external file in bytes
• length is the size of the LOB column data in bytes

Example importing data into specific columns, using a separate import file for the
LOB data
The following example shows how to import data into several columns of the STAFF
table. The STAFF table includes a LOB column in a sample database. The import file
staff.del is a delimited data file. The staff.del file contains references that point
to a separate file which contains the LOB data. The data in the import file is formatted
using double quotation marks (") as the string delimiter and a comma (,) as the column
delimiter. The data will be appended to the existing data in the STAFF table.

CALL SYSCS_UTIL.SYSCS_IMPORT_DATA_LOBS_FROM_EXTFILE
 (null, 'STAFF', 'NAME,DEPT,SALARY,PICTURE', '2,3,4,6',
 'c:\data\staff.del', ',','"','UTF-8', 0);

SYSCS_UTIL.SYSCS_IMPORT_TABLE system procedure

The SYSCS_UTIL.SYSCS_IMPORT_TABLE system procedure imports data from an
input file into all of the columns of a table. If the table receiving the imported data already
contains data, you can either replace or append to the existing data.

Derby Reference Manual

190

Derby issues a COMMIT or a ROLLBACK statement after each import and export
procedure is run (a COMMIT if the procedure completes successfully, a ROLLBACK if
it fails). For this reason, you should issue either a COMMIT or ROLLBACK statement to
complete all transactions and release all table-level locks before you invoke an import or
export procedure.

For more information on using this procedure, see the section "Importing and exporting
data" in the Derby Server and Administration Guide.

Syntax

SYSCS_UTIL.SYSCS_IMPORT_TABLE (IN SCHEMANAME VARCHAR(128),
IN TABLENAME VARCHAR(128), IN FILENAME VARCHAR(32672),
IN COLUMNDELIMITER CHAR(1), IN CHARACTERDELIMITER CHAR(1),
IN CODESET VARCHAR(128), IN REPLACE SMALLINT)

No result is returned from the procedure.

SCHEMANAME
An input argument of type VARCHAR(128) that specifies the schema of the table.
Passing a NULL value will use the default schema name.

TABLENAME
An input argument of type VARCHAR (128) that specifies the table name of the
table into which the data is to be imported. This table cannot be a system table or a
declared temporary table. Passing a null will result in an error.

FILENAME
An input argument of type VARCHAR(32672) that specifies the file that contains
the data to be imported. If you do not specify a path, the current working directory is
used. Passing a NULL value will result in an error.

COLUMNDELIMITER
An input argument of type CHAR(1) that specifies a column delimiter. The specified
character is used in place of a comma to signal the end of a column. Passing a NULL
value will use the default value; the default value is a comma (,).

CHARACTERDELIMITER
An input argument of type CHAR(1) that specifies a character delimiter. The specified
character is used in place of double quotation marks to enclose a character string.
Passing a NULL value will use the default value; the default value is a double
quotation mark (").

CODESET
An input argument of type VARCHAR(128) that specifies the code set of the data
in the input file. The name of the code set should be one of the Java-supported
character encodings. Data is converted from the specified code set to the database
code set (utf-8). Passing a NULL value will interpret the data file in the same code set
as the JVM in which it is being executed.

REPLACE
A input argument of type SMALLINT. A non-zero value will run in REPLACE mode,
while a value of zero will run in INSERT mode. REPLACE mode deletes all existing
data from the table by truncating the data object, and inserts the imported data. The
table definition and the index definitions are not changed. INSERT mode adds the
imported data to the table without changing the existing table data. Passing a NULL
will result in an error.

If you create a schema, table, or column name as a non-delimited identifier, you must
pass the name to the import procedure using all uppercase characters. If you created a
schema, table, or column name as a delimited identifier, you must pass the name to the
import procedure using the same case that was used when it was created.

Execute privileges

Derby Reference Manual

191

If authentication and SQL authorization are both enabled, only the database owner has
execute privileges on this procedure by default. See "Configuring user authentication"
and "Configuring user authorization" in the Derby Security Guide for more information.
The database owner can grant access to other users. The user must also have INSERT
privileges on the table.

Example
The following example imports data into the STAFF table from a delimited data file called
myfile.del with the percentage character (%) as the string delimiter, and a semicolon
(;) as the column delimiter:

CALL SYSCS_UTIL.SYSCS_IMPORT_TABLE
 (null, 'STAFF', 'c:/output/myfile.del', ';', '%', null,0);

SYSCS_UTIL.SYSCS_IMPORT_TABLE_LOBS_FROM_EXTFILE system procedure

Use the SYSCS_UTIL.SYSCS_IMPORT_TABLE_LOBS_FROM_EXTFILE system
procedure to import data to a table, where the LOB data is stored in a separate file. The
main import file contains all of the other data and a reference to the location of the LOB
data.

Derby issues a COMMIT or a ROLLBACK statement after each import and export
procedure is run (a COMMIT if the procedure completes successfully, a ROLLBACK if
it fails). For this reason, you should issue either a COMMIT or ROLLBACK statement to
complete all transactions and release all table-level locks before you invoke an import or
export procedure.

For more information on using this procedure, see the section "Importing and exporting
data" in the Derby Server and Administration Guide.

Syntax

SYSCS_UTIL.SYSCS_IMPORT_TABLE_LOBS_FROM_EXTFILE (
 IN SCHEMANAME VARCHAR(128),
 IN TABLENAME VARCHAR(128),
 IN FILENAME VARCHAR(32672),
 IN COLUMNDELIMITER CHAR(1),
 IN CHARACTERDELIMITER CHAR(1),
 IN CODESET VARCHAR(128),
 IN REPLACE SMALLINT)
)

The import utility looks in the main import file for a reference to the location of the LOB
data.

SCHEMANAME
Specifies the schema of the table. You can specify a NULL value to use the default
schema name. The SCHEMANAME parameter takes an input argument that is a
VARCHAR (128) data type.

TABLENAME
Specifies the name of the table into which the data is to be imported. This table
cannot be a system table or a declared temporary table. The string must exactly
match case of the table name. Specifying a NULL value results in an error. The
TABLENAME parameter takes an input argument that is a VARCHAR (128) data
type.

FILENAME
Specifies the name of the file that contains the data to be imported. If the path is
omitted, the current working directory is used. The specified location of the file should
refer to the server side location if using the Network Server. Specifying a NULL value
results in an error. The FILENAME parameter takes an input argument that is a
VARCHAR (32672) data type.

Derby Reference Manual

192

COLUMNDELIMITER
Specifies a column delimiter. The specified character is used in place of a comma to
signify the end of a column. You can specify a NULL value to use the default value
of a comma. The COLUMNDELIMITER parameter takes an input argument that is a
CHAR (1) data type.

CHARACTERDELIMITER
Specifies a character delimiter. The specified character is used in place of double
quotation marks to enclose a character string. You can specify a NULL value to
use the default value of a double quotation mark. The CHARACTERDELIMITER
parameter takes an input argument that is a CHAR (1) data type.

CODESET
Specifies the code set of the data in the input file. The code set name should be one
of the Java-supported character encoding sets. Data is converted from the specified
code set to the database code set (UTF-8). You can specify a NULL value to interpret
the data file in the same code set as the JVM in which it is being executed. The
CODESET parameter takes an input argument that is a VARCHAR (128) data type.

REPLACE
A non-zero value for the replace parameter will import in REPLACE mode, while
a zero value will import in INSERT mode. REPLACE mode deletes all existing
data from the table by truncating the table and inserts the imported data. The table
definition and the index definitions are not changed. You can only import with
REPLACE mode if the table already exists. INSERT mode adds the imported data to
the table without changing the existing table data. Specifying a NULL value results in
an error. The REPLACE parameter takes an input argument that is a SMALLINT data
type.

If you create a schema, table, or column name as a non-delimited identifier, you must
pass the name to the import procedure using all uppercase characters. If you created a
schema, table, or column name as a delimited identifier, you must pass the name to the
import procedure using the same case that was used when it was created.

Execute privileges

If authentication and SQL authorization are both enabled, only the database owner has
execute privileges on this procedure by default. See "Configuring user authentication"
and "Configuring user authorization" in the Derby Security Guide for more information.
The database owner can grant access to other users. The user must also have INSERT
privileges on the table.

Usage

This procedure will read the LOB data using the reference that is stored in the main
import file. If you are importing from a non-Derby source, the format of the reference to
the LOB stored in the main import file must be lobsFileName.Offset.length/.

• Offset is position in the external file in bytes
• length is the size of the LOB column data in bytes

Example importing data from a main import file that contains references which
point to a separate file that contains LOB data

The following example shows how to import data into the STAFF table in a sample
database from a delimited data file staff.del. This example defines a comma as the
column delimiter. The data will be appended to the existing data in the table.

CALL SYSCS_UTIL.SYSCS_IMPORT_TABLE_LOBS_FROM_EXTFILE(
 'APP','STAFF','c:\data\staff.del',',','"','UTF-8',0);

SYSCS_UTIL.SYSCS_INPLACE_COMPRESS_TABLE system procedure

Derby Reference Manual

193

Use the SYSCS_UTIL.SYSCS_INPLACE_COMPRESS_TABLE system procedure to
reclaim unused, allocated space in a table and its indexes.

Typically, unused allocated space exists when a large amount of data is deleted from
a table and there have not been any subsequent inserts to use the space created
by the deletes. By default, Derby does not return unused space to the operating
system. For example, once a page has been allocated to a table or index, it is not
automatically returned to the operating system until the table or index is destroyed.
SYSCS_UTIL.SYSCS_INPLACE_COMPRESS_TABLE allows you to return unused space
to the operating system.

This system procedure can be used to force three levels of in-place compression
of a SQL table: PURGE_ROWS, DEFRAGMENT_ROWS, and TRUNCATE_END. Unlike
SYSCS_UTIL.SYSCS_COMPRESS_TABLE, all work is done in place in the existing
table/index.

Syntax

SYSCS_UTIL.SYSCS_INPLACE_COMPRESS_TABLE(
 IN SCHEMANAME VARCHAR(128),
 IN TABLENAME VARCHAR(128),
 IN PURGE_ROWS SMALLINT,
 IN DEFRAGMENT_ROWS SMALLINT,
 IN TRUNCATE_END SMALLINT)

SCHEMANAME
An input argument of type VARCHAR(128) that specifies the schema of the table.
Passing a null will result in an error.

TABLENAME
An input argument of type VARCHAR(128) that specifies the table name of the table.
The string must exactly match the case of the table name, and the argument of "Fred"
will be passed to SQL as the delimited identifier 'Fred'. Passing a null will result in an
error.

PURGE_ROWS
If PURGE_ROWS is set to a non-zero value, then a single pass is made through
the table which will purge committed deleted rows from the table. This space is then
available for future inserted rows, but remains allocated to the table. As this option
scans every page of the table, its performance is linearly related to the size of the
table.

DEFRAGMENT_ROWS
If DEFRAGMENT_ROWS is set to a non-zero value, then a single defragment pass
is made which will move existing rows from the end of the table towards the front of
the table. The goal of defragmentation is to empty a set of pages at the end of the
table which can then be returned to the operating system by the TRUNCATE_END
option. It is recommended to only run DEFRAGMENT_ROWS if also specifying the
TRUNCATE_END option. The DEFRAGMENT_ROWS option scans the whole table
and needs to update index entries for every base table row move, so the execution
time is linearly related to the size of the table.

TRUNCATE_END
If TRUNCATE_END is set to a non-zero value, then all contiguous pages at the end
of the table will be returned to the operating system. Running the PURGE_ROWS
and/or DEFRAGMENT_ROWS options may increase the number of pages affected.
This option by itself performs no scans of the table.

Execute privileges

If authentication and SQL authorization are both enabled, all users have execute
privileges on this procedure. However, in order for the procedure to run successfully
on a given table, the user must be the owner of either the database or the schema in

Derby Reference Manual

194

which the table resides. See "Configuring user authentication" and "Configuring user
authorization" in the Derby Security Guide for more information.

SQL example
To compress a table called CUSTOMER in a schema called US, using all available
compress options:

call SYSCS_UTIL.SYSCS_INPLACE_COMPRESS_TABLE('US', 'CUSTOMER', 1, 1, 1);

To return the empty free space at the end of the same table, the following call will run
much quicker than running all options but will likely return much less space:

call SYSCS_UTIL.SYSCS_INPLACE_COMPRESS_TABLE('US', 'CUSTOMER', 0, 0, 1);

Java example
To compress a table called CUSTOMER in a schema called US, using all available
compress options:

CallableStatement cs = conn.prepareCall
("CALL SYSCS_UTIL.SYSCS_INPLACE_COMPRESS_TABLE(?, ?, ?, ?, ?)");
cs.setString(1, "US");
cs.setString(2, "CUSTOMER");
cs.setShort(3, (short) 1);
cs.setShort(4, (short) 1);
cs.setShort(5, (short) 1);
cs.execute();

To return the empty free space at the end of the same table, the following call will run
much quicker than running all options but will likely return much less space:

CallableStatement cs = conn.prepareCall
("CALL SYSCS_UTIL.SYSCS_INPLACE_COMPRESS_TABLE(?, ?, ?, ?, ?)");
cs.setString(1, "US");
cs.setString(2, "CUSTOMER");
cs.setShort(3, (short) 0);
cs.setShort(4, (short) 0);
cs.setShort(5, (short) 1);
cs.execute();

Tip: We recommend that you issue the
SYSCS_UTIL.SYSCS_INPLACE_COMPRESS_TABLE system procedure in auto-commit
mode.
Note: This procedure acquires an exclusive table lock on the table being compressed.
All statement plans dependent on the table or its indexes are invalidated. For information
on identifying unused space, see the Derby Server and Administration Guide.

SYSCS_UTIL.SYSCS_INVALIDATE_STORED_STATEMENTS system procedure

The SYSCS_UTIL.SYSCS_INVALIDATE_STORED_STATEMENTS system
procedure invalidates all stored prepared statements (that is, all statements in the
SYSSTATEMENTS system table).

The next time one of the invalid stored prepared statements in the SYSSTATEMENTS
system table is executed, it will be recompiled, and a new plan will be generated for it.

Run SYSCS_UTIL.SYSCS_INVALIDATE_STORED_STATEMENTS whenever you think
that your metadata queries or triggers are misbehaving -- for example, if they throw
java.lang.NoSuchMethodError or java.lang.NoSuchMethodException
on execution. Derby stores plans for triggers and metadata queries in the database.
These should be invalidated automatically on upgrade and at other necessary
times. Should you encounter an instance where they are not, you have found a

Derby Reference Manual

195

bug that you should report, but one that you can likely work around by running
SYSCS_UTIL.SYSCS_INVALIDATE_STORED_STATEMENTS.

Syntax

SYSCS_UTIL.SYSCS_INVALIDATE_STORED_STATEMENTS()

No result is returned by this procedure.

Execute privileges

If authentication and SQL authorization are both enabled, only the database owner has
execute privileges on this procedure by default. See "Configuring user authentication"
and "Configuring user authorization" in the Derby Security Guide for more information.
The database owner can grant access to other users.

JDBC example

CallableStatement cs = conn.prepareCall
("CALL SYSCS_UTIL.SYSCS_INVALIDATE_STORED_STATEMENTS()");
cs.execute();
cs.close();

SQL Example

CALL SYSCS_UTIL.SYSCS_INVALIDATE_STORED_STATEMENTS();

SYSCS_UTIL.SYSCS_MODIFY_PASSWORD system procedure

The SYSCS_UTIL.SYSCS_MODIFY_PASSWORD system procedure is called by a user to
change that user's own password.

This procedure is used in conjunction with NATIVE authentication. For details about
NATIVE authentication, see derby.authentication.provider and "Configuring NATIVE
authentication" in the Derby Security Guide.

The derby.authentication.native.passwordLifetimeMillis property sets the password
expiration time, and the derby.authentication.native.passwordLifetimeThreshold property
sets the time when a user is warned that the password will expire.

Syntax

SYSCS_UTIL.SYSCS_MODIFY_PASSWORD(IN PASSWORD VARCHAR(32672))

No result set is returned by this procedure.

PASSWORD
A case-sensitive password.

Execute privileges

Any user can execute this procedure.

JDBC example

CallableStatement cs = conn.prepareCall
("CALL SYSCS_UTIL.SYSCS_MODIFY_PASSWORD('shhhhh!')");
cs.execute();
cs.close();

SQL example

CALL SYSCS_UTIL.SYSCS_MODIFY_PASSWORD('shhhhh!')

Derby Reference Manual

196

SYSCS_UTIL.SYSCS_REGISTER_TOOL system procedure

The SYSCS_UTIL.SYSCS_REGISTER_TOOL system procedure loads and unloads
optional tools packages.

Syntax

SYSCS_UTIL.SYSCS_REGISTER_TOOL(IN TOOLNAME VARCHAR(128),
 IN REGISTER BOOLEAN,
 IN OPTIONALARGS VARCHAR(128) ...)

No result set is returned by this procedure.

TOOLNAME
The name of the optional tool. Must be either 'databaseMetaData' or
'foreignViews'.

REGISTER
A value of true tells Derby to load the tool. A value of false tells Derby to unload the
tool.

OPTIONALARGS
Optional arguments specific to each tool.

Execute privileges

If authentication and SQL authorization are both enabled, only the database owner has
execute privileges on this procedure by default. See "Configuring user authentication"
and "Configuring user authorization" in the Derby Security Guide for more information.
The database owner can grant access to other users.

Usage

The following optional tools are supported:

• databaseMetaData

This optional tool creates functions and table functions to wrap the methods in
java.sql.DatabaseMetaData, allowing you to use DatabaseMetaData methods
in queries. For example, you can join and filter the ResultSets returned by
DatabaseMetaData methods. This tool does not require any optional arguments. To
create the metadata functions and table functions, do the following:

call syscs_util.syscs_register_tool('databaseMetaData', true)

To drop the functions and table functions, do the following:

call syscs_util.syscs_register_tool('databaseMetaData', false)
• foreignViews

This optional tool creates schemas, table functions, and convenience views for
all user tables in a foreign database. The table functions and views are useful for
bulk-importing foreign data into Derby. This tool takes two additional arguments:

CONNECTION_URL
This is a connection URL string suitable for creating a connection to the foreign
database by calling DriverManager.getConnection().

SCHEMA_PREFIX
This is an optional string prefixed to all of the schema names which the tool
creates. This argument may be omitted. If it is omitted, then the tool will create
schemas which have the same names as the schemas in the foreign database.

To create views on the foreign data, do the following:

call syscs_util.syscs_register_tool('foreignViews', true,
 'foreignDatabaseURL', 'XYZ_')

Derby Reference Manual

197

To drop the views on the foreign data, do the following:

call syscs_util.syscs_register_tool('foreignViews', false,
 'foreignDatabaseURL', 'XYZ_')

See the Derby Tools and Utilities Guide for more information on how to use these tools.
Before you run an optional tool, make sure that your classpath contains the Derby jar
files, including derbytools.jar.

SYSCS_UTIL.SYSCS_RELOAD_SECURITY_POLICY system procedure

The SYSCS_UTIL.SYSCS_RELOAD_SECURITY_POLICY system procedure reloads the
security policy, allowing you to fine-tune your Java security on the fly.

For more information on security policies, see "Configuring Java security" in the Derby
Security Guide.

Syntax

SYSCS_UTIL.SYSCS_RELOAD_SECURITY_POLICY()

No result set is returned by this procedure.

Execute privileges

If authentication and SQL authorization are both enabled, only the database owner has
execute privileges on this procedure by default. See "Configuring user authentication"
and "Configuring user authorization" in the Derby Security Guide for more information.
The database owner can grant access to other users.

Example

CallableStatement cs = conn.prepareCall
("CALL SYSCS_UTIL.SYSCS_RELOAD_SECURITY_POLICY()");
cs.execute();
cs.close();

SYSCS_UTIL.SYSCS_RESET_PASSWORD system procedure

The SYSCS_UTIL.SYSCS_RESET_PASSWORD system procedure resets a password that
has expired or has been forgotten.

This procedure is used in conjunction with NATIVE authentication. For details about
NATIVE authentication, see derby.authentication.provider and "Configuring NATIVE
authentication" in the Derby Security Guide.

Syntax

SYSCS_UTIL.SYSCS_RESET_PASSWORD(IN USERNAME VARCHAR(128),
IN PASSWORD VARCHAR(32672))

No result set is returned by this procedure.

USERNAME
A user name that is case-sensitive if you place the name string in double quotes.
This user name is an authorization identifier. See "Authorization identifiers, user
authentication, and user authorization" in the Derby Security Guide for more
information about how these names are treated.

PASSWORD
A case-sensitive password.

Execute privileges

Derby Reference Manual

198

If authentication and SQL authorization are both enabled, only the database owner
has execute privileges on this procedure by default. See "Configuring NATIVE
authentication," "Configuring user authentication," and "Configuring user authorization" in
the Derby Security Guide for more information. The database owner can grant access to
other users.

JDBC example

Reset the password of a user named FRED:

CallableStatement cs = conn.prepareCall
("CALL SYSCS_UTIL.SYSCS_RESET_PASSWORD(?, ?)");
cs.setString(1, "fred");
cs.setString(2, "temppassword");
cs.execute();
cs.close();

Reset the password of a user named FreD:

CallableStatement cs = conn.prepareCall
("CALL SYSCS_UTIL.SYSCS_RESET_PASSWORD(?, ?)");
cs.setString(1, "\"FreD\"");
cs.setString(2, "temppassword");
cs.execute();
cs.close();

SQL example

Reset the password of a user named FRED:

CALL SYSCS_UTIL.SYSCS_RESET_PASSWORD('fred', 'temppassword')

Reset the password of a user named FreD:

CALL SYSCS_UTIL.SYSCS_RESET_PASSWORD('"FreD"', 'temppassword')

SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY system procedure

Use the SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY system procedure to set or
delete the value of a property of the database on the current connection.

For information about properties, see Derby property reference.

Syntax

SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(IN KEY VARCHAR(128),
IN VALUE VARCHAR(32672))

This procedure does not return any results.

If VALUE is not null, then the property with key value KEY is set to VALUE. If VALUE is
null, then the property with key value KEY is deleted from the database property set.

If VALUE is an invalid value for the property, Derby uses the default value of the property,
although SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY sets the invalid value.

Execute privileges

If authentication and SQL authorization are both enabled, only the database owner has
execute privileges on this procedure by default. See "Configuring user authentication"
and "Configuring user authorization" in the Derby Security Guide for more information.
The database owner can grant access to other users.

JDBC example

Set the derby.locks.deadlockTimeout property to a value of 10:

Derby Reference Manual

199

CallableStatement cs = conn.prepareCall
("CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(?, ?)");
cs.setString(1, "derby.locks.deadlockTimeout");
cs.setString(2, "10");
cs.execute();
cs.close();

SQL example

Set the derby.locks.deadlockTimeout property to a value of 10:

CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY
('derby.locks.deadlockTimeout', '10')

SYSCS_UTIL.SYSCS_SET_RUNTIMESTATISTICS system procedure

The SYSCS_UTIL.SYSCS_SET_RUNTIMESTATISTICS system procedure turns a
connection's runtime statistics on or off.

By default, the runtime statistics are turned off. When the runtimestatistics attribute
is turned on, Derby maintains information about the execution plan for each statement
executed within the connection (except for COMMIT) until the attribute is turned off. To
turn the runtimestatistics attribute off, call the procedure with an argument of zero.
To turn the runtimestatistics on, call the procedure with any non-zero argument.

For statements that do not return rows, the object is created when all internal processing
has completed before returning to the client program. For statements that return rows,
the object is created when the first next() call returns 0 rows or if a close() call is
encountered, whichever comes first.

Syntax

SYSCS_UTIL.SYSCS_SET_RUNTIMESTATISTICS(IN SMALLINT ENABLE)

Execute privileges

By default, all users have execute privileges on this procedure.

Example

-- establish a connection
-- turn on RUNTIMESTATISTIC for connection:
CALL SYSCS_UTIL.SYSCS_SET_RUNTIMESTATISTICS(1);
-- execute complex query here
-- step through the result sets
-- access runtime statistics information:
CALL SYSCS_UTIL.SYSCS_SET_RUNTIMESTATISTICS(0);

SYSCS_UTIL.SYSCS_SET_STATISTICS_TIMING system procedure

Statistics timing is an attribute associated with a connection that you turn on and off by
using the SYSCS_UTIL.SYSCS_SET_STATISTICS_TIMING system procedure.

Statistics timing is turned off by default. Turn statistics timing on only when the
runtimestatistics attribute is already on. Turning statistics timing on when the
runtimestatistics attribute is off has no effect.

Turn statistics timing on by calling this procedure with a non-zero argument. Turn
statistics timing off by calling the procedure with a zero argument.

When statistics timing is turned on, Derby tracks the timings of various aspects of the
execution of a statement. This information is included in the information returned by the
SYSCS_UTIL.SYSCS_GET_RUNTIMESTATISTICS system function. When statistics

Derby Reference Manual

200

timing is turned off, the SYSCS_UTIL.SYSCS_GET_RUNTIMESTATISTICS system
function shows all timing values as zero.

Syntax

SYSCS_UTIL.SYSCS_SET_STATISTICS_TIMING(IN SMALLINT ENABLE)

Execute privileges

By default, all users have execute privileges on this procedure.

Example

To turn the runtimestatistics attribute and then the statistics timing attribute on:

CALL SYSCS_UTIL.SYSCS_SET_RUNTIMESTATISTICS(1);
CALL SYSCS_UTIL.SYSCS_SET_STATISTICS_TIMING(1);

SYSCS_UTIL.SYSCS_SET_USER_ACCESS system procedure

The SYSCS_UTIL.SYSCS_SET_USER_ACCESS system procedure sets the connection
access permission for the user specified.

Syntax

SYSCS_UTIL.SYSCS_SET_USER_ACCESS (USERNAME VARCHAR(128),
CONNECTION_PERMISSION VARCHAR(128))

USERNAME

An input argument of type VARCHAR(128) that specifies the user ID in the Derby
database.

CONNECTION_PERMISSION

Valid values for CONNECTION_PERMISSION are:

FULLACCESS
Adds the user to the list of users with full access to the database. The value for
the database property is derby.database.fullAccessUsers.

READONLYACCESS
Adds the user to the list of users with read-only access to the database. The value
for the database property is derby.database.readOnlyAccessUsers.

null
Removes the user from the list of permissions, reverting the user to the default
permission. You must specify null without the quotation marks.

Execute privileges

If authentication and SQL authorization are both enabled, only the database owner has
execute privileges on this procedure by default. See "Configuring user authentication"
and "Configuring user authorization" in the Derby Security Guide for more information.
The database owner can grant access to other users.

Example

CALL SYSCS_UTIL.SYSCS_SET_USER_ACCESS ('BRUNNER', 'READONLYACCESS')

To remove the user from the list of permissions, you specify the null value without the
quotation marks. For example:

CALL SYSCS_UTIL.SYSCS_SET_USER_ACCESS ('ISABEL', null)

Derby Reference Manual

201

SYSCS_UTIL.SYSCS_SET_XPLAIN_MODE system procedure

When runtime statistics are being captured, you can control the mode of processing by
using the SYSCS_UTIL.SYSCS_SET_XPLAIN_MODE procedure.

When the XPLAIN mode is set to 1, statements are compiled and optimized, but not
executed; when the XPLAIN mode is set to 0 (the default), statements are compiled,
optimized, and executed normally.

The XPLAIN mode only matters when XPLAIN style has been enabled. See the
SYSCS_UTIL.SYSCS_SET_XPLAIN_SCHEMA system procedure for more information.

See "Working with RunTimeStatistics" in Tuning Derby for additional information.

Syntax

SYSCS_UTIL.SYSCS_SET_XPLAIN_MODE(IN SMALLINT NOEXECUTE)

Execute privileges

If authentication and SQL authorization are both enabled, only the database owner has
execute privileges on this procedure by default. See "Configuring user authentication"
and "Configuring user authorization" in the Derby Security Guide for more information.
The database owner can grant access to other users.

Example

To let Derby explain a statement without executing it:

 call syscs_util.syscs_set_runtimestatistics(1);
 call syscs_util.syscs_set_xplain_schema('STATS');
 call syscs_util.syscs_set_xplain_mode(1);

 select country from countries;

 call syscs_util.syscs_set_runtimestatistics(0);
 call syscs_util.syscs_set_xplain_schema('');
 call syscs_util.syscs_set_xplain_mode(0);

SYSCS_UTIL.SYSCS_SET_XPLAIN_SCHEMA system procedure

The SYSCS_UTIL.SYSCS_SET_XPLAIN_SCHEMA system procedure allows you to
request XPLAIN style processing of runtime statistics.

When XPLAIN style is used, the runtime statistics are written to the SYSXPLAIN_*
database tables, so that you can analyze the statistics by running queries against the
tables.

See "Working with RunTimeStatistics" in Tuning Derby for additional information.

Turn XPLAIN style on by calling this procedure with a non-empty argument. Turn XPLAIN
style off by calling the procedure with an empty argument.

The argument that you provide must be a legal schema name, and you should use this
argument to indicate the schema in which runtime statistics should be captured. If the
schema that you specify does not already exist, it will be automatically created. If the
XPLAIN tables do not already exist in this schema, they will be automatically created.
Runtime statistics information about statements executed in this session will then be
captured into these tables, until runtime statistics capturing is halted either by calling
SYSCS_UTIL.SYSCS_SET_XPLAIN_SCHEMA with an empty argument or by calling
SYSCS_UTIL.SYSCS_SET_RUNTIMESTATISTICS(0).

Syntax

Derby Reference Manual

202

SYSCS_UTIL.SYSCS_SET_XPLAIN_SCHEMA(IN VARCHAR(128) SCHEMA_NAME)

Execute privileges

If authentication and SQL authorization are both enabled, only the database owner has
execute privileges on this procedure by default. See "Configuring user authentication"
and "Configuring user authorization" in the Derby Security Guide for more information.
The database owner can grant access to other users.

Example

To cause Derby to record statistics about statement execution in the SYSXPLAIN_*
database tables in the schema named 'MY_STATS':

 call syscs_util.syscs_set_runtimestatistics(1);
 call syscs_util.syscs_set_xplain_schema('MY_STATS');

 select country from countries;

 call syscs_util.syscs_set_runtimestatistics(0);
 call syscs_util.syscs_set_xplain_schema('');

SYSCS_UTIL.SYSCS_UNFREEZE_DATABASE system procedure

The SYSCS_UTIL.SYSCS_UNFREEZE_DATABASE system procedure unfreezes a
database after backup.

See "Using operating system commands with the freeze and unfreeze system
procedures to perform an online backup" in the Derby Server and Administration Guide
for more information on using this procedure.

Syntax

SYSCS_UTIL.SYSCS_UNFREEZE_DATABASE()

No result set is returned by this procedure.

Execute privileges

If authentication and SQL authorization are both enabled, only the database owner has
execute privileges on this procedure by default. See "Configuring user authentication"
and "Configuring user authorization" in the Derby Security Guide for more information.
The database owner can grant access to other users.

Example

String backupdirectory = "c:/mybackups/" + JCalendar.getToday();
CallableStatement cs = conn.prepareCall
("CALL SYSCS_UTIL.SYSCS_FREEZE_DATABASE()");
cs.execute();
cs.close();
// user supplied code to take full backup of "backupdirectory"
// now unfreeze the database once backup has completed:
CallableStatement cs = conn.prepareCall
("CALL SYSCS_UTIL.SYSCS_UNFREEZE_DATABASE()");
cs.execute();
cs.close();

SYSCS_UTIL.SYSCS_UPDATE_STATISTICS system procedure

The SYSCS_UTIL.SYSCS_UPDATE_STATISTICS system procedure updates the
cardinality statistics, or creates the statistics if they do not exist, for the index that you
specify or for all of the indexes on a table.

Derby Reference Manual

203

Derby uses cardinality statistics to determine the optimal query plan during the
compilation of a query. If the statistics are missing, Derby might use a query plan which is
not the most efficient plan.

Once statistics have been created, they should be maintained. It is a good idea to call
the SYSCS_UTIL.SYSCS_UPDATE_STATISTICS procedure when the number of distinct
values in an index is likely to have changed significantly. To drop all existing statistics
and start again from scratch, call the SYSCS_UTIL.SYSCS_DROP_STATISTICS system
procedure.

For more information on cardinality statistics, see "Working with cardinality statistics" in
Tuning Derby.

Syntax

SYSCS_UTIL.SYSCS_UPDATE_STATISTICS(IN SCHEMANAME VARCHAR(128),
 IN TABLENAME VARCHAR(128),
 IN INDEXNAME VARCHAR(128))

Note: You can specify null for the INDEXNAME to update any existing statistics and
create statistics for those statistics that are missing.

Execute privileges

If authentication and SQL authorization are both enabled, all users have execute
privileges on this procedure. However, in order for the procedure to run successfully
on a given table, the user must be the owner of either the database or the schema in
which the table resides. See "Configuring user authentication" and "Configuring user
authorization" in the Derby Security Guide for more information.

Examples

In the following example, the system procedure updates statistics for the index
PAY_DESC on the SAMP.EMPLOYEE table:

CALL SYSCS_UTIL.SYSCS_UPDATE_STATISTICS('SAMP','EMPLOYEE','PAY_DESC');

In the following example, null is specified instead of an index name. For all of the
indexes, the existing statistics are updated and statistics are created for any missing
statistics on the EMPLOYEE table in the SAMP schema.

CALL SYSCS_UTIL.SYSCS_UPDATE_STATISTICS('SAMP', 'EMPLOYEE', null);

System procedures for storing jar files in a database

SQLJ.INSTALL_JAR, SQLJ.REMOVE_JAR, and SQLJ.REPLACE_JAR are a set of
procedures in the SQLJ schema that allow you to store jar files in a database.

Your jar file has two names:

• A physical name (the name you gave it when you created it)
• A Derby name (the Derby identifier you give it when you load it into a particular

schema). The Derby name, an SQLIdentifier, can be delimited and must be unique
within a schema.

A single schema can store more than one jar file.

For more information on when and how to use these procedures, see "Loading classes
from a database" in the Derby Developer's Guide.

SQLJ.INSTALL_JAR system procedure

The SQLJ.INSTALL_JAR system procedure stores a jar file in a database.

Derby Reference Manual

204

Syntax

SQLJ.INSTALL_JAR(IN JAR_FILE_PATH_OR_URL VARCHAR(32672),
 IN QUALIFIED_JAR_NAME VARCHAR(32672),
 IN DEPLOY INTEGER)

JAR_FILE_PATH_OR_URL
The path or URL of the jar file to add. A path includes both the directory and the
file name (unless the file is in the current directory, in which case the directory is
optional). Two examples:

d:/todays_build/tours.jar

http://www.example.com/tours.jar

QUALIFIED_JAR_NAME
The Derby name of the jar file, qualified by the schema name. Two examples:

MYSCHEMA.Sample1

 -- a delimited identifier
MYSCHEMA."Sample2"

DEPLOY
If set to 1, indicates the existence of an SQLJ deployment descriptor file. Derby
ignores this argument, so it is normally set to 0.

Execute privileges

If authentication and SQL authorization are both enabled, only the database owner has
execute privileges on this procedure by default. See "Configuring user authentication"
and "Configuring user authorization" in the Derby Security Guide for more information.

The database owner can grant access to other users. Since this procedure can be used
to install arbitrary code (possibly from across the network) that runs in the same Java
Virtual Machine as the Derby database engine, the execute privilege should be granted
only to trusted users.

SQL examples

-- SQL statement
-- install jar from current directory
CALL SQLJ.INSTALL_JAR('tours.jar', 'APP.Sample1', 0)

-- SQL statement
-- install jar using full path
CALL SQLJ.INSTALL_JAR('c:\myjarfiles\tours.jar', 'APP.Sample1', 0)

-- SQL statement
-- install jar from remote location
CALL SQLJ.INSTALL_JAR('http://www.example.com/tours.jar', 'APP.Sample2',
 0)

-- SQL statement
-- install jar using a quoted identifier for the
-- Derby jar name
CALL SQLJ.INSTALL_JAR('tours.jar', 'APP."Sample3"', 0)

SQLJ.REMOVE_JAR system procedure

The SQLJ.REMOVE_JAR system procedure removes a jar file from a database.

Syntax

SQLJ.REMOVE_JAR(IN QUALIFIED_JAR_NAME VARCHAR(32672),
 IN UNDEPLOY INTEGER)

Derby Reference Manual

205

QUALIFIED_JAR_NAME
The Derby name of the jar file, qualified by the schema name. Two examples:

MYSCHEMA.Sample1

 -- a delimited identifier.
MYSCHEMA."Sample2"

UNDEPLOY
If set to 1, indicates the existence of an SQLJ deployment descriptor file. Derby
ignores this argument, so it is normally set to 0.

Execute privileges

If authentication and SQL authorization are both enabled, only the database owner has
execute privileges on this procedure by default. See "Configuring user authentication"
and "Configuring user authorization" in the Derby Security Guide for more information.
The database owner can grant access to other users.

SQL example

-- SQL statement
CALL SQLJ.REMOVE_JAR('APP.Sample1', 0)

SQLJ.REPLACE_JAR system procedure

The SQLJ.REPLACE_JAR system procedure replaces a jar file in a database.

Syntax

SQLJ.REPLACE_JAR(IN JAR_FILE_PATH_OR_URL VARCHAR(32672),
 IN QUALIFIED_JAR_NAME VARCHAR(32672))

JAR_FILE_PATH_OR_URL
The path or URL of the jar file to use as a replacement. A path includes both the
directory and the file name (unless the file is in the current directory, in which case the
directory is optional). For example:

d:/todays_build/tours.jar

QUALIFIED_JAR_NAME
The Derby name of the jar file, qualified by the schema name. Two examples:

MYSCHEMA.Sample1

 -- a delimited identifier.
MYSCHEMA."Sample2"

Execute privileges

If authentication and SQL authorization are both enabled, only the database owner has
execute privileges on this procedure by default. See "Configuring user authentication"
and "Configuring user authorization" in the Derby Security Guide for more information.

The database owner can grant access to other users. Since this procedure can be used
to install arbitrary code (possibly from across the network) that runs in the same Java
Virtual Machine as the Derby database engine, the execute privilege should be granted
only to trusted users.

SQL example

-- SQL statement
CALL sqlj.replace_jar('c:\myjarfiles\newtours.jar', 'APP.Sample1')

-- SQL statement
-- replace jar from remote location

Derby Reference Manual

206

CALL SQLJ.REPLACE_JAR('http://www.example.com/tours.jar', 'APP.Sample2')

SYSCS_DIAG diagnostic tables and functions
Derby provides a set of system table expressions which you can use to obtain diagnostic
information about the state of the database and about the database sessions.

There are two types of diagnostic table expressions in Derby:
Diagnostic tables

Tables that are like any other table in Derby. You can specify the diagnostic table
name anywhere a normal table name is allowed.

Diagnostic table functions
Functions that are like any other function in Derby. Diagnostic table functions can
accept zero or more arguments, depending on the table function that you use. You
must use the SQL-defined table function syntax to access these functions.

The following table shows the types and names of the diagnostic table expressions in
Derby.

Table 11. System diagnostic table expressions provided by Derby

Diagnostic Table Expression Type of Expression

SYSCS_DIAG.CONTAINED_ROLES Table function

SYSCS_DIAG.ERROR_LOG_READER Table function

SYSCS_DIAG.ERROR_MESSAGES Table

SYSCS_DIAG.LOCK_TABLE Table

SYSCS_DIAG.SPACE_TABLE Table function

SYSCS_DIAG.STATEMENT_CACHE Table

SYSCS_DIAG.STATEMENT_DURATION Table function

SYSCS_DIAG.TRANSACTION_TABLE Table

Restriction: If you reference a diagnostic table in a DDL statement or a compression
procedure, Derby returns an exception.

SYSCS_DIAG.CONTAINED_ROLES diagnostic table function

The SYSCS_DIAG.CONTAINED_ROLES diagnostic table function returns all the roles
contained within the specified role.

The argument that is passed to this table function should be the name of the role,
specified as a string in quotes, or the special keyword CURRENT_ROLE, which indicates
the current role in effect. For a definition of role containment, see "Syntax for roles" in
GRANT statement.

For example:

SELECT * FROM TABLE (SYSCS_DIAG.CONTAINED_ROLES('READER')) AS T1
SELECT * FROM TABLE (SYSCS_DIAG.CONTAINED_ROLES(CURRENT_ROLE)) AS T2

All users can access this diagnostic table function, whether or not the database has
authentication and SQL authorization enabled. See "Configuring user authentication" and
"Configuring user authorization" in the Derby Security Guide for more information.

The returned table has the column shown in the following table.

Derby Reference Manual

207

Table 12. Column returned by the SYSCS_DIAG.CONTAINED_ROLES table
function

Column Name Type Length Nullable Contents

ROLEID VARCHAR 128 false The identifier of the
role.

SYSCS_DIAG.ERROR_LOG_READER diagnostic table function

The SYSCS_DIAG.ERROR_LOG_READER diagnostic table function contains all the
useful SQL statements that are in the derby.log file or a log file that you specify.

One use of this diagnostic table function is to determine the active transactions and the
SQL statements in those transactions at a given point in time. For example, if a deadlock
or lock timeout occurred, you can find the timestamp (timestampConstant) in the error
log.

For a database for which authentication and SQL authorization are both enabled, only
the database owner can access this diagnostic table function. See "Configuring user
authentication" and "Configuring user authorization" in the Derby Security Guide for more
information.

To access the SYSCS_DIAG.ERROR_LOG_READER diagnostic table function, you
must use the SQL table function syntax.

For example:

SELECT *
 FROM TABLE (SYSCS_DIAG.ERROR_LOG_READER())
 AS T1

where T1 is a user-specified table name that is any valid identifier.

You can specify a log file name as an optional argument to the
SYSCS_DIAG.ERROR_LOG_READER diagnostic table function. When you specify a log
file name, the file name must be an expression whose data type maps to a Java string.

For example:

SELECT *
 FROM TABLE (SYSCS_DIAG.ERROR_LOG_READER('myderbyerrors.log'))
 AS T1

Tip: By default, Derby log files contain only boot, shutdown, and error messages.
See the derby.stream.error.logSeverityLevel property and the
derby.language.logStatementText property for instructions on how to print
more information to Derby log files. You can then query that information by using the
SYSCS_DIAG.ERROR_LOG_READER diagnostic table function.

The returned table has the columns shown in the following table.

Table 13. Columns returned by the SYSCS_DIAG.ERROR_LOG_READER table
function

Column Name Type Length Nullable Contents

TS VARCHAR 26 false The timestamp of the
statement.

THREADID VARCHAR 40 false The thread name.

Derby Reference Manual

208

Column Name Type Length Nullable Contents

XID VARCHAR 15 false The transaction ID.

LCCID VARCHAR 15 false The connection ID.

DATABASE VARCHAR 128 false The database name.

DRDAID VARCHAR 50 true The DRDA ID for
network server session.

LOGTEXT LONG
VARCHAR

32,700 false The text of the
statement or commit or
rollback.

SYSCS_DIAG.ERROR_MESSAGES diagnostic table

The SYSCS_DIAG.ERROR_MESSAGES diagnostic table shows all of the SQLStates,
locale-sensitive error messages, and exception severities for a Derby database.

You can reference the SYSCS_DIAG.ERROR_MESSAGES diagnostic table directly in a
statement. For example:

SELECT * FROM SYSCS_DIAG.ERROR_MESSAGES

All users can access this diagnostic table, whether or not the database has authentication
and SQL authorization enabled. See "Configuring user authentication" and "Configuring
user authorization" in the Derby Security Guide for more information.

The table has the columns shown in the following table.

Table 14. Columns in the SYSCS_DIAG.ERROR_MESSAGES table

Column Name Type Length Nullable Contents

SQL_STATE VARCHAR 5 true The SQLState of the
SQLException (that
is, the value returned by SQLException.getSQLState()).

MESSAGE VARCHAR 32672 true The error message
(that is, the value
returned by SQLException.getMessage()).

SEVERITY INTEGER 10 true The Derby code for the
severity (that is, the
value returned by SQLException.getErrorCode()).

SYSCS_DIAG.LOCK_TABLE diagnostic table

The SYSCS_DIAG.LOCK_TABLE diagnostic table shows all of the locks that are
currently held in the Derby database.

You can reference the SYSCS_DIAG.LOCK_TABLE diagnostic table directly in a
statement. For example:

SELECT * FROM SYSCS_DIAG.LOCK_TABLE

All users can access this diagnostic table, whether or not the database has authentication
and SQL authorization enabled. See "Configuring user authentication" and "Configuring
user authorization" in the Derby Security Guide for more information.

Derby Reference Manual

209

When the SYSCS_DIAG.LOCK_TABLE diagnostic table is referenced in a statement, a
snapshot of the lock table is taken. A snapshot is used so that referencing the diagnostic
table does not alter the normal timing and flow of the application. It is possible that some
locks will be in a transition state when the snapshot is taken.

The table has the columns shown in the following table.

Table 15. Columns in the SYSCS_DIAG.LOCK_TABLE table

Column Name Type Length Nullable Contents

XID VARCHAR 15 false The transaction ID,
which can be joined
with the XID of the
transaction table. See SYSCS_DIAG.TRANSACTION_TABLE
diagnostic table.

TYPE VARCHAR 5 true The type of lock, which
can be either 'ROW',
'TABLE', or 'LATCH'.

MODE VARCHAR 4 false The mode of the lock.
For a lock of type
'TABLE', the valid
values are:

'S' for shared lock
'U' for update lock
'X' for exclusive lock
'IS' for intent shared
 lock
'IX' for intent exclusive
 lock

For a lock of type
'ROW', the valid values
are:

'S' for shared lock
'U' for update lock
'X' for exclusive lock

For a lock of type
'LATCH', the only valid
value is:

'X' for exclusive lock

TABLENAME VARCHAR 128 false The name of the base
table that the lock is for.

LOCKNAME VARCHAR 20 false The name of the lock.

STATE VARCHAR 5 true The state of the lock,
which is either 'GRANT'
or 'WAIT'.

TABLETYPE VARCHAR 9 false The type of the table.
Valid values are:

'T' for user table

Derby Reference Manual

210

Column Name Type Length Nullable Contents

'S' for system table

LOCKCOUNT VARCHAR 5 false The internal lock count.

INDEXNAME VARCHAR 128 true Value is normally null.
If it is non-null, a lock is
held on the index.

SYSCS_DIAG.SPACE_TABLE diagnostic table function

The SYSCS_DIAG.SPACE_TABLE diagnostic table function shows the space usage of a
particular table and its indexes.

You can use this diagnostic table function to determine if space might be saved by
compressing the table and indexes.

All users can access this diagnostic table function, whether or not the database has
authentication and SQL authorization enabled. See "Configuring user authentication" and
"Configuring user authorization" in the Derby Security Guide for more information.

To access the SYSCS_DIAG.SPACE_TABLE diagnostic table function, you must use the
SQL table function syntax. You can invoke the table function in the following ways:

• If invoked with no arguments, the table function retrieves space information for all
tables and indexes in the database.

• If invoked with one argument, a tableName, the table function retrieves information
for the specified table in the current schema.

• If invoked with two arguments, a schemaName followed by a tableName, the table
function retrieves information for the specified schema and table.

The returned table has the columns shown in the following table.

Table 16. Columns returned by the SYSCS_DIAG.SPACE_TABLE table function

Column Name Type Length Nullable Contents

CONGLOMERATENAME VARCHAR 128 true The name of the
conglomerate, which is
either the table name or
the index name. (Unlike
the SYSCONGLOMERATES
column of the same
name, table ID's do not
appear here).

ISINDEX SMALLINT 5 false Is not zero if the
conglomerate is an
index, 0 otherwise.

NUMALLOCATEDPAGES BIGINT 20 false The number of pages
actively linked into the
table. The total number
of pages in the file is
the sum of NUMALLOCATEDPAGES
+ NUMFREEPAGES.

NUMFREEPAGES BIGINT 20 false The number of free
pages that belong to
the table. When a new

Derby Reference Manual

211

Column Name Type Length Nullable Contents

page is to be linked into
the table the system
will move a page from
the NUMFREEPAGES
list to the NUMALLOCATEDPAGES
list. The total number
of pages in the file is
the sum of NUMALLOCATEDPAGES
+ NUMFREEPAGES.

NUMUNFILLEDPAGES BIGINT 20 false The number of unfilled
pages that belong
to the table. Unfilled
pages are allocated
pages that are not
completely full. Note
that the number of
unfilled pages is an
estimate and is not
exact. Running the
same query twice can
give different results on
this column.

PAGESIZE INTEGER 10 false The size of the page
in bytes for that
conglomerate.

ESTIMSPACESAVING BIGINT 20 false The estimated space
which could possibly be
saved by compressing
the conglomerate, in
bytes.

TABLEID CHAR 36 false The id of the table to
which the conglomerate
belongs.

For example, use the following query to return the space usage for all of the user tables
and indexes in the database:

SELECT sysschemas.schemaname, T2.*
 FROM
 SYS.SYSTABLES systabs, SYS.SYSSCHEMAS sysschemas,
 TABLE (SYSCS_DIAG.SPACE_TABLE()) AS T2
 WHERE systabs.tabletype = 'T'
 AND sysschemas.schemaid = systabs.schemaid
 AND systabs.tableid = T2.tableid;

where T2 is a user-specified table name that is any valid identifier.

Both the schemaName and the tableName arguments must be expressions whose data
types map to Java strings. If the schemaName and the tableName are non-delimited
identifiers, you must specify the names in uppercase.

For example:

SELECT *
 FROM TABLE (SYSCS_DIAG.SPACE_TABLE('MYSCHEMA', 'MYTABLE'))
 AS T2

Derby Reference Manual

212

SYSCS_DIAG.STATEMENT_CACHE diagnostic table

The SYSCS_DIAG.STATEMENT_CACHE diagnostic table shows the contents of the
SQL statement cache.

You can reference the SYSCS_DIAG.STATEMENT_CACHE diagnostic table directly in a
statement. For example:

SELECT * FROM SYSCS_DIAG.STATEMENT_CACHE

For a database for which authentication and SQL authorization are both enabled, only the
database owner can access this diagnostic table. See "Configuring user authentication"
and "Configuring user authorization" in the Derby Security Guide for more information.

The table has the columns shown in the following table.

Table 17. Columns in the SYSCS_DIAG.STATEMENT_CACHE table

Column Name Type Length Nullable Contents

ID CHAR 36 false The internal identifier of
the compiled statement.

SCHEMANAME VARCHAR 128 true The schema the
statement was
compiled in.

SQL_TEXT VARCHAR 32,672 false The text of the
statement.

UNICODE BOOLEAN 1 false Always true

VALID BOOLEAN 1 false true (the statement is
currently valid)

false (the statement is
not currently valid)

COMPILED_AT TIMESTAMP 29 true The time the statement
was compiled. Requires
statistics timing to be
enabled (see SYSCS_UTIL.SYSCS_SET_STATISTICS_TIMING
system procedure).

SYSCS_DIAG.STATEMENT_DURATION diagnostic table function

You can use the SYSCS_DIAG.STATEMENT_DURATION diagnostic table function to
analyze the execution duration of the useful SQL statements in the derby.log file or a
log file that you specify.

You can also use this diagnostic table function to get an indication of where the
bottlenecks are in the JDBC code for an application.

For a database for which authentication and SQL authorization are both enabled, only
the database owner can access this diagnostic table function. See "Configuring user
authentication" and "Configuring user authorization" in the Derby Security Guide for more
information.

To access the SYSCS_DIAG.STATEMENT_DURATION diagnostic table function, you
must use the SQL table function syntax.

Derby Reference Manual

213

For example:

SELECT *
 FROM TABLE (SYSCS_DIAG.STATEMENT_DURATION())
 AS T1

where T1 is a user-specified table name that is any valid identifier.

Restriction: For each transaction ID, a row is not returned for the last statement with
that transaction ID. Transaction IDs change within a connection after a commit or
rollback, if the transaction that just ended modified data.

You can specify a log file name as an optional argument to the
SYSCS_DIAG.STATEMENT_DURATION diagnostic table function. When you specify
a log file name, the file name must be an expression whose data type maps to a Java
string.

For example:

SELECT *
 FROM TABLE (SYSCS_DIAG.STATEMENT_DURATION('somederby.log'))
 AS T1

Tip: By default Derby log files contain only boot, shutdown, and error messages.
See the derby.stream.error.logSeverityLevel property and the
derby.language.logStatementText property for instructions on how to print
more information to Derby log files. You can then query that information by using the
SYSCS_DIAG.STATEMENT_DURATION diagnostic table function.

The returned table has the columns shown in the following table.

Table 18. Columns returned by the SYSCS_DIAG.STATEMENT_DURATION table
function

Column Name Type Length Nullable Contents

TS VARCHAR 26 false The timestamp of the
statement.

THREADID VARCHAR 80 false The thread name.

XID VARCHAR 15 false The transaction ID.

LOGTEXT LONG
VARCHAR

32,700 true The text of the
statement or commit or
rollback.

DURATION VARCHAR 10 false The duration, in
milliseconds, of the
statement.

SYSCS_DIAG.TRANSACTION_TABLE diagnostic table

The SYSCS_DIAG.TRANSACTION_TABLE diagnostic table shows all of the
transactions that are currently in the database.

You can reference the SYSCS_DIAG.TRANSACTION_TABLE diagnostic table directly in
a statement. For example:

SELECT * FROM SYSCS_DIAG.TRANSACTION_TABLE

When the SYSCS_DIAG.TRANSACTION_TABLE diagnostic table is referenced
in a statement, a snapshot of the transaction table is taken. A snapshot is used so

Derby Reference Manual

214

that referencing the diagnostic table does not alter the normal timing and flow of the
application. It is possible that some transactions will be in a transition state when the
snapshot is taken.

For a database for which authentication and SQL authorization are both enabled, only the
database owner can access this diagnostic table. See "Configuring user authentication"
and "Configuring user authorization" in the Derby Security Guide for more information.

The table has the columns shown in the following table.

Table 19. Columns in the SYSCS_DIAG.TRANSACTION_TABLE table

Column Name Type Length Nullable Contents

XID VARCHAR 15 false The transaction id,
which can be joined
with the lock table
virtual table's XID. See SYSCS_DIAG.LOCK_TABLE
diagnostic table.

GLOBAL_XID VARCHAR 140 true The global transaction
ID, set only if this
transaction is a
participant in a
distributed transaction.

USERNAME VARCHAR 128 true The user name (the
default value is APP).
May appear null if the
transaction is started by
Derby.

TYPE VARCHAR 30 false Either 'UserTransaction'
or an internal
transaction spawned by
Derby.

STATUS VARCHAR 8 false Either 'IDLE' or
'ACTIVE'. A transaction
is IDLE only when it
is first created or right
after it commits. Any
transaction that holds or
has held any resource
in the database is
ACTIVE. Accessing the
TransactionTable virtual
table without using
the class alias will not
activate the transaction.

FIRST_INSTANT VARCHAR 20 true If null, this is a
read-only transaction.
If not null, this is
the first log record
instant written by the
transaction.

SQL_TEXT VARCHAR 32,672 true If null, this transaction
is currently not

Derby Reference Manual

215

Column Name Type Length Nullable Contents

being executed in
the database. If not
null, this is the SQL
statement currently
being executed in the
database.

Data types
This section describes the data types used in Derby.

Built-in type overview

The SQL type system is used by the language compiler to determine the compile-time
type of an expression and by the language execution system to determine the runtime
type of an expression, which can be a subtype or implementation of the compile-time
type.

Each type has associated with it values of that type. In addition, values in the database or
resulting from expressions can be NULL, which means the value is missing or unknown.
Although there are some places where the keyword NULL can be explicitly used, it is not
in itself a value, because it needs to have a type associated with it.

The syntax presented in this section is the syntax you use when specifying a column's
data type in a CREATE TABLE statement.

Numeric types
Numeric type overview

Numeric types include the following types, which provide storage of varying sizes.

• Integer numerics
• SMALLINT (2 bytes)
• INTEGER (4 bytes)
• BIGINT (8 bytes)

• Approximate or floating-point numerics
• REAL (4 bytes)
• DOUBLE PRECISION (8 bytes)
• FLOAT (an alias for DOUBLE PRECISION or REAL)

• Exact numeric
• DECIMAL (storage based on precision)
• NUMERIC (an alias for DECIMAL)

Numeric type promotion in expressions

In expressions that use only integer types, Derby promotes the type of the result to at
least INTEGER. In expressions that mix integer with non-integer types, Derby promotes
the result of the expression to the highest type in the expression.

The following table shows the promotion of data types in expressions.

Table 20. Type promotion in expressions

Largest Type That Appears in Expression Resulting Type of Expression

DOUBLE PRECISION DOUBLE PRECISION

Derby Reference Manual

216

Largest Type That Appears in Expression Resulting Type of Expression

REAL DOUBLE PRECISION

DECIMAL DECIMAL

BIGINT BIGINT

INTEGER INTEGER

SMALLINT INTEGER

For example:

-- returns a double precision
VALUES 1 + 1.0e0
-- returns a decimal
VALUES 1 + 1.0
-- returns an integer
VALUES CAST (1 AS INT) + CAST (1 AS INT)

Storing values of one numeric data type in columns of another numeric data type

An attempt to put a floating-point type of a larger storage size into a location of a smaller
size fails only if the value cannot be stored in the smaller-size location.

For example:

create table mytable (r REAL, d DOUBLE PRECISION, i INTEGER, de DECIMAL);
0 rows inserted/updated/deleted
INSERT INTO mytable (r, d) values (3.4028236E38, 3.4028235E38);
ERROR 22003: The resulting value is outside the range for the
data type REAL.

You can store a floating-point type in an INTEGER column; the fractional part of the
number is truncated. For example:

INSERT INTO mytable (i) VALUES (1.09e0);
1 row inserted/updated/deleted
SELECT i FROM mytable;
I

1

Integer types can always be placed successfully in approximate numeric values, although
with the possible loss of some precision.

Integers can be stored in decimals if the DECIMAL precision is large enough for the
value. For example:

INSERT INTO mytable (de) VALUES (55555555556666666666);
ERROR 22003: The resulting value is outside the range for the
data type DECIMAL/NUMERIC(5,2).

An attempt to put an integer value of a larger storage size into a location of a smaller size
fails if the value cannot be stored in the smaller-size location. For example:

INSERT INTO mytable (i) VALUES 2147483648;
ERROR 22003: The resulting value is outside the range for the
data type INTEGER.

Note: When truncating trailing digits from a NUMERIC value, Derby rounds down.
Scale for decimal arithmetic

SQL statements can involve arithmetic expressions that use decimal data types of
different precisions (the total number of digits, both to the left and to the right of the
decimal point) and scales (the number of digits of the fractional component).

Derby Reference Manual

217

The precision and scale of the resulting decimal type depend on the precision and scale
of the operands.

Given an arithmetic expression that involves two decimal operands:
• lp stands for the precision of the left operand
• rp stands for the precision of the right operand
• ls stands for the scale of the left operand
• rs stands for the scale of the right operand

Use the following formulas to determine the scale of the resulting data type for the
following kinds of arithmetical expressions:

• multiplication

ls + rs
• division

31 - lp + ls - rs
• AVG()

max(max(ls, rs), 4)
• all others

max(ls, rs)

For example, the scale of the resulting data type of the following expression is 27:

11.0/1111.33
// 31 - 3 + 1 - 2 = 27

Use the following formulas to determine the precision of the resulting data type for the
following kinds of arithmetical expressions:

• multiplication

lp + rp
• addition

2 * (p - s) + s
• division

lp - ls + rp + max(ls + rp - rs + 1, 4)
• all others

max(lp - ls, rp - rs) + 1 + max(ls, rs)

Data type assignments and comparison, sorting, and ordering

The tables in this section show valid assignments and comparisons between Derby data
types.

Sorting and ordering of character data is controlled by the collation specified for a
database when it is created, as well as the locale of the database. For details, see
collation=collation attribute and territory=ll_CC attribute, as well as the sections "Creating
a database with locale-based collation", "Creating a case-insensitive database", and
"Character-based collation in Derby" in the Derby Developer's Guide.

The following table displays valid assignments between data types in Derby. A "Y"
indicates that the assignment is valid.

Table 21. Assignments allowed by Derby

Derby Reference Manual

218

Types

B
O
O
L
E
A
N

S
M
A
L
L
I
N
T

I
N
T
E
G
E
R

B
I
G
I
N
T

D
E
C
I
M
A
L

R
E
A
L

D
O
U
B
L
E

F
L
O
A
T

C
H
A
R

V
A
R
C
H
A
R

L
O
N
G

V
A
R
C
H
A
R

C
H
A
R

F
O
R

B
I
T

D
A
T
A

V
A
R
C
H
A
R

F
O
R

B
I
T

D
A
T
A

L
O
N
G

V
A
R
C
H
A
R

F
O
R

B
I
T

D
A
T
A

C
L
O
B

B
L
O
B

D
A
T
E

T
I
M
E

T
I
M
E
S
T
A
M
P

X
M
L

U
s
e
r
-
d
e
f
i
n
e
d

t
y
p
e

BOOLEAN Y -

SMALLINT - Y Y Y Y Y Y Y - - - - - - - - - - - - -

INTEGER - Y Y Y Y Y Y Y - - - - - - - - - - - - -

BIGINT - Y Y Y Y Y Y Y - - - - - - - - - - - - -

DECIMAL - Y Y Y Y Y Y Y - - - - - - - - - - - - -

REAL - Y Y Y Y Y Y Y - - - - - - - - - - - - -

DOUBLE - Y Y Y Y Y Y Y - - - - - - - - - - - - -

FLOAT - Y Y Y Y Y Y Y - - - - - - - - - - - - -

CHAR - - - - - - - - Y Y Y - - - Y - Y Y Y - -

VARCHAR - - - - - - - - Y Y Y - - - Y - Y Y Y - -

LONG
VARCHAR

- - - - - - - - Y Y Y - - - Y - - - - - -

CHAR FOR
BIT DATA

- - - - - - - - - - - Y Y Y - - - - - - -

VARCHAR
FOR BIT
DATA

- - - - - - - - - - - Y Y Y - - - - - - -

LONG
VARCHAR
FOR BIT
DATA

- - - - - - - - - - - Y Y Y - - - - - - -

CLOB - - - - - - - - Y Y Y - - - Y - - - - - -

Derby Reference Manual

219

Types

B
O
O
L
E
A
N

S
M
A
L
L
I
N
T

I
N
T
E
G
E
R

B
I
G
I
N
T

D
E
C
I
M
A
L

R
E
A
L

D
O
U
B
L
E

F
L
O
A
T

C
H
A
R

V
A
R
C
H
A
R

L
O
N
G

V
A
R
C
H
A
R

C
H
A
R

F
O
R

B
I
T

D
A
T
A

V
A
R
C
H
A
R

F
O
R

B
I
T

D
A
T
A

L
O
N
G

V
A
R
C
H
A
R

F
O
R

B
I
T

D
A
T
A

C
L
O
B

B
L
O
B

D
A
T
E

T
I
M
E

T
I
M
E
S
T
A
M
P

X
M
L

U
s
e
r
-
d
e
f
i
n
e
d

t
y
p
e

BLOB - - - - - - - - - - - - - - - Y - - - - -

DATE - - - - - - - - Y Y - - - - - - Y - - - -

TIME - - - - - - - - Y Y - - - - - - - Y - - -

TIMESTAMP - - - - - - - - Y Y - - - - - - - - Y - -

XML - - - - - - - - - - - - - - - - - - - Y -

User-defined
type

- Y

A value of a user-defined type can be assigned to a value of any supertype of that
user-defined type. However, no explicit casts of user-defined types are allowed.

The following table displays valid comparisons between data types in Derby. A "Y"
indicates that the comparison is allowed.

Table 22. Comparisons allowed by Derby

Derby Reference Manual

220

Types

B
O
O
L
E
A
N

S
M
A
L
L
I
N
T

I
N
T
E
G
E
R

B
I
G
I
N
T

D
E
C
I
M
A
L

R
E
A
L

D
O
U
B
L
E

F
L
O
A
T

C
H
A
R

V
A
R
C
H
A
R

L
O
N
G

V
A
R
C
H
A
R

C
H
A
R

F
O
R

B
I
T

D
A
T
A

V
A
R
C
H
A
R

F
O
R

B
I
T

D
A
T
A

L
O
N
G

V
A
R
C
H
A
R

F
O
R

B
I
T

D
A
T
A

C
L
O
B

B
L
O
B

D
A
T
E

T
I
M
E

T
I
M
E
S
T
A
M
P

X
M
L

U
s
e
r
-
d
e
f
i
n
e
d

t
y
p
e

BOOLEAN Y -

SMALLINT - Y Y Y Y Y Y Y - - - - - - - - - - - - -

INTEGER - Y Y Y Y Y Y Y - - - - - - - - - - - - -

BIGINT - Y Y Y Y Y Y Y - - - - - - - - - - - - -

DECIMAL - Y Y Y Y Y Y Y - - - - - - - - - - - - -

REAL - Y Y Y Y Y Y Y - - - - - - - - - - - - -

DOUBLE - Y Y Y Y Y Y Y - - - - - - - - - - - - -

FLOAT - Y Y Y Y Y Y Y - - - - - - - - - - - - -

CHAR - - - - - - - - Y Y - - - - - - Y Y Y - -

VARCHAR - - - - - - - - Y Y - - - - - - Y Y Y - -

LONG
VARCHAR

- -

CHAR FOR
BIT DATA

- - - - - - - - - - - Y Y - - - - - - - -

VARCHAR
FOR BIT
DATA

- - - - - - - - - - - Y Y - - - - - - - -

LONG
VARCHAR
FOR BIT
DATA

- -

CLOB -

Derby Reference Manual

221

Types

B
O
O
L
E
A
N

S
M
A
L
L
I
N
T

I
N
T
E
G
E
R

B
I
G
I
N
T

D
E
C
I
M
A
L

R
E
A
L

D
O
U
B
L
E

F
L
O
A
T

C
H
A
R

V
A
R
C
H
A
R

L
O
N
G

V
A
R
C
H
A
R

C
H
A
R

F
O
R

B
I
T

D
A
T
A

V
A
R
C
H
A
R

F
O
R

B
I
T

D
A
T
A

L
O
N
G

V
A
R
C
H
A
R

F
O
R

B
I
T

D
A
T
A

C
L
O
B

B
L
O
B

D
A
T
E

T
I
M
E

T
I
M
E
S
T
A
M
P

X
M
L

U
s
e
r
-
d
e
f
i
n
e
d

t
y
p
e

BLOB -

DATE - - - - - - - - Y Y - - - - - - Y - - - -

TIME - - - - - - - - Y Y - - - - - - - Y - - -

TIMESTAMP - - - - - - - - Y Y - - - - - - - - Y - -

XML -

User-defined
type

- -

BIGINT data type

BIGINT provides 8 bytes of storage for integer values.

Syntax

BIGINT

Corresponding compile-time Java type

java.lang.Long

JDBC metadata type (java.sql.Types)

BIGINT

Minimum value

-9223372036854775808 (java.lang.Long.MIN_VALUE)

Maximum value

9223372036854775807 (java.lang.Long.MAX_VALUE)

Derby Reference Manual

222

When mixed with other data types in expressions, the resulting data type follows the rules
shown in Numeric type promotion in expressions.

An attempt to put an integer value of a larger storage size into a location of a smaller size
fails if the value cannot be stored in the smaller-size location. Integer types can always
successfully be placed in approximate numeric values, although with the possible loss of
some precision. BIGINTs can be stored in DECIMALs if the DECIMAL precision is large
enough for the value.

Example

9223372036854775807

BLOB data type

A BLOB (binary large object) is a varying-length binary string that can be up to
2,147,483,647 characters long. Like other binary types, BLOB strings are not associated
with a code page. In addition, BLOB strings do not hold character data.

The length is given in bytes for BLOB unless one of the suffixes K, M, or G is given,
relating to the multiples of 1024, 1024*1024, and 1024*1024*1024 respectively.

Note: Length is specified in bytes for BLOB.

Syntax

{ BLOB | BINARY LARGE OBJECT } [(length [{K |M |G }])]

Default

A BLOB without a specified length is defaulted to two gigabytes (2,147,483,647).

Corresponding compile-time Java type

java.sql.Blob

JDBC metadata type (java.sql.Types)

BLOB

Use the getBlob method on the java.sql.ResultSet to retrieve a BLOB handle to the
underlying data.

Related information

See Mapping of java.sql.Blob and java.sql.Clob interfaces.

Examples

create table pictures(name varchar(32) not null primary key, pic
 blob(16M));

-- find all logotype pictures
select length(pic), name from pictures where name like '%logo%';

-- find all image doubles (blob comparisons)
select a.name as double_one, b.name as double_two
from pictures as a, pictures as b
where a.name < b.name
and a.pic = b.pic
order by 1,2;

Using an INSERT statement to put BLOB data into a table has some limitations if you
need to cast a long string constant to a BLOB. (See String limitations.) You may be better
off using a binary stream, as in the following code fragment.

Derby Reference Manual

223

 String url = "jdbc:derby:blobby;create=true";
 Connection conn = DriverManager.getConnection(url);

 Statement s = conn.createStatement();
 s.executeUpdate(
 "CREATE TABLE images (id INT, img BLOB)");

 // - first, create an input stream
 InputStream fin = new FileInputStream("image.jpg");

 PreparedStatement ps = conn.prepareStatement(
 "INSERT INTO images VALUES (?, ?)");
 ps.setInt(1, 1477);

 // - set the value of the input parameter to the input stream
 ps.setBinaryStream(2, fin);
 ps.execute();

 // --- reading the columns
 ResultSet rs = s.executeQuery(
 "SELECT img FROM images WHERE id = 1477");
 byte buff[] = new byte[1024];

 while (rs.next()) {
 Blob ablob = rs.getBlob(1);
 File newfile = new File("newimage.jpg");

 InputStream is = ablob.getBinaryStream();

 FileOutputStream fos =
 new FileOutputStream(newfile);

 for (int b = is.read(buff); b != -1; b = is.read(buff)) {
 fos.write(buff, 0, b);
 }

 is.close();
 fos.close();
 }
 s.close();
 ps.close();
 rs.close();
 conn.close();

BOOLEAN data type

BOOLEAN provides 1 byte of storage for logical values.

Syntax

BOOLEAN

Corresponding compile-time Java type

java.lang.Boolean

JDBC metadata type (java.sql.Types)

BOOLEAN

Legal values

The legal values are true, false, and null. BOOLEAN values can be cast to and from
character typed values. For comparisons and ordering operations, true sorts higher than
false.

Examples

values true

Derby Reference Manual

224

values false
values cast (null as boolean)

CHAR data type

CHAR provides for fixed-length storage of strings.

Syntax

CHAR[ACTER] [(length)]

length is an unsigned integer literal designating the length in bytes. The default length for
a CHAR is 1, and the maximum size of length is 254.

Corresponding compile-time Java type

java.lang.String

JDBC metadata type (java.sql.Types)

CHAR

Derby inserts spaces to pad a string value shorter than the expected length. Derby
truncates spaces from a string value longer than the expected length. Characters other
than spaces cause an exception to be raised. When comparison boolean operators are
applied to CHARs, the shorter string is padded with spaces to the length of the longer
string.

When CHARs and VARCHARs are mixed in expressions, the shorter value is padded
with spaces to the length of the longer value.

The type of a string constant is CHAR.

Examples

-- within a string constant use two single quotation marks
-- to represent a single quotation mark or apostrophe
VALUES 'hello this is Joe''s string'

-- create a table with a CHAR field
CREATE TABLE STATUS (
 STATUSCODE CHAR(2) NOT NULL
 CONSTRAINT PK_STATUS PRIMARY KEY,
 STATUSDESC VARCHAR(40) NOT NULL
);

CHAR FOR BIT DATA data type

A CHAR FOR BIT DATA type allows you to store byte strings of a specified length. It is
useful for unstructured data where character strings are not appropriate.

Syntax

{ CHAR | CHARACTER }[(length)] FOR BIT DATA

length is an unsigned integer literal designating the length in bytes.

The default length for a CHAR FOR BIT DATA type is 1., and the maximum size of length
is 254 bytes.

JDBC metadata type (java.sql.Types)

BINARY

CHAR FOR BIT DATA stores fixed-length byte strings. If a CHAR FOR BIT DATA value
is smaller than the target CHAR FOR BIT DATA, it is padded with a 0x20 byte value.

Derby Reference Manual

225

Comparisons of CHAR FOR BIT DATA and VARCHAR FOR BIT DATA values are
precise. For two bit strings to be equal, they must be exactly the same length. (This
differs from the way some other DBMSs handle BINARY values but works as specified in
SQL.)

An operation on a VARCHAR FOR BIT DATA and a CHAR FOR BIT DATA value (e.g., a
concatenation) yields a VARCHAR FOR BIT DATA value.

Example

CREATE TABLE t (b CHAR(2) FOR BIT DATA);
INSERT INTO t VALUES (X'DE');
SELECT *
FROM t;
-- yields the following output
B

de20

CLOB data type

A CLOB (character large object) value can be up to 2,147,483,647 characters long. A
CLOB is used to store Unicode character-based data, such as large documents in any
character set.

The length is given in number characters for both CLOB, unless one of the suffixes K, M,
or G is given, relating to the multiples of 1024, 1024*1024, 1024*1024*1024 respectively.

Length is specified in characters (Unicode) for CLOB.

Syntax

{CLOB |CHARACTER LARGE OBJECT} [(length [{K |M |G}])]

Default

A CLOB without a specified length is defaulted to two giga characters (2,147,483,647).

Corresponding compile-time Java type

java.sql.Clob

JDBC metadata type (java.sql.Types)

CLOB

Use the getClob method on the java.sql.ResultSet to retrieve a CLOB handle to the
underlying data.

Related information

See Mapping of java.sql.Blob and java.sql.Clob interfaces.

Example

 String url = "jdbc:derby:clobberyclob;create=true";
 Connection conn = DriverManager.getConnection(url);

 Statement s = conn.createStatement();
 s.executeUpdate(
 "CREATE TABLE documents (id INT, text CLOB)");

 // - first, create an input stream
 InputStream fis = new FileInputStream("asciifile.txt");

 PreparedStatement ps = conn.prepareStatement(
 "INSERT INTO documents VALUES (?, ?)");

Derby Reference Manual

226

 ps.setInt(1, 1477);

 // - set the value of the input parameter to the input stream
 ps.setAsciiStream(2, fis);
 ps.execute();

 // --- reading the columns back
 ResultSet rs = s.executeQuery(
 "SELECT text FROM documents WHERE id = 1477");

 while (rs.next()) {
 Clob aclob = rs.getClob(1);
 InputStream ip = aclob.getAsciiStream();

 for (int c = ip.read(); c != -1; c = ip.read()) {
 System.out.print((char)c);
 }

 ip.close();
 }
 s.close();
 ps.close();
 rs.close();
 conn.close();

DATE data type

DATE provides for storage of a year-month-day in the range supported by java.sql.Date.

Syntax

DATE

Corresponding compile-time Java type

java.sql.Date

JDBC metadata type (java.sql.Types)

DATE

Dates, times, and timestamps must not be mixed with one another in expressions.

Any value that is recognized by the java.sql.Date method is permitted in a column of the
corresponding SQL date/time data type. Derby supports the following formats for DATE:

yyyy-mm-dd
mm/dd/yyyy
dd.mm.yyyy

The first of the three formats above is the java.sql.Date format.

The year must always be expressed with four digits, while months and days may have
either one or two digits.

Derby also accepts strings in the locale specific datetime format, using the locale of the
database server. If there is an ambiguity, the built-in formats above take precedence.

Examples

VALUES DATE('1994-02-23')

VALUES '1993-09-01'

DECIMAL data type

Derby Reference Manual

227

DECIMAL provides an exact numeric in which the precision and scale can be arbitrarily
sized.

You can specify the precision (the total number of digits, both to the left and the right of
the decimal point) and the scale (the number of digits of the fractional component). The
amount of storage required is based on the precision.

Syntax

{ DECIMAL | DEC } [(precision [, scale])]

The precision must be between 1 and 31. The scale must be less than or equal to the
precision.

If the scale is not specified, the default scale is 0. If the precision is not specified, the
default precision is 5.

An attempt to put a numeric value into a DECIMAL is allowed as long as any
non-fractional precision is not lost. When truncating trailing digits from a DECIMAL value,
Derby rounds down.

For example:

-- this cast loses only fractional precision
values cast (1.798765 AS decimal(5,2));
1

1.79
-- this cast does not fit
values cast (1798765 AS decimal(5,2));
1

ERROR 22003: The resulting value is outside the range
for the data type DECIMAL/NUMERIC(5,2).

When mixed with other data types in expressions, the resulting data type follows the rules
shown in Numeric type promotion in expressions.

See also Storing values of one numeric data type in columns of another numeric data
type.

When two decimal values are mixed in an expression, the scale and precision of the
resulting value follow the rules shown in Scale for decimal arithmetic.

Integer constants too big for BIGINT are made DECIMAL constants.

Corresponding compile-time Java type

java.math.BigDecimal

JDBC metadata type (java.sql.Types)

DECIMAL

Examples

VALUES 123.456

VALUES 0.001

DOUBLE data type

The DOUBLE data type is a synonym for the DOUBLE PRECISION data type.

See DOUBLE PRECISION data type.

Syntax

Derby Reference Manual

228

DOUBLE

DOUBLE PRECISION data type

The DOUBLE PRECISION data type provides 8-byte storage for numbers using IEEE
floating-point notation.

Syntax

DOUBLE PRECISION

or, alternately

DOUBLE

DOUBLE can be used synonymously with DOUBLE PRECISION.

Limitations

DOUBLE value ranges:

• Largest negative DOUBLE value: -1.7976931348623157E+308
• Largest positive DOUBLE value: 1.7976931348623157E+308
• Smallest negative normalized DOUBLE value: -2.2250738585072014E-308
• Smallest positive normalized DOUBLE value: 2.2250738585072014E-308
• Smallest negative denormalized DOUBLE value: -4.9E-324
• Smallest positive denormalized DOUBLE value: 4.9E-324

These limits are the same as the java.lang.Double Java type limits.

An exception is thrown when any double value is calculated or entered that is outside of
these value ranges. Arithmetic operations do not round their resulting values to zero. If
the values are too small, you will receive an exception.

Derby normalizes -0.0 to positive 0.0.

Derby throws an exception if an operation calculates or tries to store a value of NaN,
positive infinity, or negative infinity, as defined by the IEEE 754 Standard for Binary
Floating-Point Arithmetic and as represented with named constants in the Java
programming language (for example, Double.NaN).

Numeric floating-point constants are limited to a length of 30 characters.

-- this example will fail because the constant is too long:
values 01234567890123456789012345678901e0;

Corresponding compile-time Java type

java.lang.Double

JDBC metadata type (java.sql.Types)

DOUBLE

When mixed with other data types in expressions, the resulting data type follows the rules
shown in Numeric type promotion in expressions.

See also Storing values of one numeric data type in columns of another numeric data
type.

Examples

3421E+09
425.43E9
9E-10
4356267544.32333E+30

Derby Reference Manual

229

FLOAT data type

The FLOAT data type is an alias for a REAL or DOUBLE PRECISION data type,
depending on the precision you specify.

See REAL data type and DOUBLE PRECISION data type.

Syntax

FLOAT [(precision)]

The default precision for FLOAT is 53 and is equivalent to DOUBLE PRECISION. A
precision of 23 or less makes FLOAT equivalent to REAL. A precision of 24 or greater
makes FLOAT equivalent to DOUBLE PRECISION. If you specify a precision of 0, you
get an error. If you specify a negative precision, you get a syntax error.

JDBC metadata type (java.sql.Types)

REAL or DOUBLE

Limitations

If you are using a precision of 24 or greater, the limits of FLOAT are similar to the limits of
DOUBLE.

If you are using a precision of 23 or less, the limits of FLOAT are similar to the limits of
REAL.

INTEGER data type

INTEGER provides 4 bytes of storage for integer values.

Syntax

{ INTEGER | INT }

Corresponding compile-time Java type

java.lang.Integer

JDBC metadata type (java.sql.Types)

INTEGER

Minimum value

-2147483648 (java.lang.Integer.MIN_VALUE)

Maximum value

2147483647 (java.lang.Integer.MAX_VALUE)

When mixed with other data types in expressions, the resulting data type follows the rules
shown in Numeric type promotion in expressions.

See also Storing values of one numeric data type in columns of another numeric data
type.

Examples

3453
425

LONG VARCHAR data type

Derby Reference Manual

230

The LONG VARCHAR type allows storage of character strings with a maximum length of
32,700 characters.

It is identical to VARCHAR, except that you cannot specify a maximum length when
creating columns of this type.

Syntax

LONG VARCHAR

Corresponding compile-time Java type

java.lang.String

JDBC metadata type (java.sql.Types)

LONGVARCHAR

When you are converting from Java values to SQL values, no Java type corresponds to
LONG VARCHAR.

LONG VARCHAR FOR BIT DATA data type

The LONG VARCHAR FOR BIT DATA type allows storage of bit strings up to 32,700
bytes.

It is identical to VARCHAR FOR BIT DATA, except that you cannot specify a maximum
length when creating columns of this type.

Syntax

LONG VARCHAR FOR BIT DATA

JDBC metadata type (java.sql.Types)

LONGVARBINARY

NUMERIC data type

NUMERIC is a synonym for DECIMAL and behaves the same way.

See DECIMAL data type.

Syntax

NUMERIC [(precision [, scale])]

Corresponding compile-time Java type

java.math.BigDecimal

JDBC metadata type (java.sql.Types)

NUMERIC

Examples

123.456
.001

REAL data type

The REAL data type provides 4 bytes of storage for numbers using IEEE floating-point
notation.

Derby Reference Manual

231

Syntax

REAL

Corresponding compile-time Java type

java.lang.Float

JDBC metadata type (java.sql.Types)

REAL

Limitations

REAL value ranges:

• Largest negative REAL value: -3.4028235E+38
• Largest positive REAL value: 3.4028235E+38
• Smallest negative normalized REAL value: -1.17549435E-38
• Smallest positive normalized REAL value: 1.17549435E-38
• Smallest negative denormalized REAL value: -1.4E-45
• Smallest positive denormalized REAL value: 1.4E-45

These limits are the same as the java.lang.Float Java type limits.

An exception is thrown when any double value is calculated or entered that is outside of
these value ranges. Arithmetic operations do not round their resulting values to zero. If
the values are too small, you will receive an exception. The arithmetic operations take
place with double arithmetic in order to detect underflows.

Derby normalizes -0.0 to positive 0.0.

Derby throws an exception if an operation calculates or tries to store a value of NaN,
positive infinity, or negative infinity, as defined by the IEEE 754 Standard for Binary
Floating-Point Arithmetic and as represented with named constants in the Java
programming language (for example, Double.NaN).

Numeric floating-point constants are limited to a length of 30 characters.

-- this example will fail because the constant is too long:
values 01234567890123456789012345678901e0;

When mixed with other data types in expressions, the resulting data type follows the rules
shown in Numeric type promotion in expressions.

See also Storing values of one numeric data type in columns of another numeric data
type.

Constants always map to DOUBLE PRECISION; use a CAST to convert a constant to a
REAL.

SMALLINT data type

SMALLINT provides 2 bytes of storage.

Syntax

SMALLINT

Corresponding compile-time Java type

java.lang.Short

JDBC metadata type (java.sql.Types)

SMALLINT

Derby Reference Manual

232

Minimum value

-32768 (java.lang.Short.MIN_VALUE)

Maximum value

32767 (java.lang.Short.MAX_VALUE)

When mixed with other data types in expressions, the resulting data type follows the rules
shown in Numeric type promotion in expressions.

See also Storing values of one numeric data type in columns of another numeric data
type.

Constants in the appropriate format always map to INTEGER or BIGINT, depending on
their length.

TIME data type

TIME provides for storage of a time-of-day value.

Syntax

TIME

Corresponding compile-time Java type

java.sql.Time

JDBC metadata type (java.sql.Types)

TIME

Dates, times, and timestamps cannot be mixed with one another in expressions except
with a CAST.

Any value that is recognized by the java.sql.Time method is permitted in a column of the
corresponding SQL date/time data type. Derby supports the following formats for TIME:

hh:mm[:ss]
hh.mm[.ss]
hh[:mm] {AM | PM}

The first of the three formats above is the java.sql.Time format.

Hours may have one or two digits. Minutes and seconds, if present, must have two digits.

Derby also accepts strings in the locale specific datetime format, using the locale of the
database server. If there is an ambiguity, the built-in formats above take precedence.

Examples

VALUES TIME('15:09:02')
VALUES '15:09:02'

TIMESTAMP data type

TIMESTAMP provides for storage of a combined DATE and TIME value. It permits a
fractional-seconds value of up to nine digits.

See DATE data type and TIME data type.

Syntax

TIMESTAMP

Corresponding compile-time Java type

Derby Reference Manual

233

java.sql.Timestamp

JDBC metadata type (java.sql.Types)

TIMESTAMP

Dates, times, and timestamps cannot be mixed with one another in expressions.

Derby supports the following formats for TIMESTAMP:

yyyy-mm-dd hh:mm:ss[.nnnnnnnnn]
yyyy-mm-dd-hh.mm.ss[.nnnnnnnnn]

The first of the two formats above is the java.sql.Timestamp format.

The year must always have four digits. Months, days, and hours may have one or two
digits. Minutes and seconds must have two digits. Nanoseconds, if present, may have
between one and nine digits. The year, month, and day components must be positive
integers.

Derby also accepts strings in the locale specific datetime format, using the locale of the
database server. If there is an ambiguity, the built-in formats above take precedence.

Examples

VALUES '1960-01-01 23:03:20'
VALUES TIMESTAMP('1962-09-23 03:23:34.234')
VALUES TIMESTAMP('1960-01-01 23:03:20')
VALUES TIMESTAMP('1962-09-23-03:23:34.987654321')

User-defined types

Derby allows you to create user-defined types. A user-defined type is a serializable
Java class whose instances are stored in columns. The class must implement the
java.io.Serializable interface.

For information on creating and removing types, see CREATE TYPE statement and
DROP TYPE statement. See GRANT statement and REVOKE statement for information
on usage privileges for types.

For information on writing the Java classes that implement user-defined types, see
"Programming user-defined types" in the Derby Developer's Guide.

VARCHAR data type

VARCHAR provides for variable-length storage of strings.

Syntax

{ VARCHAR | CHAR VARYING | CHARACTER VARYING }(length)

length is an unsigned integer constant. The maximum length for a VARCHAR string is
32,672 characters.

Corresponding compile-time Java type

java.lang.String

JDBC metadata type (java.sql.Types)

VARCHAR

Derby does not pad a VARCHAR value whose length is less than specified. Derby
truncates spaces from a string value when a length greater than the VARCHAR expected
is provided. Characters other than spaces are not truncated, and instead cause an

Derby Reference Manual

234

exception to be raised. When comparison boolean operators are applied to VARCHARs,
the lengths of the operands are not altered, and spaces at the end of the values are
ignored.

When CHARs and VARCHARs are mixed in expressions, the shorter value is padded
with spaces to the length of the longer value.

The type of a string constant is CHAR, not VARCHAR.

If you use a VARCHAR as a key column of an index, limit the maximum size of the
VARCHAR to no more than half the page size to prevent inserts from failing. See "Page
size and key size" in CREATE INDEX statement for details.

VARCHAR FOR BIT DATA data type

The VARCHAR FOR BIT DATA type allows you to store binary strings less than or equal
to a specified length. It is useful for unstructured data where character strings are not
appropriate (for example, images).

Syntax

{ VARCHAR | CHAR VARYING | CHARACTER VARYING } (length) FOR BIT DATA

length is an unsigned integer literal designating the length in bytes.

Unlike the case for the CHAR FOR BIT DATA type, there is no default length for a
VARCHAR FOR BIT DATA type. The maximum size of the length value is 32,672 bytes.

JDBC metadata type (java.sql.Types)

VARBINARY

VARCHAR FOR BIT DATA stores variable-length byte strings. Unlike CHAR FOR BIT
DATA values, VARCHAR FOR BIT DATA values are not padded out to the target length.

An operation on a VARCHAR FOR BIT DATA and a CHAR FOR BIT DATA value (e.g., a
concatenation) yields a VARCHAR FOR BIT DATA value.

The type of a byte literal is always a VARCHAR FOR BIT DATA, not a CHAR FOR BIT
DATA.

XML data type

The XML data type is used for Extensible Markup Language (XML) documents.

The XML data type is used:
• To store XML documents that conform to the SQL/XML definition of a well-formed

XML(DOCUMENT(ANY)) value.
• Transiently, for XML(SEQUENCE) values that might not be well-formed

XML(DOCUMENT(ANY)) values.

Because none of the JDBC-side support for SQL/XML is implemented in Derby, it is not
possible to bind directly into an XML value or to retrieve an XML value directly from a
result set using JDBC. Instead, you must bind and retrieve the XML data as Java strings
or character streams by explicitly specifying the appropriate XML operators, XMLPARSE
and XMLSERIALIZE, as part of your SQL queries.

Syntax

XML

Corresponding compile-time Java type

None.

Derby Reference Manual

235

The Java type for XML values is java.sql.SQLXML. However, the java.sql.SQLXML type
is not supported by Derby.

JDBC metadata type (java.sql.Types)

None.

The metadata type for XML values is SQLXML. However, the SQLXML type is not
supported by Derby.

To retrieve XML values from a Derby database using JDBC, use the XMLSERIALIZE
operator in the SQL query. For example:

SELECT XMLSERIALIZE (xcol as CLOB) FROM myXmlTable

Then retrieve the XML value by using the getXXX method that corresponds to the target
serialization type, in this example CLOB data types.

To store an XML value into a Derby database using JDBC, use the XMLPARSE operator
in the SQL statement. For example:

INSERT INTO myXmlTable(xcol) VALUES XMLPARSE(
 DOCUMENT CAST (? AS CLOB) PRESERVE WHITESPACE)

Then use any of the setXXX methods that are compatible with String
types. In this example, use the PreparedStatement.setString or
PreparedStatement.setCharacterStream method calls to bind the operator.

See "XML data types and operators" in the Derby Developer's Guide for more
information.

Derby Reference Manual

236

Argument matching

When you declare a function or procedure using CREATE FUNCTION/PROCEDURE,
Derby does not verify whether a matching Java method exists. Instead, Derby looks
for a matching method only when you invoke the function or procedure in a later SQL
statement.

At that time, Derby searches for a public, static method having the class and
method name declared in the EXTERNAL NAME clause of the earlier CREATE
FUNCTION/PROCEDURE statement. Furthermore, the Java types of the method's
arguments and return value must match the SQL types declared in the CREATE
FUNCTION/PROCEDURE statement. The following may happen:

• Success - If exactly one Java method matches, then Derby invokes it.
• Ambiguity - Derby raises an error if more than one method matches.
• Failure - Derby also raises an error if no method matches.

A procedure or function that takes varargs must resolve to a varargs Java method.

In mapping SQL data types to Java data types, Derby considers the following kinds of
matches:

• Primitive match - Derby looks for a primitive Java type corresponding to the SQL
type. For instance, SQL INTEGER matches Java int.

• Wrapper match - Derby looks for a wrapper class in the java.lang or java.sql
packages corresponding to the SQL type. For instance, SQL INTEGER matches
java.lang.Integer. For a user-defined type (UDT), Derby looks for the UDT's external
name class.

• Array match - For OUT and INOUT procedure arguments, Derby looks for an array
of the corresponding primitive or wrapper type. For instance, an OUT procedure
argument of type SQL INTEGER matches int[] and Integer[].

• ResultSet match - If a procedure is declared to return n RESULT SETS, Derby
looks for a method whose last n arguments are of type java.sql.ResultSet[].

Derby resolves function and procedure invocations as follows:

• Function - Derby looks for a method whose argument and return types are primitive
matches or wrapper matches for the function's SQL arguments and return value.

• Procedure - Derby looks for a method which returns void and whose argument
types match as follows:

• IN - Method arguments are primitive matches or wrapper matches for the
procedure's IN arguments.

• OUT and INOUT - Method arguments are array matches for the procedure's
OUT and INOUT arguments.

In addition, if the procedure returns n RESULT SETS, then the last n arguments of
the Java method must be of type java.sql.ResultSet[].

Derby provides a tool, SignatureChecker, which can identify any SQL functions or
procedures in a database that do not follow these argument matching rules. See the
Derby Tools and Utilities Guide for details.

Example of argument matching

The following function...

CREATE FUNCTION TO_DEGREES
(RADIANS DOUBLE)
RETURNS DOUBLE

Derby Reference Manual

237

PARAMETER STYLE JAVA
NO SQL LANGUAGE JAVA
EXTERNAL NAME 'example.MathUtils.toDegrees'

...would match all of the following methods:

public static double toDegrees(double arg) {...}
public static Double toDegrees(double arg) {...}
public static double toDegrees(Double arg) {...}
public static Double toDegrees(Double arg) {...}

Note that Derby would raise an exception if it found more than one matching method.

Mapping SQL data types to Java data types

The following table shows how Derby maps specific SQL data types to Java data types.

Table 23. SQL and Java type correspondence

SQL Type Primitive Match Wrapper Match

BOOLEAN boolean java.lang.Boolean

SMALLINT short java.lang.Integer

INTEGER int java.lang.Integer

BIGINT long java.lang.Long

DECIMAL None java.math.BigDecimal

NUMERIC None java.math.BigDecimal

REAL float java.lang.Float

DOUBLE double java.lang.Double

FLOAT double java.lang.Double

CHAR None java.lang.String

VARCHAR None java.lang.String

LONG VARCHAR None java.lang.String

CHAR FOR BIT DATA byte[] None

VARCHAR FOR BIT DATA byte[] None

LONG VARCHAR FOR BIT
DATA

byte[] None

CLOB None java.sql.Clob

BLOB None java.sql.Blob

DATE None java.sql.Date

TIME None java.sql.Time

TIMESTAMP None java.sql.Timestamp

XML None None

User-defined type None Underlying Java class

Derby Reference Manual

238

SQL reserved words

This section lists all the Derby reserved words, including those in the SQL standard.

Derby will return an error if you use any of these keywords as an identifier name unless
you surround the identifier name with quotes ("). See Rules for SQL identifiers.

ADD
ALL
ALLOCATE
ALTER
AND
ANY
ARE
AS
ASC
ASSERTION
AT
AUTHORIZATION
AVG
BEGIN
BETWEEN
BIGINT
BIT
BOOLEAN
BOTH
BY
CALL
CASCADE
CASCADED
CASE
CAST
CHAR
CHARACTER
CHARACTER_LENGTH
CHECK
CLOSE
COALESCE
COLLATE
COLLATION
COLUMN
COMMIT
CONNECT
CONNECTION
CONSTRAINT
CONSTRAINTS
CONTINUE
CONVERT
CORRESPONDING
CREATE
CROSS
CURRENT
CURRENT_DATE
CURRENT_ROLE
CURRENT_TIME

Derby Reference Manual

239

CURRENT_TIMESTAMP
CURRENT_USER
CURSOR
DEALLOCATE
DEC
DECIMAL
DECLARE
DEFAULT
DEFERRABLE
DEFERRED
DELETE
DESC
DESCRIBE
DIAGNOSTICS
DISCONNECT
DISTINCT
DOUBLE
DROP
ELSE
END
END-EXEC
ESCAPE
EXCEPT
EXCEPTION
EXEC
EXECUTE
EXISTS
EXPLAIN
EXTERNAL
FALSE
FETCH
FIRST
FLOAT
FOR
FOREIGN
FOUND
FROM
FULL
FUNCTION
GET
GETCURRENTCONNECTION
GLOBAL
GO
GOTO
GRANT
GROUP
HAVING
HOUR
IDENTITY
IMMEDIATE
IN
INDICATOR
INITIALLY
INNER
INOUT
INPUT

Derby Reference Manual

240

INSENSITIVE
INSERT
INT
INTEGER
INTERSECT
INTO
IS
ISOLATION
JOIN
KEY
LAST
LEADING
LEFT
LIKE
LOWER
LTRIM
MATCH
MAX
MIN
MINUTE
NATIONAL
NATURAL
NCHAR
NVARCHAR
NEXT
NO
NONE
NOT
NULL
NULLIF
NUMERIC
OF
ON
ONLY
OPEN
OPTION
OR
ORDER
OUTER
OUTPUT
OVERLAPS
PAD
PARTIAL
PREPARE
PRESERVE
PRIMARY
PRIOR
PRIVILEGES
PROCEDURE
PUBLIC
READ
REAL
REFERENCES
RELATIVE
RESTRICT
REVOKE

Derby Reference Manual

241

RIGHT
ROLLBACK
ROWS
RTRIM
SCHEMA
SCROLL
SECOND
SELECT
SESSION_USER
SET
SMALLINT
SOME
SPACE
SQL
SQLCODE
SQLERROR
SQLSTATE
SUBSTR
SUBSTRING
SUM
SYSTEM_USER
TABLE
TEMPORARY
TIMEZONE_HOUR
TIMEZONE_MINUTE
TO
TRANSACTION
TRANSLATE
TRANSLATION
TRIM
TRUE
UNION
UNIQUE
UNKNOWN
UPDATE
UPPER
USER
USING
VALUES
VARCHAR
VARYING
VIEW
WHENEVER
WHERE
WINDOW
WITH
WORK
WRITE
XML
XMLEXISTS
XMLPARSE
XMLQUERY
XMLSERIALIZE
YEAR

Derby Reference Manual

242

Derby support for SQL:2011 features

The SQL:2011 standard puts features into two categories, mandatory and optional.

In the tables that follow, the support status of each feature is indicated as follows:

• Yes: The feature is supported.
• Yes*: The feature is supported (for example, through JDBC) but not according to

the SQL standard. See Note for details.
• Partial: The feature is partially supported.
• No: The feature is unsupported.

Derby supports many features of the SQL:2011 standard. Most are in Part 2
(Foundation), but some are in other parts. The supported optional features with the prefix
J are in Part 13 (JRT). The supported optional features with the prefix X are in Part 14
(SQL/XML).

SQL:2011 features not supported by Derby lists the features in Part 2 that Derby does
not support.

Support for mandatory features

The following tables describe support for SQL:2011 mandatory features.

Table 24. E011: Numeric data types

Feature ID Feature Name
SQL:2011
Mandatory

E011-01 INTEGER and SMALLINT data types
(including all spellings)

Yes

E011-02 REAL, DOUBLE PRECISION, and FLOAT
data types

Yes

E011-03 DECIMAL and NUMERIC data types Yes

E011-04 Arithmetic operators Yes

E011-05 Numeric comparison Yes

E011-06 Implicit casting among the numeric data
types

Yes

Table 25. E021: Character data types

Feature ID Feature Name
SQL:2011
Mandatory Note

E021-01 CHARACTER data type
(including all its spellings)

Yes None

E021-02 CHARACTER VARYING
data type (including all its
spellings)

Yes None

E021-03 Character literals Yes None

E021-04 CHARACTER_LENGTH
function

Yes* Called LENGTH. {fn
LENGTH(...)} is according
to JDBC specification.

Derby Reference Manual

243

Feature ID Feature Name
SQL:2011
Mandatory Note

E021-05 OCTET_LENGTH function No None

E021-06 SUBSTRING function Yes* Called SUBSTR. {fn
SUBSTRING(....)}
is according to JDBC
specification.

E021-07 Character concatenation Yes None

E021-08 UPPER and LOWER
functions

Yes None

E021-09 TRIM function Yes None

E021-10 Implicit casting among the
character data types

Yes None

E021-11 POSITION function Yes* Called LOCATE. {fn
LOCATE(...)} is according
to JDBC specification.

E021-12 Character comparison Yes None

Table 26. E031: Identifiers

Feature ID Feature Name
SQL:2011
Mandatory

E031-01 Delimited identifiers Yes

E031-02 Lower case identifiers Yes

E031-03 Trailing underscore Yes

Table 27. E051: Basic query specification

Feature ID Feature Name
SQL:2011
Mandatory

E051-01 SELECT DISTINCT Yes

E051-02 GROUP BY clause Yes

E051-04 GROUP BY can contain columns not in
select-list

Yes

E051-05 Select list items can be renamed Yes

E051-06 HAVING clause Yes

E051-07 Qualified * in select list Yes

E051-08 Correlation names in the FROM clause Yes

E051-09 Rename columns in the FROM clause Yes

Table 28. E061: Basic predicates and search conditions

Derby Reference Manual

244

Feature ID Feature Name
SQL:2011
Mandatory

E061-01 Comparison predicate Yes

E061-02 BETWEEN predicate Yes

E061-03 IN predicate with list of values Yes

E061-04 LIKE predicate Yes

E061-05 LIKE predicate: ESCAPE clause Yes

E061-06 NULL predicate Yes

E061-07 Quantified comparison predicate Yes

E061-08 EXISTS predicate Yes

E061-09 Subqueries in comparison predicate Yes

E061-11 Subqueries in IN predicate Yes

E061-12 Subqueries in quantified comparison
predicate

Yes

E061-13 Correlated subqueries Yes

E061-14 Search condition Yes

Table 29. E071: Basic query expressions

Feature ID Feature Name
SQL:2011
Mandatory

E071-01 UNION DISTINCT table operator Yes

E071-02 UNION ALL table operator Yes

E071-03 EXCEPT DISTINCT table operator Yes

E071-05 Columns combined via table operators
need not have exactly the same data type

Yes

E071-06 Table operators in subqueries Yes

Table 30. E081: Basic privileges

Feature ID Feature Name
SQL:2011
Mandatory

E081-01 SELECT privilege at the table level Yes

E081-02 DELETE privilege Yes

E081-03 INSERT privilege at the table level Yes

E081-04 UPDATE privilege at the table level Yes

E081-05 UPDATE privilege at the column level Yes

E081-06 REFERENCES privilege at the table level Yes

E081-07 REFERENCES privilege at the column
level

Yes

E081-08 WITH GRANT OPTION No

Derby Reference Manual

245

Feature ID Feature Name
SQL:2011
Mandatory

E081-09 USAGE privilege No

E081-10 EXECUTE privilege Yes

Table 31. E091: Set functions

Feature ID Feature Name
SQL:2011
Mandatory

E091-01 AVG Yes

E091-02 COUNT Yes

E091-03 MAX Yes

E091-04 MIN Yes

E091-05 SUM Yes

E091-06 ALL quantifier Yes

E091-07 DISTINCT qualifier Yes

Table 32. E101: Basic data manipulation

Feature ID Feature Name
SQL:2011
Mandatory Note

E101-01 INSERT statement Yes None

E101-03 Searched UPDATE
statement

Partial correlation name not
supported

E101-04 Searched DELETE
statement

Partial correlation name not
supported

Table 33. E121: Basic cursor support (through JDBC)

Feature ID Feature Name
SQL:2011
Mandatory Note

E121-01 Declare cursor No None

E121-02 ORDER BY columns need
not be in select list

Yes None

E121-03 Value expressions in
ORDER BY clause

Yes None

E121-06 Positioned UPDATE
statement

Partial correlation name not
supported

E121-07 Positioned DELETE
statement

Partial correlation name not
supported

E121-08 CLOSE statement No None

E121-10 FETCH statement No None

E121-17 WITH HOLD cursors No None

Derby Reference Manual

246

Table 34. E141: Basic integrity constraints

Feature ID Feature Name
SQL:2011
Mandatory

E141-01 NOT NULL constraints Yes

E141-02 UNIQUE constraints of NOT NULL
columns

Yes

E141-03 PRIMARY KEY constraints Yes

E141-04 Basic FOREIGN KEY constraint with the
NO ACTION default

Yes

E141-06 CHECK constraints Yes

E141-07 Column defaults Yes

E141-08 NOT NULL inferred on PRIMARY KEY Yes

E141-10 Names in a foreign key can be specified in
any order

Yes

Table 35. E151: Transaction support

Feature ID Feature Name
SQL:2011
Mandatory Note

E151-01 COMMIT statement Yes* Through JDBC
Connection.commit, ij
supports COMMIT statement

E151-02 ROLLBACK statement Yes* Through JDBC
Connection.rollback,
ij supports ROLLBACK
statement

Table 36. E152: Basic SET TRANSACTION statement

Feature ID Feature Name
SQL:2011
Mandatory Note

E152-01 SET TRANSACTION
statement: ISOLATION
LEVEL SERIALIZABLE
clause

Yes* SET [CURRENT]
ISOLATION SERIALIZABLE. Connection.setTransactionIsolation(
Connection.TRANSACTION_SERIALIZABLE)
is according to JDBC
specification.

E152-02 SET TRANSACTION
statement: READ ONLY and
READ WRITE clauses

Yes* No SQL syntax. Connection.setReadWrite()
is according to JDBC
specification.

Table 37. F031: Basic schema manipulation

Feature ID Feature Name
SQL:2011
Mandatory

F031-01 CREATE TABLE statement to create
persistent base tables

Yes

Derby Reference Manual

247

Feature ID Feature Name
SQL:2011
Mandatory

F031-02 CREATE VIEW statement Yes

F031-03 GRANT statement Yes

F031-04 ALTER TABLE statement: ADD COLUMN
clause

Yes

F031-13 DROP TABLE statement: RESTRICT
clause

Yes (implicit)

F031-16 DROP VIEW statement: RESTRICT
clause

Yes (implicit)

F031-19 REVOKE statement: RESTRICT clause Yes

Table 38. F041: Basic joined tables

Feature ID Feature Name
SQL:2011
Mandatory

F041-01 Inner join (but not necessarily the INNER
keyword)

Yes

F041-02 INNER keyword Yes

F041-03 LEFT OUTER JOIN Yes

F041-04 RIGHT OUTER JOIN Yes

F041-05 Outer joins can be nested Yes

F041-07 The inner table in a left or right outer join
can also be used in an inner join

No

F041-08 All comparison operators are supported
(rather than just =)

Yes

Table 39. F051: Basic date and time

Feature ID Feature Name
SQL:2011
Mandatory Note

F051-01 DATE data type (including
DATE literal)

Yes* DATE literal is implemented
as built-in function.
{d 'yyyy-mm-ff'}
is according to JDBC
specification.

F051-02 TIME data type (including
TIME literal) with fractional
seconds precision of 0

Yes* TIME literal is implemented
as built-in function. No
precision in datatype. {t'
hh:mm:ss'} is according to
JDBC specification.

F051-03 TIMESTAMP data type
(including TIMESTAMP
literal) with fractional
seconds precision of 0 and 6

Yes* TIMESTAMP literal
is implemented as
built-in function. No
precision in datatype. No
timezone in datatype.

Derby Reference Manual

248

Feature ID Feature Name
SQL:2011
Mandatory Note

{ts 'yyyy-mm-dd
hh:mm:ss.f...'}
is according to JDBC
specification.

F051-04 Comparison predicate
on DATE, TIME, and
TIMESTAMP data types

Yes None

F051-05 Explicit CAST between
datetime types and character
types

Yes None

F051-06 CURRENT_DATE Yes* No time zone in datetime
value expression

F051-07 LOCALTIME Yes* {fn CURTIME()}
is according to JDBC
specification

F051-08 LOCALTIMESTAMP No None

Table 40. F131: Grouped operations

Feature ID Feature Name
SQL:2011
Mandatory

F131-01 WHERE, GROUP BY, and HAVING
clauses supported in queries with grouped
views

Yes

F131-02 Multiple tables supported in queries with
grouped views

Yes

F131-03 Set functions supported in queries with
grouped views

Yes

F131-04 Subqueries with GROUP BY and HAVING
clauses and grouped views

Yes

F131-05 Single row SELECT with GROUP BY and
HAVING clauses and grouped views

Yes

Table 41. F261: CASE expression

Feature ID Feature Name
SQL:2011
Mandatory

F261-01 Simple CASE Yes

F261-02 Searched CASE Yes

F261-03 NULLIF function Yes

F261-04 COALESCE function Yes

Table 42. F311: Schema definition statement

Derby Reference Manual

249

Feature ID Feature Name
SQL:2011
Mandatory

F311-01 Create schema Yes

F311-02 CREATE TABLE for persistent base tables Yes

F311-03 CREATE VIEW Yes

F311-04 CREATE VIEW: WITH CHECK OPTION No

F311-05 GRANT statement Yes

Table 43. T321: Basic SQL invoked routines

Feature ID Feature Name
SQL:2011
Mandatory

T321-01 User-defined functions with no overloading Yes

T321-02 User-defined stored procedures with no
overloading

Yes

T321-03 Function invocation Yes

T321-04 CALL statement Yes

T321-05 RETURN statement No

Table 44. Miscellaneous mandatory features

Feature ID Feature Name
SQL:2011
Mandatory

E111 Single row select statement Yes

E131 Null value support (nulls in lieu of values) Yes

E161 SQL comments using leading double
minus

Yes

E171 SQLSTATE support Yes

F201 CAST function Yes

F221 Explicit defaults Yes

F471 Scalar subquery values Yes

F481 Expanded NULL predicate Yes

T631 IN predicate with one list element Yes

Support for optional features

The following tables show Derby support for SQL:2011 optional features.

Table 45. F111: Isolation levels other than SERIALIZABLE

Feature ID Feature Name SQL:2011 Optional

F111-01 READ UNCOMMITTED isolation level Yes

F111-02 READ COMMITTED isolation level Yes

Derby Reference Manual

250

Feature ID Feature Name SQL:2011 Optional

F111-03 REPEATABLE READ isolation level Yes

Table 46. F302: INTERSECT table operator

Feature ID Feature Name SQL:2011 Optional

F302-01 INTERSECT DISTINCT table operator Yes

F302-02 INTERSECT ALL table operator Yes

Table 47. F381: Extended schema manipulation

Feature ID Feature Name SQL:2011 Optional

F381-01 ALTER TABLE statement: ALTER
COLUMN clause

Partial

F381-02 ALTER TABLE statement: ADD
CONSTRAINT clause

Partial

F381-03 ALTER TABLE statement: DROP
CONSTRAINT clause

Yes

Table 48. F401: Extended joined table

Feature ID Feature Name SQL:2011 Optional

F401-01 NATURAL JOIN Yes

F401-02 FULL OUTER JOIN No

F401-04 CROSS JOIN Yes

Table 49. F831: Full cursor update

Feature ID Feature Name
SQL:2011
Optional Note

F831-01 Updatable scrollable cursors Partial Insensitive result set cursors

F831-02 Updatable ordered cursors No None

Table 50. T041: Basic LOB data type support

Feature ID Feature Name
SQL:2011
Optional Note

T041-01 BLOB data type Yes None

T041-02 CLOB data type Yes None

T041-03 POSITION, LENGTH,
LOWER, TRIM, UPPER, and
SUBSTRING functions for
LOB data types

Yes* Not standard SQL syntax.
See notes on features
E021-04, E021-06, E021-09
and E021-11

T041-04 Concatenation of LOB data
types

Yes None

Derby Reference Manual

251

Feature ID Feature Name
SQL:2011
Optional Note

T041-05 LOB locator: non-holdable No None

Table 51. T211: Basic trigger capability

Feature ID Feature Name
SQL:2011
Optional Note

T211-01 Triggers activated on
UPDATE, INSERT, or
DELETE of one base table

Yes None

T211-02 BEFORE triggers Yes* Need to specify
non-standard ON CASCADE
BEFORE. Before triggers
cannot have INSERT,
UPDATE or DELETE
statements as their action

T211-03 AFTER triggers Yes None

T211-04 FOR EACH ROW triggers Yes None

T211-05 Ability to specify a search
condition that shall be True
before the trigger is invoked

Yes None

T211-06 Support for run-time rules for
the interaction of triggers and
constraints

No None

T211-07 TRIGGER privilege Yes None

T211-08 Multiple triggers for the same
event are executed in the
order in which they were
created in the catalog

Yes None

Table 52. Miscellaneous optional features

Feature ID Feature Name
SQL:2011
Optional Note

F033 ALTER TABLE statement:
DROP COLUMN clause

Yes None

F200 TRUNCATE TABLE
statement

Yes None

F262 Extended CASE expression Yes None

F263 Comma-separated
predicates in simple CASE
expression

Yes None

F281 LIKE enhancements Yes None

F304 EXCEPT ALL table operator Yes None

F312 MERGE statement Yes None

Derby Reference Manual

252

Feature ID Feature Name
SQL:2011
Optional Note

F313 Enhanced MERGE
statement

Yes None

F314 MERGE statement with
DELETE branch

Yes None

F382 Alter column data type Partial You can alter only
VARCHAR, VARCHAR
FOR BIT DATA, BLOB, and
CLOB columns, and you can
change only the length. That
is, you can change the data
type from VARCHAR(10)
to VARCHAR(100), but
not from VARCHAR(10) to
CLOB(100).

F383 Set column not null clause Yes None

F391 Long identifiers Yes None

F402 Named column joins for
LOBs, arrays, and multisets

Yes None

F431 Read-only scrollable cursors Yes* Through JDBC (only
insensitive cursors)

F491 Constraint management Yes None

F492 Optional table constraint
enforcement

Yes None

F531 Temporary tables Partial Global tables (DECLARE
GLOBAL TEMPORARY
TABLE statement)

F591 Derived tables Yes None

F641 Row and table constructors Yes None

F690 Collation support Partial Users can create a database
with territory-based collation

F701 Referential update actions Partial None

F721 Deferrable constraints Partial Deferrable NOT NULL
constraints are not supported

F763 CURRENT_SCHEMA Partial Non-standard
syntax (CURRENT
SCHEMA instead of
CURRENT_SCHEMA), and it
is not allowed in a DEFAULT
clause

F781 Self-referencing operations Yes None

F791 Insensitive cursors Yes* Through JDBC

F801 Full set function Partial DISTINCT in more than
one aggregate function
will not work, but SELECT

Derby Reference Manual

253

Feature ID Feature Name
SQL:2011
Optional Note

DISTINCT with DISTINCT in
one aggregate function will
work

F850 Top-level <order by clause>
in <query expression>

Yes None

F851 <order by clause> in
subqueries

Yes None

F852 Top-level <order by clause>
in views

Yes None

F855 Nested <order by clause> in
<query expression>

Yes None

F856 Nested <fetch first clause> in
<query expression>

Yes None

F857 Top-level <fetch first clause>
in <query expression>

Yes None

F858 <fetch first clause> in
subqueries

Yes None

F859 Top-level <fetch first clause>
in views

Yes None

F860 Dynamic <fetch first row
count> in <fetch first clause>

Yes None

F861 Top-level <result offset
clause> in <query
expression>

Yes None

F862 <result offset clause> in
subqueries

Yes None

F863 Nested <result offset clause>
in <query expression>

Yes None

F864 Top-level <result offset
clause> in views

Yes None

F865 Dynamic <offset row count>
in <result offset clause>

Yes None

J581 Output parameters Yes None

J621 External Java routines Yes None

J622 External Java types Yes None

T021 BINARY and VARBINARY
data types

Yes* Non-standard type names
CHAR FOR BIT DATA and
VARCHAR FOR BIT DATA
instead of BINARY and
VARBINARY

T031 BOOLEAN data type Yes None

Derby Reference Manual

254

Feature ID Feature Name
SQL:2011
Optional Note

T042 Extended LOB data type
support

Partial CAST and string value
functions implemented. No
comparison or ordering.

T071 BIGINT data type Yes None

T101 Enhanced nullability
determination

Yes None

T174 Identity columns Yes* MAXVALUE and CYCLE
not supported. Deviation
from standard: A comma
(,) is required before
INCREMENT.

T175 Generated columns Yes None

T176 Sequence generator support Yes* ALTER SEQUENCE not
supported. Only one NEXT
VALUE FOR clause per
sequence in each statement

T191 Referential action RESTRICT Yes None

T212 Enhanced trigger capability Yes None

T271 Savepoints Yes None

T281 SELECT privilege with
column granularity

Yes None

T323 Explicit security for external
routines

Yes None

T326 Table functions Partial None

T331 Basic roles Partial None

T332 Extended roles Partial None

T351 Bracketed SQL comments
(/*...*/ comments)

Yes None

T431 Extended grouping
capabilities

Partial Partial support for GROUP
BY ROLLUP

T441 ABS and MOD functions Yes None

T501 Enhanced EXISTS predicate Yes None

T591 UNIQUE constraints of
possibly null columns

Yes None

T611 Elementary OLAP operations Partial Partial support for
ROW_NUMBER

X010 XML type Yes None

X016 Persistent XML values Yes None

X061 XMLParse: Character string
input and DOCUMENT
option

Partial No support for the STRIP
WHITESPACE option

Derby Reference Manual

255

Feature ID Feature Name
SQL:2011
Optional Note

X096 XMLExists Partial Support only for XPath
queries, not full XQuery

X200 XMLQuery Partial Support only for XPath
queries, not full XQuery

X202 XMLQuery: RETURNING
SEQUENCE

Yes None

X203 XMLQuery: passing a
context item

Yes None

X205 XMLQuery: EMPTY ON
EMPTY option

Yes None

X222 XML passing mechanism BY
REF

Yes None

SQL:2011 features not supported by Derby
Some mandatory and optional features in Part 2 of the SQL:2011 standard are not
supported by Derby.

If a feature in another part of the standard is not listed in Derby support for SQL:2011
features, Derby does not support it.

Mandatory features

The following table lists the mandatory features in Part 2 of the SQL:2011 standard that
are not supported by Derby and that are not listed in the tables in Derby support for
SQL:2011 features.

Table 53. Mandatory SQL:2011 features not supported by Derby

Feature ID Feature Name

E153 Updatable queries with subqueries

E182 Module language

F081 UNION and EXCEPT in views

F181 Multiple module support

F812 Basic flagging

S011 Distinct data types

Optional features

The following table lists the optional features in Part 2 of the SQL:2011 standard that
are not supported by Derby and that are not listed in the tables in Derby support for
SQL:2011 features.

Table 54. Optional SQL:2011 features not supported by Derby

Feature ID Feature Name

F032 CASCADE drop behavior

Derby Reference Manual

256

Feature ID Feature Name

F034 Extended REVOKE statement (F034-01 through F034-03)

F052 Intervals and datetime arithmetic

F053 OVERLAPS predicate

F121 Basic diagnostics management (F121-01, F121-02)

F171 Multiple schemas per user

F191 Referential delete actions

F222 INSERT statement: DEFAULT VALUES clause

F251 Domain support

F271 Compound character literals

F291 UNIQUE predicate

F301 CORRESPONDING in query expressions

F321 User authorization

F361 Subprogram support

F392 Unicode escapes in identifiers

F393 Unicode escapes in literals

F411 Time zone specification

F421 National character

F431 Read-only scrollable cursors (available through JDBC, but
F431-01 through F431-06 are unsupported)

F441 Extended set function support

F442 Mixed column references in set functions

F451 Character set definition

F461 Named character sets

F521 Assertions

F555 Enhanced seconds precision

F561 Full value expressions

F571 Truth value tests

F611 Indicator data types

F651 Catalog name qualifiers

F661 Simple tables

F671 Subqueries in CHECK

F672 Retrospective check constraints

F692 Enhanced collation support

F693 SQL-session and client module collations

F695 Translation support

F711 ALTER domain

Derby Reference Manual

257

Feature ID Feature Name

F731 INSERT column privileges

F741 Referential MATCH types

F751 View CHECK enhancements

F761 Session management

F771 Connection management

F813 Extended flagging

F821 Local table references

T051 Row types

T053 Explicit aliases for all-fields reference

T061 UCS support

T111 Updatable joins, unions, and columns

T121 WITH (excluding RECURSIVE) in query expression

T122 WITH (excluding RECURSIVE) in subquery

T131 Recursive query

T132 Recursive query in subquery

T141 SIMILAR predicate

T151 DISTINCT predicate

T152 DISTINCT predicate with negation

T171 LIKE clause in table definition

T172 AS subquery clause in table definition

T173 Extended LIKE clause in table definition

T201 Comparable data types for referential constraints

T231 Sensitive cursors

T241 START TRANSACTION statement

T251 SET TRANSACTION statement: LOCAL option

T261 Chained transactions

T272 Enhanced savepoint management

T301 Functional dependencies

T312 OVERLAY function

T324 Explicit security for SQL routines

T325 Qualified SQL parameter references

T432 Nested and concatenated GROUPING SETS

T433 Multiargument GROUPING function

T434 GROUP BY DISTINCT

T461 Symmetric BETWEEN predicate

T471 Result sets return value

Derby Reference Manual

258

Feature ID Feature Name

T491 LATERAL derived table

T511 Transaction counts

T551 Optional key words for default syntax

T561 Holdable locators

T571 Array-returning external SQL-invoked functions

T572 Multiset-returning external SQL-invoked functions

T581 Regular expression substring function

T601 Local cursor references

T612 Advanced OLAP operations

T613 Sampling

T621 Enhanced numeric functions

T641 Multiple column assignment

T651 SQL-schema statements in SQL routines

T652 SQL-dynamic statements in SQL routines

T653 SQL-schema statements in external routines

T654 SQL-dynamic statements in external routines

T655 Cyclically dependent routines

Derby Reference Manual

259

Derby system tables

Derby includes system tables.

You can query system tables, but you cannot alter them.

All of the above system tables reside in the SYS schema. Because this is not the default
schema, qualify all queries accessing the system tables with the SYS schema name.

The recommended way to get more information about these tables is to use an instance
of the Java interface java.sql.DatabaseMetaData.

SYSALIASES system table
The SYSALIASES table describes the procedures, functions, user-defined types, and
user-defined aggregates in the database.

The following table shows the contents of the SYSALIASES system table.

Table 55. SYSALIASES system table

Column Name Type Length Nullable Contents

ALIASID CHAR 36 false Unique identifier for
the alias

ALIAS VARCHAR 128 false Alias (in the
case of a
user-defined type
or user-defined
aggregate, the
name of the
user-defined type
or user-defined
aggregate)

SCHEMAID CHAR 36 true Reserved for future
use

JAVACLASSNAME LONG VARCHAR 32,700 false The Java class
name

ALIASTYPE CHAR 1 false 'F' (function), 'P'
(procedure), 'A'
(user-defined type),
'G' (user-defined
aggregate)

NAMESPACE CHAR 1 false 'F' (function), 'P'
(procedure), 'A'
(user-defined type),
'G' (user-defined
aggregate)

SYSTEMALIAS BOOLEAN 1 false true (system
supplied or built-in
alias)

Derby Reference Manual

260

Column Name Type Length Nullable Contents

false (alias created
by a user)

ALIASINFO org.apache.derby.
catalog.AliasInfo

This class is not
part of the public
API.

2,147,483,647true A Java interface
that encapsulates
the additional
information that is
specific to an alias

SPECIFICNAME VARCHAR 128 false System-generated
identifier

SYSCHECKS system table
The SYSCHECKS table describes the check constraints within the current database.

The following table shows the contents of the SYSCHECKS system table.

Table 56. SYSCHECKS system table

Column Name Type Length Nullable Contents

CONSTRAINTID CHAR 36 false Unique identifier for
the constraint

CHECKDEFINITION LONG VARCHAR 32,700 false Text of check
constraint definition

REFERENCEDCOLUMNSorg.apache.derby.
catalog. ReferencedColumns

This class is not
part of the public
API.

2,147,483,647false Description of
the columns
referenced by the
check constraint

SYSCOLPERMS system table
The SYSCOLPERMS table stores the column permissions that have been granted but
not revoked.

All of the permissions for one (GRANTEE, TABLEID, TYPE, GRANTOR) combination are
specified in a single row in the SYSCOLPERMS table. The keys for the SYSCOLPERMS
table are:

• Primary key (GRANTEE, TABLEID, TYPE, GRANTOR)
• Unique key (COLPERMSID)
• Foreign key (TABLEID references SYS.SYSTABLES)

The following table shows the contents of the SYSCOLPERMS system table.

Table 57. SYSCOLPERMS system table

Column Name Type Length Nullable Contents

COLPERMSID CHAR 36 false Used by the
dependency
manager to track

Derby Reference Manual

261

Column Name Type Length Nullable Contents

the dependency
of a view, trigger,
or constraint on
the column level
permissions

GRANTEE VARCHAR 128 false The authorization
ID of the user
or role to which
the privilege was
granted

GRANTOR VARCHAR 128 false The authorization
ID of the user
who granted the
privilege. Privileges
can be granted
only by the object
owner

TABLEID CHAR 36 false The unique
identifier for the
table on which the
permissions have
been granted

TYPE CHAR 1 false If the privilege is
non-grantable, the
valid values are:

's' for SELECT
'u' for UPDATE
'r' for
 REFERENCES

If the privilege is
grantable, the valid
values are:

'S' for SELECT
'U' for UPDATE
'R' for
 REFERENCES

COLUMNS org.apache.derby.
iapi.services.io.
FormatableBitSet

This class is not
part of the public
API.

2,147,483,647false A list of columns to
which the privilege
applies

SYSCOLUMNS system table
The SYSCOLUMNS table describes the columns within all tables in the current database.

The following table shows the contents of the SYSCOLUMNS system table.

Derby Reference Manual

262

Table 58. SYSCOLUMNS system table

Column Name Type Length Nullable Contents

REFERENCEID CHAR 36 false Identifier for table
(join with SYSTABLES.TABLEID)

COLUMNNAME VARCHAR 128 false Column or
parameter name

COLUMNNUMBER INT 10 false The position of the
column within the
table

COLUMNDATATYPE org.apache.derby.
catalog.
TypeDescriptor

This class is not
part of the public
API.

2,147,483,647false System type
that describes
precision, length,
scale, nullability,
type name, and
storage type
of data. For a
user-defined
type, this column
can hold a
TypeDescriptor
that refers to the
appropriate type
alias in SYS.SYSALIASES.

COLUMNDEFAULT java.io.Serializable 2,147,483,647true For tables,
describes default
value of the
column. The
toString() method
on the object
stored in the table
returns the text of
the default value
as specified in the
CREATE TABLE
or ALTER TABLE
statement.

COLUMNDEFAULTID CHAR 36 true Unique identifier for
the default value

AUTOINCREMENTVALUEBIGINT 20 true What the next
value for column
will be, if the
column is an
identity column
(Release 10.10 or
earlier only)

AUTOINCREMENTSTARTBIGINT 20 true Initial value
of column (if
specified), if it is an
identity column

Derby Reference Manual

263

Column Name Type Length Nullable Contents

AUTOINCREMENTINC BIGINT 20 true Amount
column value
is automatically
incremented (if
specified), if the
column is an
identity column

Note: The AUTOINCREMENTVALUE column has no meaning in a database that has
been fully upgraded to Derby Release 10.11 or higher. At Release 10.11 or higher, use
the SYSCS_UTIL.SYSCS_PEEK_AT_IDENTITY system function to observe the next
value for an identity column.

SYSCONGLOMERATES system table
The SYSCONGLOMERATES table describes the conglomerates within the current
database. A conglomerate is a unit of storage and is either a table or an index.

The following table shows the contents of the SYSCONGLOMERATES system table.

Table 59. SYSCONGLOMERATES system table

Column Name Type Length Nullable Contents

SCHEMAID CHAR 36 false Schema ID for the
conglomerate

TABLEID CHAR 36 false Identifier for table
(join with SYSTABLES.TABLEID)

CONGLOMERATENUMBERBIGINT 20 false Conglomerate
ID for the
conglomerate
(heap or index)

CONGLOMERATENAMEVARCHAR 128 true Index name, if
conglomerate is an
index, otherwise
the table ID

ISINDEX BOOLEAN 1 false Whether or not
conglomerate is an
index

DESCRIPTOR org.apache.derby.
catalog.
IndexDescriptor

This class is not
part of the public
API.

2,147,483,647true System type
describing the
index

ISCONSTRAINT BOOLEAN 1 true Whether or not the
conglomerate is a
system-generated
index enforcing a
constraint

Derby Reference Manual

264

Column Name Type Length Nullable Contents

CONGLOMERATEID CHAR 36 false Unique identifier for
the conglomerate

SYSCONSTRAINTS system table
The SYSCONSTRAINTS table describes the information common to all types of
constraints within the current database (currently, this includes primary key, unique,
foreign key, and check constraints).

The following table shows the contents of the SYSCONSTRAINTS system table.

Table 60. SYSCONSTRAINTS system table

Column Name Type Length Nullable Contents

CONSTRAINTID CHAR 36 false Unique identifier for
constraint

TABLEID CHAR 36 false Identifier for table
(join with SYSTABLES.TABLEID)

CONSTRAINTNAME VARCHAR 128 false Constraint
name (internally
generated if not
specified by user)

TYPE CHAR 1 false 'P' (primary key),
'U' (unique), 'C'
(check), or 'F'
(foreign key)

SCHEMAID CHAR 36 false Identifier for
schema that the
constraint belongs
to (join with SYSSCHEMAS.SCHEMAID)

STATE CHAR 1 false 'E' (not deferrable
initially immediate),
'i' (deferrable
initially immediate),
or 'e' (deferrable
initially deferred)

REFERENCECOUNT INTEGER 10 false The count of the
number of foreign
key constraints
that reference this
constraint; this
number can be
greater than zero
only for PRIMARY
KEY and UNIQUE
constraints

SYSDEPENDS system table

Derby Reference Manual

265

The SYSDEPENDS table stores the dependency relationships between persistent
objects in the database.

Persistent objects can be dependents or providers. Dependents are objects that depend
on other objects. Providers are objects that other objects depend on.

• Dependents are views, constraints, or triggers.
• Providers are tables, conglomerates, constraints, or privileges.

The following table shows the contents of the SYSDEPENDS system table.

Table 61. SYSDEPENDS system table

Column Name Type Length Nullable Contents

DEPENDENTID CHAR 36 false A unique identifier
for the dependent

DEPENDENTFINDER org.apache.derby.
catalog.
DependableFinder

This class is not
part of the public
API.

2,147,483,647false A system type
that describes the
view, constraint, or
trigger that is the
dependent

PROVIDERID CHAR 36 false A unique identifier
for the provider

PROVIDERFINDER org.apache.derby.
catalog.
DependableFinder

This class is not
part of the public
API.

2,147,483,647false A system type that
describes the table,
conglomerate,
constraint, and
privilege that is the
provider

SYSFILES system table
The SYSFILES table describes jar files stored in the database.

The following table shows the contents of the SYSFILES system table.

Table 62. SYSFILES system table

Column Name Type Length Nullable Contents

FILEID CHAR 36 false Unique identifier for
the jar file

SCHEMAID CHAR 36 false ID of the jar file's
schema (join with SYSSCHEMAS.SCHEMAID)

FILENAME VARCHAR 128 false SQL name of the
jar file

GENERATIONID BIGINT 20 false Generation
number for the
file. When jar files
are replaced,
their generation

Derby Reference Manual

266

Column Name Type Length Nullable Contents

identifiers are
changed.

SYSFOREIGNKEYS system table
The SYSFOREIGNKEYS table describes the information specific to foreign key
constraints in the current database.

Derby generates a backing index for each foreign key constraint. The name of this index
is the same as SYSFOREIGNKEYS.CONGLOMERATEID.

The following table shows the contents of the SYSFOREIGNKEYS system table.

Table 63. SYSFOREIGNKEYS system table

Column Name Type Length Nullable Contents

CONSTRAINTID CHAR 36 false Unique identifier
for the foreign key
constraint (join with SYSCONSTRAINTS.CONSTRAINTID)

CONGLOMERATEID CHAR 36 false Unique identifier
for index backing
up the foreign key
constraint (join with SYSCONGLOMERATES.
CONGLOMERATEID)

KEYCONSTRAINTID CHAR 36 false Unique identifier for
the primary key or
unique constraint
referenced by this
foreign key (SYSKEYS.CONSTRAINTID
or SYSCONSTRAINTS.CONSTRAINTID)

DELETERULE CHAR 1 false 'R' for NO ACTION
(default), 'S' for
RESTRICT, 'C' for
CASCADE, 'U' for
SET NULL

UPDATERULE CHAR 1 false 'R' for NO ACTION
(default), 'S' for
RESTRICT

SYSKEYS system table
The SYSKEYS table describes the specific information for primary key and unique
constraints within the current database.

Derby generates an index on the table to back up each such constraint. The index name
is the same as SYSKEYS.CONGLOMERATEID.

The following table shows the contents of the SYSKEYS system table.

Table 64. SYSKEYS system table

Derby Reference Manual

267

Column Name Type Length Nullable Contents

CONSTRAINTID CHAR 36 false Unique identifier for
constraint

CONGLOMERATEID CHAR 36 false Unique identifier for
backing index

SYSPERMS system table
The SYSPERMS table describes the USAGE permissions for sequence generators,
user-defined types, and user-defined aggregates.

The following table shows the contents of the SYSPERMS system table.

Table 65. SYSPERMS system table

Column Name Type Length Nullable Contents

UUID CHAR 36 false The unique ID of
the permission.
This is the primary
key.

OBJECTTYPE VARCHAR 36 false The kind of
object receiving
the permission.
Valid values are
'SEQUENCE',
'TYPE', and
'DERBY
AGGREGATE'.

OBJECTID CHAR 36 false The UUID of the
object receiving
the permission.
For sequence
generators,
the only valid
values are
SEQUENCEIDs
in the SYS.SYSSEQUENCES
table. For
user-defined types
and user-defined
aggregates,
the only valid
values are
ALIASIDs in the
SYS.SYSALIASES
table if the
SYSALIASES
row describes a
user-defined type
or user-defined
aggregate.

Derby Reference Manual

268

Column Name Type Length Nullable Contents

PERMISSION CHAR 36 false The type of the
permission. The
only valid value is
'USAGE'.

GRANTOR VARCHAR 128 false The authorization
ID of the user
who granted the
privilege. Privileges
can be granted
only by the object
owner.

GRANTEE VARCHAR 128 false The authorization
ID of the user
or role to which
the privilege was
granted

ISGRANTABLE CHAR 1 false If the GRANTEE
is the owner of
the sequence
generator,
user-defined type,
or user-defined
aggregate, this
value is 'Y'. If
the GRANTEE
is not the owner
of the sequence
generator,
user-defined type,
or user-defined
aggregate, this
value is 'N'.

SYSROLES system table
The SYSROLES table stores the roles in the database.

A row in the SYSROLES table represents one of the following:

• A role definition (the result of a CREATE ROLE statement)
• A role grant

The keys for the SYSROLES table are:

• Primary key (GRANTEE, ROLEID, GRANTOR)
• Unique key (UUID)

The following table shows the contents of the SYSROLES system table.

Table 66. SYSROLES system table

Derby Reference Manual

269

Column Name Type Length Nullable Contents

UUID CHAR 36 false A unique identifier
for this role

ROLEID VARCHAR 128 false The role name,
after conversion to
case normal form

GRANTEE VARCHAR 128 false If the row
represents a role
grant, this is the
authorization
identifier of a user
or role to which this
role is granted. If
the row represents
a role definition,
this is the database
owner's user name.

GRANTOR VARCHAR 128 false This is the
authorization
identifier of the
user that granted
this role. If the row
represents a role
definition, this is
the authorization
identifier
_SYSTEM. If the
row represents
a role grant, this
is the database
owner's user name
(since only the
database owner
can create and
grant roles).

WITHADMINOPTION CHAR 1 false A role definition
is modelled as
a grant from
_SYSTEM to
the database
owner, so if the
row represents a
role definition, the
value is always 'Y'.
This means that
the creator (the
database owner)
is always allowed
to grant the newly
created role.
Currently roles
cannot be granted

Derby Reference Manual

270

Column Name Type Length Nullable Contents

WITH ADMIN
OPTION, so if the
row represents
a role grant, the
value is always 'N'.

ISDEF CHAR 1 false If the row
represents a role
definition, this
value is 'Y'. If the
row represents
a role grant, the
value is 'N'.

SYSROUTINEPERMS system table
The SYSROUTINEPERMS table stores the permissions that have been granted to
routines.

Each routine EXECUTE permission is specified in a row in the SYSROUTINEPERMS
table. The keys for the SYSROUTINEPERMS table are:

• Primary key (GRANTEE, ALIASID, GRANTOR)
• Unique key (ROUTINEPERMSID)
• Foreign key (ALIASID references SYS.SYSALIASES)

The following table shows the contents of the SYSROUTINEPERMS system table.

Table 67. SYSROUTINEPERMS system table

Column Name Type Length Nullable Contents

ROUTINEPERMSID CHAR 36 false Used by the
dependency
manager to track
the dependency
of a view, trigger,
or constraint on
the routine level
permissions

GRANTEE VARCHAR 128 false The authorization
ID of the user or
role to which the
privilege is granted

GRANTOR VARCHAR 128 false The authorization
ID of the user
who granted the
privilege. Privileges
can be granted
only by the object
owner.

ALIASID CHAR 36 false The ID of
the object of
the required

Derby Reference Manual

271

Column Name Type Length Nullable Contents

permission. If
PERMTYPE='E',
the ALIASID is a
reference to the
SYS.SYSALIASES
table. Otherwise,
the ALIASID is a
reference to the
SYS.SYSTABLES
table.

GRANTOPTION CHAR 1 false Specifies if the
GRANTEE is
the owner of the
routine. Valid
values are 'Y' and
'N'.

SYSSCHEMAS system table
The SYSSCHEMAS table describes the schemas within the current database.

The following table shows the contents of the SYSSCHEMAS system table.

Table 68. SYSSCHEMAS system table

Column Name Type Length Nullable Contents

SCHEMAID CHAR 36 false Unique identifier for
the schema

SCHEMANAME VARCHAR 128 false Schema name

AUTHORIZATIONID VARCHAR 128 false The authorization
identifier of the
owner of the
schema

SYSSEQUENCES system table
The SYSSEQUENCES table describes the sequence generators in the database.

Note: Users should not directly query the SYSSEQUENCES table, because that will
slow down the performance of sequence generators. Instead, users should call the
SYSCS_UTIL.SYSCS_PEEK_AT_SEQUENCE system function.

The following table shows the contents of the SYSSEQUENCES system table.

Table 69. SYSSEQUENCES system table

Column Name Type Length Nullable Contents

SEQUENCEID CHAR 36 false The ID of the
sequence
generator. This is
the primary key.

Derby Reference Manual

272

Column Name Type Length Nullable Contents

SEQUENCENAME VARCHAR 128 false The name of
the sequence
generator. There
is a unique index
on (SCHEMAID, SEQUENCENAME).

SCHEMAID CHAR 36 false The ID of the
schema that holds
the sequence
generator. There
is a foreign key
linking this column
to SYSSCHEMAS.SCHEMAID.

SEQUENCEDATATYPE org.apache.derby.
catalog.
TypeDescriptor

This class is not
part of the public
API.

2,147,483,647false System type that
describes the
precision, length,
scale, nullability,
type name, and
storage type of the
data

CURRENTVALUE BIGINT 20 true The current value
of the sequence
generator. This
is not the actual
next value for
the sequence
generator. That
value can be
obtained by calling
the system function SYSCS_UTIL.SYSCS_PEEK_AT_SEQUENCE.
SYSSEQUENCES.CURRENTVALUE
holds the end of
the range of values
which have been
preallocated in
order to boost
concurrency. The
initial value of
this column is
STARTVALUE.
This column is
NULL only if
the sequence
generator is
exhausted and
cannot issue any
more numbers.

STARTVALUE BIGINT 20 false The initial value
of the sequence
generator

MINIMUMVALUE BIGINT 20 false The minimum
value of the

Derby Reference Manual

273

Column Name Type Length Nullable Contents

sequence
generator

MAXIMUMVALUE BIGINT 20 false The maximum
value of the
sequence
generator

INCREMENT BIGINT 20 false The step size of
the sequence
generator

CYCLEOPTION CHAR 1 false If the sequence
generator cycles,
this value is 'Y'.
If the sequence
generator does not
cycle, this value is
'N'.

SYSSTATEMENTS system table
The SYSSTATEMENTS table describes the prepared statements in the database.

The table contains one row per stored prepared statement.

The following table shows the contents of the SYSSTATEMENTS system table.

Table 70. SYSSTATEMENTS system table

Column Name Type Length Nullable Contents

STMTID CHAR 36 false Unique identifier for
the statement

STMTNAME VARCHAR 128 false Name of the
statement

SCHEMAID CHAR 36 false The schema
in which the
statement resides

TYPE CHAR 1 false Always 'S'

VALID BOOLEAN 1 false Whether or not the
statement is valid

TEXT LONG VARCHAR 32,700 false Text of the
statement

LASTCOMPILED TIMESTAMP 29 true Time that the
statement was
compiled

COMPILATIONSCHEMAIDCHAR 36 true ID of the schema
containing the
statement

USINGTEXT LONG VARCHAR 32,700 true Text of the
USING clause

Derby Reference Manual

274

Column Name Type Length Nullable Contents

of the CREATE
STATEMENT
and ALTER
STATEMENT
statements

SYSSTATISTICS system table
The SYSSTATISTICS table describes the statistics within the current database.

The following table shows the contents of the SYSSTATISTICS system table.

Table 71. SYSSTATISTICS system table

Column Name Type Length Nullable Contents

STATID CHAR 36 false Unique identifier for
the statistic

REFERENCEID CHAR 36 false The conglomerate
for which the
statistic was
created (join with SYSCONGLOMERATES.
CONGLOMERATEID)

TABLEID CHAR 36 false The table for which
the information is
collected

CREATIONTIMESTAMP TIMESTAMP 29 false Time when this
statistic was
created or updated

TYPE CHAR 1 false Type of statistics

VALID BOOLEAN 1 false Whether the
statistic is still valid

COLCOUNT INTEGER 10 false Number of columns
in the statistic

STATISTICS org.apache.derby.
catalog.Statistics

This class is not
part of the public
API.

2,147,483,647false Statistics
information

SYSTABLEPERMS system table
The SYSTABLEPERMS table stores the table permissions that have been granted but
not revoked.

All of the permissions for one (GRANTEE, TABLEID, GRANTOR) combination
are specified in a single row in the SYSTABLEPERMS table. The keys for the
SYSTABLEPERMS table are:

• Primary key (GRANTEE, TABLEID, GRANTOR)

Derby Reference Manual

275

• Unique key (TABLEPERMSID)
• Foreign key (TABLEID references SYS.SYSTABLES)

The following table shows the contents of the SYSTABLEPERMS system table.

Table 72. SYSTABLEPERMS system table

Column Name Type Length Nullable Contents

TABLEPERMSID CHAR 36 false Used by the
dependency
manager to track
the dependency
of a view, trigger,
or constraint on
the table level
permissions

GRANTEE VARCHAR 128 false The authorization
ID of the user or
role to which the
privilege is granted

GRANTOR VARCHAR 128 false The authorization
ID of the user
who granted the
privilege. Privileges
can be granted
only by the object
owner

TABLEID CHAR 36 false The unique
identifier for the
table on which the
permissions have
been granted

SELECTPRIV CHAR 1 false Specifies if
the SELECT
permission is
granted. The valid
values are:

'y' (non-grantable
 privilege)
'Y' (grantable
 privilege)
'N' (no privilege)

DELETEPRIV CHAR 1 false Specifies if
the DELETE
permission is
granted. The valid
values are:

'y' (non-grantable
 privilege)
'Y' (grantable
 privilege)
'N' (no privilege)

Derby Reference Manual

276

Column Name Type Length Nullable Contents

INSERTPRIV CHAR 1 False Specifies if
the INSERT
permission is
granted. The valid
values are:

'y' (non-grantable
 privilege)
'Y' (grantable
 privilege)
'N' (no privilege)

UPDATEPRIV CHAR 1 False Specifies if
the UPDATE
permission is
granted. The valid
values are:

'y' (non-grantable
 privilege)
'Y' (grantable
 privilege)
'N' (no privilege)

REFERENCESPRIV CHAR 1 false Specifies if the
REFERENCE
permission is
granted. The valid
values are:

'y' (non-grantable
 privilege)
'Y' (grantable
 privilege)
'N' (no privilege)

TRIGGERPRIV CHAR 1 false Specifies if
the TRIGGER
permission is
granted. The valid
values are:

'y' (non-grantable
 privilege)
'Y' (grantable
 privilege)
'N' (no privilege)

SYSTABLES system table
The SYSTABLES table describes the tables and views within the current database.

The following table shows the contents of the SYSTABLES system table.

Table 73. SYSTABLES system table

Derby Reference Manual

277

Column Name Type Length Nullable Contents

TABLEID CHAR 36 false Unique identifier for
table or view

TABLENAME VARCHAR 128 false Table or view
name

TABLETYPE CHAR 1 false 'S' (system table),
'T' (user table), 'A'
(synonym), or 'V'
(view)

SCHEMAID CHAR 36 false Schema ID for the
table or view

LOCKGRANULARITY CHAR 1 false Lock granularity for
the table: 'T' (table
level locking) or 'R'
(row level locking,
the default)

SYSTRIGGERS system table
The SYSTRIGGERS table describes the database's triggers.

The following table shows the contents of the SYSTRIGGERS system table.

Table 74. SYSTRIGGERS system table

Column Name Type Length Nullable Contents

TRIGGERID CHAR 36 false Unique identifier for
the trigger

TRIGGERNAME VARCHAR 128 false Name of the trigger

SCHEMAID CHAR 36 false ID of the trigger's
schema (join with SYSSCHEMAS.SCHEMAID)

CREATIONTIMESTAMP TIMESTAMP 29 false Time the trigger
was created

EVENT CHAR 1 false 'U' for update, 'D'
for delete, 'I' for
insert

FIRINGTIME CHAR 1 false 'B' for before, 'A' for
after

TYPE CHAR 1 false 'R' for row, 'S' for
statement

STATE CHAR 1 false 'E' for enabled, 'D'
for disabled

TABLEID CHAR 36 false ID of the table on
which the trigger is
defined

Derby Reference Manual

278

Column Name Type Length Nullable Contents

WHENSTMTID CHAR 36 true ID of the trigger's
WHEN clause, if
one is present

ACTIONSTMTID CHAR 36 true ID of the stored
prepared statement
for the triggeredSQLStatement
(join with SYSSTATEMENTS.STMTID)

REFERENCEDCOLUMNSorg.apache.derby.
catalog. ReferencedColumns

This class is not
part of the public
API.

2,147,483,647true Descriptor of the
columns to be
updated, if this
trigger is an update
trigger (that is, if
the EVENT column
contains 'U')

TRIGGERDEFINITION LONG VARCHAR 32,700 true Text of the action
SQL statement

REFERENCINGOLD BOOLEAN 1 true Whether or not the OLDREFERENCINGNAME,
if non-null, refers
to the OLD row or
table

REFERENCINGNEW BOOLEAN 1 true Whether or not the NEWREFERENCINGNAME,
if non-null, refers
to the NEW row or
table

OLDREFERENCINGNAMEVARCHAR 128 true Pseudoname
as set using the
REFERENCING
OLD AS clause

NEWREFERENCINGNAMEVARCHAR 128 true Pseudoname
as set using the
REFERENCING
NEW AS clause

WHENCLAUSETEXT LONG VARCHAR 32,700 true Text of the trigger's
WHEN clause, if
one is present

Any SQL text that is part of a triggeredSQLStatement is compiled and stored in the
SYSSTATEMENTS table. ACTIONSTMTID and WHENSTMTID are foreign keys that
reference SYSSTATEMENTS.STMTID. The statements for a trigger are always in the
same schema as the trigger.

SYSUSERS system table
The SYSUSERS table stores user credentials when NATIVE authentication is enabled.

When SQL authorization is enabled (as it is, for instance, when NATIVE authentication
is on) only the database owner can SELECT from this table, and no one, not even the
database owner, can SELECT the PASSWORD column.

The following table shows the contents of the SYSUSERS system table.

Derby Reference Manual

279

Table 75. SYSUSERS system table

Column Name Type Length Nullable Contents

USERNAME VARCHAR 128 false The user's name,
the value of the
user attribute on a
connection URL.

HASHINGSCHEME VARCHAR 32672 false Describes how
the password is
hashed.

PASSWORD VARCHAR 32672 false The password after
applying the HASHINGSCHEME.

LASTMODIFIED TIMESTAMP 29 false The time when the
password was last
updated.

SYSVIEWS system table
The SYSVIEWS table describes the view definitions within the current database.

The following table shows the contents of the SYSVIEWS system table.

Table 76. SYSVIEWS system table

Column Name Type Length Nullable Contents

TABLEID CHAR 36 false Unique identifier for
the view (join with SYSTABLES.TABLEID)

VIEWDEFINITION LONG VARCHAR 32,700 false Text of view
definition

CHECKOPTION CHAR 1 false 'N' (check option
not supported yet)

COMPILATIONSCHEMAIDCHAR 36 true ID of the schema
containing the view

Derby Reference Manual

280

XPLAIN style tables

Derby optionally creates database tables to hold statistics information captured
using XPLAIN style. You can have zero, one, or many sets of these tables;
each set of tables is stored in a separate schema. The schema which is
used for capturing statement execution information is specified using the
SYSCS_UTIL.SYSCS_SET_XPLAIN_SCHEMA system procedure

You can query these tables to analyze the behavior of statement execution.

All of the above system tables reside in the schema which you specified. Because this is
not the default schema, qualify all queries accessing the system tables with the schema
name.

You can create the schema and tables ahead of time if you wish, but usually it is easier
to let Derby automatically create the schema and the tables for you. You can capture
multiple sets of data into the same tables, or you can specify a different schema each
time.

See "Working with RunTimeStatistics" in the Tuning Derby for additional information.

SYSXPLAIN_STATEMENTS system table
The SYSXPLAIN_STATEMENTS table captures information about statements which
have been executed using RUNTIMESTATISTICS with XPLAIN style.

See "Working with RunTimeStatistics" in Tuning Derby for information on how to
configure this.

Each row in this table describes a single statement which has been captured. Depending
on the precise configuration of the RUNTIMESTATISTICS and XPLAIN features, there
may be additional rows in the other XPLAIN system tables with additional information; the
STMT_ID and TIMING_ID columns in this table are used to join against those tables.

Rows in this table are added automatically when Derby has been configured
appropriately. The rows remain in the table until you delete them or drop the table.

The following table shows the contents of the SYSXPLAIN_STATEMENTS system table.

Table 77. SYSXPLAIN_STATEMENTS system table

Column Name Type Length Nullable Contents

STMT_ID CHAR 36 false A unique identifier for
this particular captured
statement.

STMT_NAME VARCHAR 128 true The name of the
associated query or
statement. This value
is NULL if the user did
not assign a name (by
calling java.sql.Statement.setCursorName()).

STMT_TYPE CHAR 3 false A code indicating what
type of statement this
is: 'S' for SELECT,
'I' for INSERT, 'U'

Derby Reference Manual

281

Column Name Type Length Nullable Contents

for UPDATE, 'D'
for DELETE, 'C' for
CALL, 'DDL' for Data
Definition (such as
CREATE TABLE),
'SA' for SELECT
(Approximate), or blank,
indicating the statement
was a comment.

STMT_TEXT VARCHAR 32,672 false The text of the
statement.

JVM_ID VARCHAR 32,672 false A code indicating what
version of the JVM
was running when
this statement was
captured. The code
is a character that
represents the release
number plus one. For
example, the code for
Java SE 6 is '7', and the
code for Java SE 7 is
'8'.

OS_IDENTIFIER VARCHAR 32,672 false Contains information
about the operating
system which was
being used when
this statement was
captured.

XPLAIN_MODE CHAR 1 true A code indicating
the XPLAIN mode
which was in use when
this statement was
captured: 'F' for FULL,
or 'O' for ONLY.

XPLAIN_TIME TIMESTAMP 29 true Contains the date
and time when
this statement was
captured.

XPLAIN_THREAD_ID VARCHAR 32,672 false The JVM thread which
was running when this
statement was captured

TRANSACTION_ID VARCHAR 32,672 false An internal identifier
for the transaction
which was active when
this statement was
captured.

SESSION_ID VARCHAR 32,672 false An internal identifier
for the session which
was active when

Derby Reference Manual

282

Column Name Type Length Nullable Contents

this statement was
captured.

DATABASE_NAME VARCHAR 128 false Contains the name of
the database which
was being used when
this statement was
captured.

DRDA_ID VARCHAR 32,672 true In a network
environment, this
column contains an
internal identifier for
the network connection
which was active
when this statement
was captured.
In an embedded
environment, this
column is null.

TIMING_ID CHAR 36 true This field will be NULL
unless SYSCS_UTIL.SYSCS_SET_STATISTICS_TIMING
has been called to
enable statistics timing.
If statistics timings are
being captured, then
this column will contain
the ID of the row in SYSXPLAIN_STATEMENT_TIMINGS
which records the
statement timing for this
statement.

SYSXPLAIN_STATEMENT_TIMINGS system table
The SYSXPLAIN_STATEMENT_TIMINGS table captures information about
statement timings which occurred during statements that were executed using
RUNTIMESTATISTICS with XPLAIN style.

See "Working with RunTimeStatistics" in Tuning Derby for information
on how to configure this. Note in particular that you must call
SYSCS_UTIL.SYSCS_SET_STATISTICS_TIMING(1) to enable timing information to be
captured. Rows in this table are typically joined with rows in SYSXPLAIN_STATEMENTS
and SYSXPLAIN_RESULTSETS during analysis. For example:

select s.stmt_text, st.execute_time
 from my_stats.sysxplain_statements s,
 my_stats.sysxplain_statement_timings st
 where s.timing_id = st.timing_id
 order by st.execute_time desc

Rows in this table are added automatically when Derby has been configured
appropriately. The rows remain in the table until you delete them or drop the table.

The following table shows the contents of the SYSXPLAIN_STATEMENT_TIMINGS
system table.

Table 78. SYSXPLAIN_STATEMENT_TIMINGS system table

Derby Reference Manual

283

Column Name Type Length Nullable Contents

TIMING_ID CHAR 36 false A unique identifier for
this particular row. This
column can be used to
join with the TIMING_ID
column in SYSXPLAIN_STATEMENTS
to match statement
timings with their
corresponding
statements.

PARSE_TIME BIGINT 20 false The time in milliseconds
that Derby took to parse
this statement.

BIND_TIME BIGINT 20 false The time in milliseconds
that Derby took to
bind this statement.
Binding a statement
is the process of
resolving table and
column references in
the statement against
the table and column
definitions in the system
catalogs.

OPTIMIZE_TIME BIGINT 20 false The time in milliseconds
that Derby took to
optimize this statement.
During optimization,
Derby considers
the various possible
execution plans that
could be used for the
statement, and chooses
the one it thinks will be
best.

GENERATE_TIME BIGINT 20 false The time in milliseconds
that Derby took to
generate code for this
statement.

COMPILE_TIME BIGINT 20 false The time in milliseconds
that Derby took to
compile this statement.
Overall statement time
is divided into compile
time and execute time,
and the compile time is
further sub-divided into
parse, bind, optimize,
and generate time.

Derby Reference Manual

284

Column Name Type Length Nullable Contents

EXECUTE_TIME BIGINT 20 false The time in milliseconds
that Derby took to
execute this statement.

BEGIN_COMP_TIME TIMESTAMP 29 false The time at which
Derby began to compile
this statement.

END_COMP_TIME TIMESTAMP 29 false The time at which
Derby finished
compiling this
statement.

BEGIN_EXE_TIME TIMESTAMP 29 false The time at which
Derby began to execute
this statement.

END_EXE_TIME TIMESTAMP 29 false The time at which
Derby finished
executing this
statement.

SYSXPLAIN_RESULTSETS system table
The SYSXPLAIN_RESULTSETS table captures information about each result set which
is part of a statement that has been executed using RUNTIMESTATISTICS with XPLAIN
style.

See "Working with RunTimeStatistics" in Tuning Derby for information on how to
configure this.

Most statements have at least one result set associated with them, and some complex
statements may have many result sets associated with them. Some statements, for
example DDL statements such as CREATE TABLE, have no result sets associated with
them.

Each row in this table describes a particular result set used by a particular statement.
Rows in this table are typically joined with rows in SYSXPLAIN_STATEMENTS during
analysis:

select st.stmt_text, rs.op_identifier
 from my_stats.sysxplain_statements st
 join my_stats.sysxplain_resultsets rs
 on st.stmt_id = rs.stmt_id

Rows in this table are added automatically when Derby has been configured
appropriately. The rows remain in the table until you delete them or drop the table.

The following table shows the contents of the SYSXPLAIN_RESULTSETS system table.

Table 79. SYSXPLAIN_RESULTSETS system table

Column Name Type Length Nullable Contents

RS_ID CHAR 36 false A unique identifier for
this particular row.

OP_IDENTIFIER VARCHAR 32,672 false A code indicating
what type of result

Derby Reference Manual

285

Column Name Type Length Nullable Contents

set these statistics
are for. Common
result set types
include TABLESCAN,
INDEXSCAN, and
PROJECTION.

OP_DETAILS VARCHAR 32,672 true Additional string
information which
varies for each different
type of result set.
Interpreting this
information currently
requires reading the
Derby source code to
know what values are
being displayed here.

NO_OPENS INTEGER 10 true Number of times this
result set was opened
during execution of the
containing statement.

NO_INDEX_UPDATES INTEGER 10 true The number of index
updates performed
by this result set. This
value is NULL for
result sets used by
queries, but may have
a non-zero value for
modification statements
such as INSERT,
UPDATE, or DELETE.

LOCK_MODE CHAR 2 true A code indicating
the locking level that
was used for this
result set: 'EX' for
exclusive table-level
locking, 'SH' for share
table-level locking, 'IX'
for exclusive row-level
locking, or 'IS' for share
row-level locking.

LOCK_GRANULARITY CHAR 1 true A code indicating the
locking granularity
that was used for
this result set: 'T' for
table-level locking, or
'R' for row-level locking.

PARENT_RS_ID CHAR 36 true The result sets for a
particular statement
are arranged in a
parent-child tree
structure. The output

Derby Reference Manual

286

Column Name Type Length Nullable Contents

rows from one result
set are delivered as
the input rows to its
parent. This column
stores the identifier
of the parent result
set. For the outermost
result set in a particular
statement, this column
is NULL. Note that
sometimes there are
multiple result sets
with the same parent
result set (that is, some
nodes have multiple
children): for example,
a UNION result set will
have two child result
sets, representing the
two sets of rows which
are UNIONed together.

EST_ROW_COUNT DOUBLE 52 true The optimizer's
estimate of the total
number of rows for this
result set.

EST_COST DOUBLE 52 true The optimizer's
estimated cost for this
result set. The value
indicates the number
of milliseconds that the
optimizer estimates it
will take to process this
result set.

AFFECTED_ROWS INTEGER 10 true This column is non-null
only for INSERT,
UPDATE, and DELETE
result sets. For those
result sets, this column
holds the number
of rows which were
inserted, updated, or
deleted, respectively.

DEFERRED_ROWS CHAR 1 true This column is only
non-null for INSERT,
UPDATE, and DELETE
result sets. For those
result sets, this column
holds 'Y' if the INSERT/
UPDATE/DELETE
is being performed
using deferred change
semantics, and

Derby Reference Manual

287

Column Name Type Length Nullable Contents

holds 'N' otherwise.
Deferred change
semantics are used
when self-referencing is
taking place.

INPUT_ROWS INTEGER 10 true This column is used for
SORT, AGGREGATE,
and GROUPBY result
sets, and indicates the
number of rows that
were input to the result
set, and thus were
sorted by the sorter.

SEEN_ROWS INTEGER 10 true For join and set nodes,
this is the number of
rows seen by the "left"
side of the processing.
For aggregate, group,
sort, normalize,
materialize, and certain
other nodes, this is the
number of rows seen.

SEEN_ROWS_RIGHT INTEGER 10 true For join and set nodes,
this is the number of
rows seen by the "right"
side of the processing.
For example, in the
statement

select country
 from countries
union
select country
 from countries
 where region =
 'Africa'

the UNION
result set has
SEEN_ROWS = 6 and
SEEN_ROWS_RIGHT
= 19.

FILTERED_ROWS INTEGER 10 true This column holds the
number of rows which
were eliminated from
the result set during
processing.

RETURNED_ROWS INTEGER 10 true This column holds the
number of rows which
were returned by the
result set to its caller.
Generally speaking,
the number of returned

Derby Reference Manual

288

Column Name Type Length Nullable Contents

rows is the number of
rows INPUT or SEEN,
minus the number of
rows FILTERED.

EMPTY_RIGHT_ROWS INTEGER 10 true This column is used
for left outer joins,
and, if not null, holds
the number of empty
rows which had to be
constructed because no
existing rows met the
join criteria.

INDEX_KEY_OPT CHAR 1 true This column records
when the Index
Key Optimization
is used. The Index
Key Optimization is a
special optimization
which occurs when
a query references
the MAX or MIN value
of a column which
happens to have an
index, and so the MIN
or MAX computation
can be performed by
fetching the first or last,
respectively, entry in
the index, as in:

select max(country_iso_code)

 from countries

SCAN_RS_ID CHAR 36 true If this resultset is one
of the resultset types
which performs a scan
of a table or index, this
column contains the id
value which identifies
the particular row in SYSXPLAIN_SCAN_PROPS
that describes the
statistics related to the
scan behavior.

SORT_RS_ID CHAR 36 true If this resultset is one
of the resultset types
which performs a sort
of a table or index, this
column contains the id
value which identifies
the particular row in SYSXPLAIN_SORT_PROPS
that describes the
statistics related to the
sort behavior. The most

Derby Reference Manual

289

Column Name Type Length Nullable Contents

common situations
which involve sorting
of the data are when
processing the ORDER
BY and GROUP BY
clauses.

STMT_ID CHAR 36 false This column will contain
the ID value which
identifies the particular
statement for which
this result set was
executed. Note that
there may be multiple
result sets executed
for a single statement,
so a join between the SYSXPLAIN_STATEMENTS
table and the SYSXPLAIN_RESULTSETS
table may retrieve
multiple rows.

TIMING_ID CHAR 36 true If statistics timings were
not being captured,
this column will have a
NULL value. If statistics
timings were being
captured, this column
will contain the id value
which can be used as a
foreign key to join with
the SYSXPLAIN_RESULTSET_TIMINGS
row which has the
timing information for
this resultset.

SYSXPLAIN_RESULTSET_TIMINGS system table
The SYSXPLAIN_RESULTSET_TIMINGS table captures timing information about
result set accesses which occurred during statements that were executed using
RUNTIMESTATISTICS with XPLAIN style.

See "Working with RunTimeStatistics" in Tuning Derby for information on
how to configure this. Note that statistics timing must be configured by calling
SYSCS_UTIL.SYSCS_SET_STATISTICS_TIMING(1). Each row in this table describes
various timing information for this particular result set in this particular statement.
Rows in this table are typically joined with rows in SYSXPLAIN_STATEMENTS and
SYSXPLAIN_RESULTSETS during analysis. For example:

select rs.op_identifier, rst.execute_time
 from my_stats.sysxplain_resultsets rs,
 my_stats.sysxplain_resultset_timings rst
 where rs.stmt_id = ? and
 rs.timing_id = rst.timing_id
 order by rst.execute_time desc

Derby Reference Manual

290

Rows in this table are added automatically when Derby has been configured
appropriately. The rows remain in the table until you delete them or drop the table.

The following table shows the contents of the SYSXPLAIN_RESULTSET_TIMINGS
system table.

Table 80. SYSXPLAIN_RESULTSET_TIMINGS system table

Column Name Type Length Nullable Contents

TIMING_ID CHAR 36 false A unique ID for this
particular row. This
column can be used
to join against the
TIMING_ID column
in the SYSXPLAIN_RESULTSETS
table.

CONSTRUCTOR_TIME BIGINT 20 true The time it took to
construct this instance
of this result set, in
milliseconds.

OPEN_TIME BIGINT 20 true The time it took to
open this instance
of this result set, in
milliseconds. Note that
if this result set was
opened multiple times,
this column is the sum
of all the individual
open times.

NEXT_TIME BIGINT 20 true The accumulated
time for all the calls
to fetch the next row
from this result set, in
milliseconds, for all the
opens of this result set.

CLOSE_TIME BIGINT 20 true The time it took to
close this instance
of the result set, in
milliseconds.

EXECUTE_TIME BIGINT 20 true The time for all
operations performed
by this result set,
excluding the time
taken by all the children
result sets of this result
set, in milliseconds.

AVG_NEXT_TIME_PER_ROWBIGINT 20 true If there was at least
one row returned
from this result set,
then this value is the
NEXT_TIME value
divided by the number

Derby Reference Manual

291

Column Name Type Length Nullable Contents

of rows returned from
this result set, which
thus is the average
time, in milliseconds,
that it took to retrieve a
row from this result set.

PROJECTION_TIME BIGINT 20 true This value is NULL
unless this result set is
a PROJECTION result
set, in which case this
column contains the
time, in milliseconds,
that it took to perform
projection of columns
from the rows in this
result set.

RESTRICTION_TIME BIGINT 20 true This value is NULL
unless this result set is
a PROJECTION result
set, in which case this
column contains the
time, in milliseconds,
that it took to perform
restriction of rows from
the rows in this result
set.

TEMP_CONG_CREATE_TIMEBIGINT 20 true For result sets which
involve a materialization
of a temporary
intermediate result set,
this value is the time
it took to create the
materialized result set,
in milliseconds. This
materialization may
occur with hash joins
where the number of
rows in the intermediate
result is too large to
hold in memory.

TEMP_CONG_FETCH_TIMEBIGINT 20 true Similar to TEMP_CONG_CREATE_TIME,
this value is the time
it took to retrieve
rows from the
materialized result set,
in milliseconds.

SYSXPLAIN_SCAN_PROPS system table

Derby Reference Manual

292

The SYSXPLAIN_SCAN_PROPS table captures information about table/index accesses
which occurred during statements that were executed using RUNTIMESTATISTICS with
XPLAIN style.

See "Working with RunTimeStatistics" in Tuning Derby for information on how to
configure this.

Each row in this table describes a single table/index scan for a particular result set
used by a particular statement. Rows in this table are typically joined with rows in
SYSXPLAIN_STATEMENTS and SYSXPLAIN_RESULTSETS during analysis:

select st.stmt_text, sp.no_visited_rows
 from my_stats.sysxplain_scan_props sp,
 my_stats.sysxplain_resultsets rs,
 my_stats.sysxplain_statements st
 where st.stmt_id = rs.stmt_id and
 rs.scan_rs_id = sp.scan_rs_id and
 rs.op_identifier = 'TABLESCAN' and
 sp.scan_object_name = 'COUNTRIES'

Rows in this table are added automatically when Derby has been configured
appropriately. The rows remain in the table until you delete them or drop the table.

The following table shows the contents of the SYSXPLAIN_SCAN_PROPS system table.

Table 81. SYSXPLAIN_SCAN_PROPS system table

Column Name Type Length Nullable Contents

SCAN_RS_ID CHAR 36 false A unique identifer
for this particular
row. Referenced
by the foreign key
SCAN_RS_ID in SYSXPLAIN_RESULTSETS.

SCAN_OBJECT_NAME VARCHAR 128 true The name of the object
being scanned. If this
is a scan of a table or
index, the table name
or index name appears
here. If this is a scan
of the internal index
created for a constraint,
the constraint name
appears here. For
complex join queries,
the object being
scanned may be an
intermediate result,
in which case a
description such as
'Temporary HashTable'
appears.

SCAN_OBJECT_TYPE CHAR 1 false A code indicating the
type of object being
scanned. Codes include
'T' for Table, 'I' for
Index, and 'C' for
Constraint.

Derby Reference Manual

293

Column Name Type Length Nullable Contents

SCAN_TYPE CHAR 8 false The type of scan
being performed. Scan
types include 'HEAP',
'BTREE', and 'SORT'.

ISOLATION_LEVEL CHAR 3 true The isolation level
being used for this
scan. Isolation levels
are identified by a
code: 'RU' for Read
Uncommitted, 'RC'
for Read Committed,
'RR' for Repeatable
Read, and 'SE' for
Serializable.

NO_VISITED_PAGES INTEGER 10 true Number of database
pages that this scan
touched. For btree
scans this number only
includes the leaf pages
visited.

NO_VISITED_ROWS INTEGER 10 true Number of database
rows that were
examined by this scan.
This number includes
all rows, including those
rows marked deleted,
those rows that don't
meet qualification, and
those rows which were
returned by the scan.

NO_QUALIFIED_ROWS INTEGER 10 true Number of rows that
satisfied the qualifiers
for this scan.

NO_VISITED_DELETED_ROWSINTEGER 10 true Number of the
database rows that
were examined by this
scan which were found
to be rows that were
marked deleted.

NO_FETCHED_COLUMNSINTEGER 10 true Number of columns that
were fetched from each
qualifying row.

BITSET_OF_FETCHED_COLUMNSVARCHAR 32,672 true Description of the
columns which were
fetched from each
qualifying row.

BTREE_HEIGHT INTEGER 10 true For a scan of type
BTREE, this column
holds the height of
the BTREE index.

Derby Reference Manual

294

Column Name Type Length Nullable Contents

The typical height of a
BTREE is 2-4; BTREE
heights larger than
this should only be
seen with very large
indexes. A tree with
one page has a height
of 1. Total number of
pages visited in a scan
of a BTREE should be
(BTREE_HEIGHT - 1 +
NO_VISITED_PAGES).
For an extremely small
BTREE, the btree
height may be negative
(-1). For other types of
scans, this column is
NULL.

FETCH_SIZE INTEGER 10 true The number of pages
fetched at a time when
the scan is retrieving
pages from disk.

START_POSITION VARCHAR 32,672 true For index and
constraint scans, a
textual representation
of the operator, if any,
which was used to
position the beginning
of the index/constraint
scan.

STOP_POSITION VARCHAR 32,672 true For index and
constraint scans, a
textual representation
of the operator, if any,
which was used to
position the end of the
index/constraint scan.

SCAN_QUALIFIERS VARCHAR 32,672 true If the query specified
values which are to
be used to limit the
rows that are scanned,
information about those
values is captured in
this column.

NEXT_QUALIFIERS VARCHAR 32,672 true If the query specified
values which are to
be used to limit the
rows that are scanned,
information about those
values is captured in
this column.

Derby Reference Manual

295

Column Name Type Length Nullable Contents

HASH_KEY_COLUMN_NUMBERSVARCHAR 32,672 true For hash joins, this
column contains
information about which
column is being used to
hash the rows that are
joined.

HASH_TABLE_SIZE INTEGER 10 true For hash joins, this
column contains
information about the
size of the hash table
that will be used to hold
the rows being joined.
This hash table is an
intermediate result,
and will be discarded
at the end of the
query. If the hash table
cannot fit in memory,
it will automatically
spill over to disk.
Since the spillover
to disk can have
significant performance
implications, this value
can provide a clue that
the hash table was
unexpectedly too large
to fit in memory.

SYSXPLAIN_SORT_PROPS system table
The SYSXPLAIN_SORT_PROPS table captures information about row sorting actions
which occurred during statements that were executed using RUNTIMESTATISTICS with
XPLAIN style.

See "Working with RunTimeStatistics" in Tuning Derby for information on how to
configure this.

Rows in this table are typically joined with rows in SYSXPLAIN_STATEMENTS and
SYSXPLAIN_RESULTSETS during analysis.

select s.stmt_text, rs.op_identifier,
 srt.no_input_rows, srt.no_output_rows
 from my_stats.sysxplain_sort_props srt,
 my_stats.sysxplain_resultsets rs,
 my_stats.sysxplain_statements s
 where rs.stmt_id = s.stmt_id and rs.sort_rs_id = srt.sort_rs_id

Rows in this table are added automatically when Derby has been configured
appropriately. The rows remain in the table until you delete them or drop the table.

The following table shows the contents of the SYSXPLAIN_SORT_PROPS system table.

Table 82. SYSXPLAIN_SORT_PROPS system table

Derby Reference Manual

296

Column Name Type Length Nullable Contents

SORT_RS_ID CHAR 36 false A unique identifier for
this row. Matches the
corresponding value
of SORT_RS_ID in the my_stats.SYSXPLAIN_RESULTSETS
row for the result set
which required this sort
to be performed.

SORT_TYPE CHAR 2 true A code indicating the
type of sort that was
performed. The code
values include 'IN' for
an internal sort, and
'EX' for an external
sort. An internal sort is
one which was entirely
performed in-memory
and did not overflow
to any temporary files,
while an external sort
used one or more
external files.

NO_INPUT_ROWS INTEGER 10 true Number of rows which
were provided to the
sorter.

NO_OUTPUT_ROWS INTEGER 10 true Number of rows which
were returned by the
sorter. Note that this
may be fewer rows than
were input, for example
when the sorter is
performing GROUP
BY processing or is
eliminating duplicates.

NO_MERGE_RUNS INTEGER 10 true Number of merge runs
which were provided.
This value will be NULL
for an internal sort, but
for an external sort it
indicates how many
times the intermediate
sort files were merged
together. External sorts
are far more expensive
than internal sorts, and
each additional merge
run that an external
sort must perform adds
considerably more to
the overhead of the
sort.

Derby Reference Manual

297

Column Name Type Length Nullable Contents

MERGE_RUN_DETAILS VARCHAR 32,672 true Additional information
about the size of the
merge runs. This value
will be NULL for an
internal sort.

ELIMINATE_DUPLICATES CHAR 1 true A code indicating
whether or not this sort
eliminated duplicates
from the input. Valid
values are 'Y' and
'N'. This column
only applies for a
sort which was NOT
performing GROUP
BY aggregation; for
GROUP BY sorts this
column is always NULL.
See the DISTINCT_AGGREGATE
column for the
corresponding
information for
aggregating sorts.

IN_SORT_ORDER CHAR 1 true A code indicating
whether or not the rows
which were input to the
sorter were already in
sort order, which can
happen if the rows were
retrieved by using an
index, or if an earlier
phase of processing
had already sorted the
data. The code is 'Y' if
the rows are already
in sorted order, and 'N'
otherwise.

DISTINCT_AGGREGATE CHAR 1 true A code indicating
whether the
aggregation process
was computing distinct
aggregates or not. Valid
values are 'Y' and 'N'.

Derby Reference Manual

298

Derby exception messages and SQL states

The JDBC driver returns SQLExceptions for all errors from Derby. If the exception
originated in a user type but is not itself an SQLException, it is wrapped in an
SQLException. Derby-specific SQLExceptions use SQLState class codes starting with X.
Standard SQLState values are returned for exceptions where appropriate.

Unimplemented aspects of the JDBC driver return a SQLException with a SQLState
starting with 0A. The exception class is java.sql.SQLFeatureNotSupportedException.
These unimplemented parts are for features not supported by Derby.

Derby supplies values for the message and SQLState fields. In addition, Derby
sometimes returns multiple SQLExceptions using the nextException chain. The first
exception is always the most severe exception, with SQL Standard exceptions preceding
those that are specific to Derby.

For information on processing SQLExceptions, see the Derby Developer's Guide.

SQL error messages and exceptions
The following tables list SQLStates for exceptions. Exceptions that begin with an X are
specific to Derby.

Table 83. Class 01: Warning

SQLSTATE Message Text

01001 An attempt to update or delete an already deleted row was made: No row
was updated or deleted.

01003 Null values were eliminated from the argument of a column function.

01006 Privilege not revoked from user <authorizationID>.

01007 Role <authorizationID> not revoked from authentication id <authorizationID>.

01008 WITH ADMIN OPTION of role <authorizationID> not revoked from
authentication id <authorizationID>.

01009 Generated column <columnName> dropped from table <tableName>.

0100E Attempt to return too many result sets.

01500 The constraint <constraintName> on table <tableName> has been dropped.

01501 The view <viewName> has been dropped.

01502 The trigger <triggerName> on table <tableName> has been dropped.

01503 The column <columnName> on table <tableName> has been modified by
adding a not null constraint.

01504 The new index is a duplicate of an existing index: <indexName>.

01505 The value <dataValue> may be truncated.

01522 The newly defined synonym '<synonymName>' resolved to the object
'<objectName>' which is currently undefined.

01J01 Database '<databaseName>' not created, connection made to existing
database instead.

Derby Reference Manual

299

SQLSTATE Message Text

01J02 Scroll sensitive cursors are not currently implemented.

01J04 The class '<className>' for column '<columnName>' does not implement
java.io.Serializable or java.sql.SQLData. Instances must implement one of
these interfaces to allow them to be stored.

01J05 Database upgrade succeeded. The upgraded database is now ready for
use. Revalidating stored prepared statements failed. See next exception for
details of failure.

01J06 ResultSet not updatable. Query does not qualify to generate an updatable
ResultSet.

01J07 ResultSetHoldability restricted to
ResultSet.CLOSE_CURSORS_AT_COMMIT for a global transaction.

01J08 Unable to open resultSet type <resultSetType>. ResultSet type
<resultSetType> opened.

01J10 Scroll sensitive result sets are not supported by server; remapping to
forward-only cursor

01J12 Unable to obtain message text from server. See the next exception. The
stored procedure SYSIBM.SQLCAMESSAGE is not installed on the server.
Please contact your database administrator.

01J13 Number of rows returned (<number>) is too large to fit in an integer; the
value returned will be truncated.

01J14 SQL authorization is being used without first enabling authentication.

01J15 Your password will expire in <remainingDays> day(s). Please use the
SYSCS_UTIL.SYSCS_MODIFY_PASSWORD procedure to change your
password in database '<databaseName>'.

01J16 Your password is stale. To protect the database, you
should update your password soon. Please use the
SYSCS_UTIL.SYSCS_MODIFY_PASSWORD procedure to change your
password in database '<databaseName>'.

01J17 You cannot encrypt, re-encrypt, or decrypt a database which is already
booted. You must shutdown the database before attempting these
operations.

Table 84. Class 07: Dynamic SQL Error

SQLSTATE Message Text

07000 At least one parameter to the current statement is uninitialized.

07004 Parameter <parameterName> is an <procedureName> procedure parameter
and must be registered with CallableStatement.registerOutParameter before
execution.

07009 No input parameters.

Table 85. Class 08: Connection Exception

SQLSTATE Message Text

08000 Connection closed by unknown interrupt.

Derby Reference Manual

300

SQLSTATE Message Text

08001 A connection could not be established because the security token is larger
than the maximum allowed by the network protocol.

08001 A connection could not be established because the user id has a length of
zero or is larger than the maximum allowed by the network protocol.

08001 A connection could not be established because the password has a length of
zero or is larger than the maximum allowed by the network protocol.

08001 A connection could not be established because the external name
(EXTNAM) has a length of zero or is larger than the maximum allowed by the
network protocol.

08001 A connection could not be established because the server name (SRVNAM)
has a length of zero or is larger than the maximum allowed by the network
protocol.

08001 Required Derby DataSource property <propertyName> not set.

08001 <error> : Error connecting to server <serverName> on port <portNumber>
with message <messageText>.

08001 SocketException: '<error>'

08001 Unable to open stream on socket: '<error>'.

08001 User id length (<number>) is outside the range of 1 to <number>.

08001 Password length (<length>) is outside the range of 1 to <number>.

08001 User id can not be null.

08001 Password can not be null.

08001 A connection could not be established because the database name
'<databaseName>' is larger than the maximum length allowed by the network
protocol.

08003 No current connection.

08003 getConnection() is not valid on a closed PooledConnection.

08003 Lob method called after connection was closed

08003 The underlying physical connection is stale or closed.

08004 Connection refused : <connectionName>

08004 Connection authentication failure occurred. Reason: <reasonText>.

08004 The connection was refused because the database <databaseName> was
not found.

08004 Database connection refused.

08004 User '<authorizationID>' cannot shut down database '<databaseName>'.
Only the database owner can perform this operation.

08004 User '<authorizationID>' cannot (re)encrypt database '<databaseName>'.
Only the database owner can perform this operation.

08004 User '<authorizationID>' cannot upgrade database '<databaseName>'. Only
the database owner can perform this operation.

08004 Connection refused to database '<databaseName>' because it is in
replication slave mode.

Derby Reference Manual

301

SQLSTATE Message Text

08004 User '<authorizationID>' cannot issue a replication operation on database
'<databaseName>'. Only the database owner can perform this operation.

08004 Missing permission for user '<authorizationID>' to shutdown system
[<exceptionMsg>].

08004 Cannot check system permission to create database '<databaseName>'
[<exceptionMsg>].

08004 Missing permission for user '<authorizationID>' to create database
'<databaseName>' [<exceptionMsg>].

08004 Connection authentication failure occurred. Either the supplied credentials
were invalid, or the database uses a password encryption scheme not
compatible with the strong password substitution security mechanism. If this
error started after upgrade, refer to the release note for DERBY-4483 for
options.

08004 Username or password is null or 0 length.

08004 User '<authorizationID>' cannot decrypt database '<databaseName>'. Only
the database owner can perform this operation.

08006 A network protocol error was encountered and the connection has been
terminated: <error>

08006 An error occurred during connect reset and the connection has been
terminated. See chained exceptions for details.

08006 SocketException: '<error>'

08006 A communications error has been detected: <error>.

08006 An error occurred during a deferred connect reset and the connection has
been terminated. See chained exceptions for details.

08006 Insufficient data while reading from the network - expected a minimum of
<number> bytes and received only <number> bytes. The connection has
been terminated.

08006 Attempt to fully materialize lob data that is too large for the JVM. The
connection has been terminated.

08006 org.apache.derby.jdbc.EmbeddedDriver is not registered with the JDBC
driver manager

08006 Database '<databaseName>' shutdown.

08006 Database '<databaseName>' dropped.

Table 86. Class 0A: Feature not supported

SQLSTATE Message Text

0A000 Feature not implemented: <featureName>.

0A000 The DRDA command <commandName> is not currently implemented. The
connection has been terminated.

0A000 JDBC method is not yet implemented.

0A000 JDBC method <methodName> is not supported by the server. Please
upgrade the server.

Derby Reference Manual

302

SQLSTATE Message Text

0A000 resultSetHoldability property <propertyName> not supported

0A000 cancel() not supported by the server.

0A000 Security mechanism '<mechanismName>' is not supported.

0A000 The data type '<datatypeName>' is not supported.

Table 87. Class 0P: Invalid role specification

SQLSTATE Message Text

0P000 Invalid role specification, role does not exist: '<roleName>'.

0P000 Invalid role specification, role not granted to current user or PUBLIC:
'<roleName>'.

Table 88. Class 21: Cardinality Violation

SQLSTATE Message Text

21000 Scalar subquery is only allowed to return a single row.

21000 A row in the target table qualifies for more than one DELETE or UPDATE
action.

Table 89. Class 22: Data Exception

SQLSTATE Message Text

22001 A truncation error was encountered trying to shrink <dataType>
'<dataValue>' to length <length>.

22003 The resulting value is outside the range for the data type <datatypeName>.

22003 Year (<year>) exceeds the maximum '<year>'.

22003 Decimal may only be up to 31 digits.

22003 Overflow occurred during numeric data type conversion of '<datatypeName>'
to <datatypeName>.

22003 The length (<number>) exceeds the maximum length (<datatypeName>) for
the data type.

22005 Unable to convert a value of type '<typeName>' to type '<typeName>' : the
encoding is not supported.

22005 The required character converter is not available.

22005 Unicode string cannot convert to Ebcdic string

22005 Unrecognized JDBC type. Type: <typeName>, columnCount: <number>,
columnIndex: <number>.

22005 Invalid JDBC type for parameter <parameterName>.

22005 Unrecognized Java SQL type <datatypeName>.

22005 Unicode string cannot convert to UTF-8 string

22005 An attempt was made to get a data value of type '<datatypeName>' from a
data value of type '<datatypeName>'.

Derby Reference Manual

303

SQLSTATE Message Text

22007 The string representation of a date/time value is out of range.

22007 The syntax of the string representation of a date/time value is incorrect.

22008 '<argument>' is an invalid argument to the <functionName> function.

2200H Sequence generator '<schemaName>.<sequenceName>' does not cycle. No
more values can be obtained from this sequence generator.

2200L Values assigned to XML columns must be well-formed Document nodes.

2200M Invalid XML Document: <parserError>

2200V Invalid context item for <operatorName> operator; context items must be
well-formed Document nodes.

2200W XQuery serialization error: Attempted to serialize one or more top-level
Attribute nodes.

22011 The second or third argument of the SUBSTR function is out of range.

22011 The range specified for the substring with offset <offset> and len <len> is out
of range for the String: <str>.

22012 Attempt to divide by zero.

22013 Attempt to take the square root of a negative number, '<number>'.

22014 The start position for LOCATE is invalid; it must be a positive integer. The
index to start the search from is '<startIndex>'. The string to search for is
'<searchString>'. The string to search from is '<fromString>'.

22015 The '<functionName>' function is not allowed on the following set of
types. First operand is of type '<typeName>'. Second operand is of type
'<typeName>'. Third operand (start position) is of type '<typeName>'.

22018 Invalid character string format for type <typeName>.

22019 Invalid escape sequence, '<sequenceName>'. The escape string must be
exactly one character. It cannot be a null or more than one character.

22020 Invalid trim string, '<string>'. The trim string must be exactly one character or
NULL. It cannot be more than one character.

22025 Escape character must be followed by escape character, '_', or '%'. It cannot
be followed by any other character or be at the end of the pattern.

22027 The built-in TRIM() function only supports a single trim character. The
LTRIM() and RTRIM() built-in functions support multiple trim characters.

22028 The string exceeds the maximum length of <number>.

22501 An ESCAPE clause of NULL returns undefined results and is not allowed.

2201X Invalid row count for OFFSET, must be >= 0.

2201W Row count for FIRST/NEXT must be >= 1 and row count for LIMIT must be
>= 0.

2201Z NULL value not allowed for <string> argument.

Table 90. Class 23: Constraint Violation

Derby Reference Manual

304

SQLSTATE Message Text

23502 Column '<columnName>' cannot accept a NULL value.

23503 <statementType> on table '<tableName>' caused a violation of foreign key
constraint '<constraintName>' for key <keyName>. The statement has been
rolled back.

23505 The statement was aborted because it would have caused a duplicate key
value in a unique or primary key constraint or unique index identified by
'<indexOrConstraintName>' defined on '<tableName>'.

23506 The transaction was aborted because of a deferred constraint
violation: Duplicate in unique or primary key constraint identified by
'<indexOrConstraintName>' defined on '<tableName>'.

23507 Deferred constraint violation: Duplicate in unique or primary key constraint
identified by '<indexOrConstraintName>' defined on '<tableName>'.

23513 The check constraint '<constraintName>' was violated while performing an
INSERT or UPDATE on table '<tableName>'.

23514 The transaction was aborted because of a deferred constraint violation:
Check constraint identified by '<indexOrConstraintName>' defined on
<tableName> as '<constraintText>'.

23515 Deferred constraint violation: Check constraint identified by
'<indexOrConstraintName>' defined on <tableName> as '<constraintText>'.

23516 The transaction was aborted because of a deferred constraint violation:
Foreign key '<indexOrConstraintName>' defined on <tableName>
referencing constraint '<indexOrConstraintName>' defined on <tableName>,
key '<keyName>'.

23517 Deferred constraint violation: Foreign key constraint
'<indexOrConstraintName>' defined on <tableName> referencing constraint
'<indexOrConstraintName>' defined on <tableName>, key '<keyName>'.

Table 91. Class 24: Invalid Cursor State

SQLSTATE Message Text

24000 Invalid cursor state - no current row.

24501 The identified cursor is not open.

Table 92. Class 25: Invalid Transaction State

SQLSTATE Message Text

25001 Cannot close a connection while a transaction is still active.

25001 Invalid transaction state: active SQL transaction.

25501 Unable to set the connection read-only property in an active transaction.

25502 An SQL data change is not permitted for a read-only connection, user or
database.

25503 DDL is not permitted for a read-only connection, user or database.

25505 A read-only user or a user in a read-only database is not permitted to disable
read-only mode on a connection.

Derby Reference Manual

305

Table 93. Class 28: Invalid Authorization Specification

SQLSTATE Message Text

28502 The user name '<authorizationID>' is not valid.

Table 94. Class 2D: Invalid Transaction Termination

SQLSTATE Message Text

2D521 setAutoCommit(true) invalid during global transaction.

2D521 Commit or Rollback invalid for application execution environment.

Table 95. Class 38: External Function Exception

SQLSTATE Message Text

38000 The exception '<exception>' was thrown while evaluating an expression.

38001 The external routine is not allowed to execute SQL statements.

38002 The routine attempted to modify data, but the routine was not defined as
MODIFIES SQL DATA.

38004 The routine attempted to read data, but the routine was not defined as
READS SQL DATA.

Table 96. Class 39: External Routine Invocation Exception

SQLSTATE Message Text

39004 A NULL value cannot be passed to a method which takes a parameter of
primitive type '<type>'.

Table 97. Class 3B: Invalid SAVEPOINT

SQLSTATE Message Text

3B001 SAVEPOINT, <savepointName> does not exist or is not active in the current
transaction.

3B002 The maximum number of savepoints has been reached.

3B501 A SAVEPOINT with the passed name already exists in the current
transaction.

3B502 A Release or Rollback to Savepoint was specified, but the savepoint does
not exist.

Table 98. Class 40: Transaction Rollback

SQLSTATE Message Text

40001 A lock could not be obtained due to a deadlock, cycle of locks and waiters is:
<lockCycle>. The selected victim is XID : <transactionID>.

40XC0 Dead statement. This may be caused by catching a transaction severity error
inside this statement.

Derby Reference Manual

306

SQLSTATE Message Text

40XD0 Container has been closed.

40XD1 Container was opened in read-only mode.

40XD2 Container <containerName> cannot be opened; it either has been dropped
or does not exist.

40XL1 A lock could not be obtained within the time requested

40XL1 A lock could not be obtained within the time requested. The lockTable dump
is: <tableDump>

40XL2 Self-deadlock.

40XT0 An internal error was identified by RawStore module.

40XT1 An exception was thrown during transaction commit.

40XT2 An exception was thrown during rollback of a SAVEPOINT.

40XT4 An attempt was made to close a transaction that was still active. The
transaction has been aborted.

40XT5 Exception thrown during an internal transaction.

40XT6 Database is in quiescent state, cannot activate transaction. Please wait for a
moment till it exits the quiescent state.

40XT7 Operation is not supported in an internal transaction.

40XT8 An internal error was identified by RawStore module. Internal state detail
from the transaction is as follows: <internalTransactionState>

Table 99. Class 42: Syntax Error or Access Rule Violation

SQLSTATE Message Text

42000 Syntax error or access rule violation; see additional errors for details.

42500 User '<authorizationID>' does not have <permissionType> permission on
table '<schemaNamet>'.'<tableName>'.

42501 User '<authorizationID>' does not have <permissionType> permission on
table '<schemaNamet>'.'<tableName>' for grant.

42502 User '<authorizationID>' does not have <permissionType> permission on
column '<columnName>' of table '<schemaName>'.'<tableName>'.

42503 User '<authorizationID>' does not have <permissionType> permission on
column '<columnName>' of table '<schemaName>'.'<tableName>' for grant.

42504 User '<authorizationID>' does not have <permissionType> permission on
<objectName> '<schemaName>'.'<tableName>'.

42505 User '<authorizationID>' does not have <permissionType> permission on
<objectName> '<schemaName>'.'<tableName>' for grant.

42506 User '<authorizationID>' is not the owner of <objectName>
'<schemaName>'.'<tableName>'.

42507 User '<authorizationID>' can not perform the operation in schema
'<schemaName>'.

42508 User '<authorizationID>' can not create schema '<schemaName>'. Only the
database owner can issue this statement.

Derby Reference Manual

307

SQLSTATE Message Text

42509 Specified grant or revoke operation is not allowed on object '<objectName>'.

4250A User '<authorizationID>' does not have <permissionName> permission on
object '<schemaName>'.'<objectName>'.

4250B Invalid database authorization property '<propertyName>=<propertyValue>'.

4250C User(s) '<authorizationID>' must not be in both read-only and full-access
authorization lists.

4250D Repeated user(s) '<authorizationID>' in access list '<listName>';

4250E Internal Error: invalid <authorizationID> id in statement permission list.

4251A Statement <sqlText> can only be issued by database owner.

4251B PUBLIC is reserved and cannot be used as a user identifier or role name.

4251C Role <authorizationID> cannot be granted to <authorizationID> because this
would create a circularity.

4251D Only the database owner can perform this operation.

4251E No one can view the '<tableName>'.'<columnName>' column.

4251F You cannot drop the credentials of the database owner.

4251G Please set derby.authentication.builtin.algorithm to a valid message digest
algorithm. The current authentication scheme is too weak to be used by
NATIVE authentication.

4251H Invalid NATIVE authentication specification. Please set
derby.authentication.provider to a value of the form NATIVE:$credentialsDB
or NATIVE:$credentialsDB:LOCAL (at the system level).

4251I Authentication cannot be performed because the credentials database
'<databaseName>' does not exist.

4251J The value for the property '<propertyName>' is formatted badly.

4251K The first credentials created must be those of the DBO.

4251L The derby.authentication.provider property specifies '<dbName>' as the
name of the credentials database. This is not a valid name for a database.

42601 In an ALTER TABLE statement, the column '<columnName>' has been
specified as NOT NULL and either the DEFAULT clause was not specified or
was specified as DEFAULT NULL.

42601 ALTER TABLE statement cannot add an IDENTITY column to a table.

42605 The number of arguments for function '<functionName>' is incorrect.

42606 An invalid hexadecimal constant starting with '<number>' has been detected.

42610 All the arguments to the COALESCE/VALUE function cannot be parameters.
The function needs at least one argument that is not a parameter.

42611 The length, precision, or scale attribute for column, or type mapping
'<dataType>' is not valid.

42613 Multiple or conflicting keywords involving the '<clause>' clause are present.

42621 A check constraint or generated column that is defined with '<columnName>'
is invalid.

42622 The name '<name>' is too long. The maximum length is '<number>'.

Derby Reference Manual

308

SQLSTATE Message Text

42734 Name '<name>' specified in context '<context>' is not unique.

42802 The number of values assigned is not the same as the number of specified
or implied columns.

42803 An expression containing the column '<columnName>' appears in the
SELECT list and is not part of a GROUP BY clause.

42815 The replacement value for '<sqlText>' is invalid.

42815 The data type, length or value of arguments '<dataType>' and '<dataType>'
is incompatible.

42818 Comparisons between '<type>' and '<type>' are not supported. Types must
be comparable. String types must also have matching collation. If collation
does not match, a possible solution is to cast operands to force them to the
default collation (e.g. SELECT tablename FROM sys.systables WHERE
CAST(tablename AS VARCHAR(128)) = 'T1')

42820 The floating point literal '<string>' contains more than 30 characters.

42821 Columns of type '<type>' cannot hold values of type '<type>'.

42824 An operand of LIKE is not a string, or the first operand is not a column.

42831 '<columnName>' cannot be a column of a primary key or unique key
because it can contain null values.

42831 '<columnName>' cannot be a column of a primary key because it can contain
null values.

42834 SET NULL cannot be specified because FOREIGN KEY '<key>' cannot
contain null values.

42837 ALTER TABLE '<tableName>' specified attributes for column
'<columnName>' that are not compatible with the existing column.

42846 Cannot convert types '<type>' to '<type>'.

42877 A qualified column name '<columnName>' is not allowed in the ORDER BY
clause.

42878 The ORDER BY clause of a SELECT UNION statement only supports
unqualified column references and column position numbers. Other
expressions are not currently supported.

42879 The ORDER BY clause may not contain column '<columnName>', since the
query specifies DISTINCT and that column does not appear in the query
result.

4287A The ORDER BY clause may not specify an expression, since the query
specifies DISTINCT.

4287B In this context, the ORDER BY clause may only specify a column number.

42884 No authorized routine named '<routineName>' of type '<type>' having
compatible arguments was found.

42886 '<parameterMode>' parameter '<parameterName>' requires a parameter
marker '?'.

42894 DEFAULT value or IDENTITY attribute value is not valid for column
'<columnName>'.

428C1 Only one identity column is allowed in a table.

Derby Reference Manual

309

SQLSTATE Message Text

428EK The qualifier for a declared global temporary table name must be SESSION.

42903 Invalid use of an aggregate function.

42908 The CREATE VIEW statement does not include a column list.

42909 The CREATE TABLE statement does not include a column list.

42915 Foreign Key '<key>' is invalid for the reason which follows:
'<detailedReason>'.

42916 Synonym '<synonym2>' cannot be created for '<synonym1>' as it would
result in a circular synonym chain.

42939 An object cannot be created with the schema name '<schemaNamet>'.

4293A A role cannot be created with the name '<authorizationID>', the SYS prefix is
reserved.

42962 Long column type column or parameter '<columnName>' not permitted in
declared global temporary tables or procedure definitions.

42995 The requested function does not apply to global temporary tables.

42X01 Syntax error: <error>.

42X02 <parserException>.

42X03 Column name '<columnName>' is in more than one table in the FROM list.

42X04 Column '<columnName>' is either not in any table in the FROM list or
appears within a join specification and is outside the scope of the join
specification or appears in a HAVING clause and is not in the GROUP BY
list. If this is a CREATE or ALTER TABLE statement then '<columnName>' is
not a column in the target table.

42X05 Table/View '<objectName>' does not exist.

42X06 Too many result columns specified for table '<tableName>'.

42X07 Null is only allowed in a VALUES clause within an INSERT statement.

42X08 The constructor for class '<className>' cannot be used as an external
virtual table because the class does not implement '<constructorName>'.

42X09 The table or alias name '<tableName>' is used more than once in the FROM
list.

42X10 '<tableName>' is not an exposed table name in the scope in which it
appears.

42X12 Column name '<columnName>' appears more than once in the CREATE
TABLE statement.

42X13 Column name '<columnName>' appears more than once times in the column
list of an INSERT statement.

42X14 '<columnName>' is not a column in table or VTI '<tableOrVTIName>'.

42X15 Column name '<columnName>' appears in a statement without a FROM list.

42X16 Column name '<columnName>' appears multiple times in the SET clause of
an UPDATE statement.

42X17 In the Properties list of a FROM clause, the value '<joinOrder>' is not valid as
a joinOrder specification. Only the values FIXED and UNFIXED are valid.

Derby Reference Manual

310

SQLSTATE Message Text

42X19 The WHERE, WHEN or HAVING clause or CHECK CONSTRAINT definition
is a '<dataType>' expression. It must be a BOOLEAN expression.

42X19 The WHERE or HAVING clause or CHECK CONSTRAINT definition is an
untyped parameter expression. It must be a BOOLEAN expression.

42X20 Syntax error; integer literal expected.

42X23 Cursor <cursorName> is not updatable.

42X24 Column <columnName> is referenced in the HAVING clause but is not in the
GROUP BY list.

42X25 The '<functionName>' function is not allowed on the '<1>' type.

42X26 The class '<className>' for column '<columnName>' does not exist or is
inaccessible. This can happen if the class is not public.

42X28 Delete table '<tableName>' is not target of cursor '<cursorName>'.

42X29 Update table '<tableName>' is not the target of cursor '<cursorName>'.

42X30 Cursor '<cursorName>' not found. Verify that autocommit is off.

42X31 Column '<columnName>' is not in the FOR UPDATE list of cursor
'<cursorName>'.

42X32 The number of columns in the derived column list must match the number of
columns in table '<tableName>'.

42X33 The derived column list contains a duplicate column name '<columnName>'.

42X34 There is a ? parameter in the select list. This is not allowed.

42X35 It is not allowed for both operands of '<operatorName>' to be ? parameters.

42X36 The '<operatorName>' operator is not allowed to take a ? parameter as an
operand.

42X37 The unary '<operatorName>' operator is not allowed on the '<type>' type.

42X38 'SELECT *' only allowed in EXISTS and NOT EXISTS subqueries.

42X39 Subquery is only allowed to return a single column.

42X40 A NOT statement has an operand that is not boolean . The operand of NOT
must evaluate to TRUE, FALSE, or UNKNOWN.

42X41 In the Properties clause of a FROM list, the property '<propertyName>' is not
valid (the property was being set to '<propertyValue>').

42X42 Correlation name not allowed for column '<columnName>' because it is part
of the FOR UPDATE list.

42X43 The ResultSetMetaData returned for the class/object '<className>'
was null. In order to use this class as an external virtual table, the
ResultSetMetaData cannot be null.

42X44 Invalid length '<number>' in column specification.

42X45 <dataType> is an invalid type for argument number <argumentNumber> of
<operatorName>.

42X46 There are multiple functions named '<functionName>'. Use the full signature
or the specific name.

42X47

Derby Reference Manual

311

SQLSTATE Message Text

There are multiple procedures named '<procedureName>'. Use the full
signature or the specific name.

42X48 Value '<number>' is not a valid precision for <dataType>.

42X49 Value '<invalidNumber>' is not a valid integer literal.

42X50 No method was found that matched the method call
<className>.<methodName>(<parameterTypes>), tried all combinations
of object and primitive types and any possible type conversion for any
parameters the method call may have. The method might exist but it is
not public and/or static, or the parameter types are not method invocation
convertible.

42X51 The class '<className>' does not exist or is inaccessible. This can happen if
the class is not public.

42X52 Calling method ('<methodName>') using a receiver of the Java primitive type
'<type>' is not allowed.

42X53 The LIKE predicate can only have 'CHAR' or 'VARCHAR' operands. Type
'<type>' is not permitted.

42X54 The Java method '<methodName>' has a ? as a receiver. This is not
allowed.

42X55 Table name '<tableName>' should be the same as '<tableName>'.

42X56 The number of columns in the view column list does not match the number
of columns in the underlying query expression in the view definition for
'<viewName>'.

42X57 The getColumnCount() for external virtual table '<tableName>' returned an
invalid value '<number>'. Valid values are greater than or equal to 1.

42X58 The number of columns on the left and right sides of the <tableName> must
be the same.

42X59 The number of columns in each VALUES constructor must be the same.

42X60 Invalid value '<insertMode>' for insertMode property specified for table
'<tableName>'.

42X61 Types '<dataType>' and '<dataType>' are not <sqlOperator> compatible.

42X62 '<sqlText>' is not allowed in the '<schemaName>' schema.

42X63 The USING clause did not return any results. No parameters can be set.

42X64 In the Properties list, the invalid value '<propertyValue>' was specified for the
useStatistics property. The only valid values are TRUE or FALSE.

42X65 Index '<index>' does not exist.

42X66 Column name '<columnName>' appears more than once in the CREATE
INDEX statement.

42X68 No field '<fieldName>' was found belonging to class '<className>'. It may
be that the field exists, but it is not public, or that the class does not exist or
is not public.

42X69 It is not allowed to reference a field ('<fieldName>') using a referencing
expression of the Java primitive type '<type>'.

42X70

Derby Reference Manual

312

SQLSTATE Message Text

The number of columns in the table column list does not match the number
of columns in the underlying query expression in the table definition for
'<tableName>'.

42X71 Invalid data type '<datatypeName>' for column '<columnName>'.

42X72 No static field '<fieldName>' was found belonging to class '<className>'.
The field might exist, but it is not public and/or static, or the class does not
exist or the class is not public.

42X73 Method resolution for signature
<className>.<methodName>(<parameterTypes>) was ambiguous. (No
single maximally specific method.)

42X74 Invalid CALL statement syntax.

42X75 No constructor was found with the signature
<className>(<parameterTypes>). It may be that the parameter types are
not method invocation convertible.

42X76 At least one column, '<columnName>', in the primary key being added is
nullable. All columns in a primary key must be non-nullable.

42X77 Column position '<columnPosition>' is out of range for the query expression.

42X78 Column '<columnName>' is not in the result of the query expression.

42X79 Column name '<columnName>' appears more than once in the result of the
query expression.

42X80 VALUES clause must contain at least one element. Empty elements are not
allowed.

42X81 A query expression must return at least one column.

42X82 The USING clause returned more than one row. Only single-row ResultSets
are permissible.

42X84 Index '<index>' was created to enforce constraint '<constraintName>'. It can
only be dropped by dropping the constraint.

42X85 Constraint '<constraintName>'is required to be in the same schema as table
'<tableName>'.

42X86 ALTER TABLE failed. There is no constraint '<constraintName>' on table
'<tableName>'.

42X87 At least one result expression (THEN or ELSE) of the CASE expression must
have a known type.

42X88 A conditional has a non-Boolean operand. The operand of a conditional must
evaluate to TRUE, FALSE, or UNKNOWN.

42X89 Types '<type>' and '<type>' are not type compatible. Neither type is
assignable to the other type.

42X90 More than one primary key constraint specified for table '<tableName>'.

42X91 Constraint name '<constraintName>' appears more than once in the
CREATE TABLE statement.

42X92 Column name '<columnName>' appears more than once in a constraint's
column list.

42X93

Derby Reference Manual

313

SQLSTATE Message Text

Table '<tableName>' contains a constraint definition with column
'<columnName>' which is not in the table.

42X94 <sqlObjectType> '<objectName>' does not exist.

42X96 The database class path contains an unknown jar file '<fileName>'.

42X97 Conflicting constraint characteristics for constraint.

42X98 Parameters are not allowed in a VIEW definition.

42X99 Parameters are not allowed in a TABLE definition.

42XA0 The generation clause for column '<columnName>' has data type
'<datatypeName>', which cannot be assigned to the column's declared data
type.

42XA1 The generation clause for column '<columnName>' contains an aggregate.
This is not allowed.

42XA2 '<sqlObjectName>' cannot appear in a Generation Clause because it may
return unreliable results.

42XA3 You may not override the value of generated column '<columnName>'.

42XA4 The generation clause for column '<columnName>' references other
generated columns. This is not allowed.

42XA5 Routine '<routineName>' may issue SQL and therefore cannot appear in this
context.

42XA6 '<columnName>' is a generated column. It cannot be part of a foreign key
whose referential action for DELETE is SET NULL or SET DEFAULT, or
whose referential action for UPDATE is CASCADE.

42XA7 '<columnName>' is a generated or identity column. You cannot change its
default value.

42XA8 You cannot rename '<columnName>' because it is referenced by the
generation clause of column '<columnName>'.

42XA9 Column '<columnName>' needs an explicit datatype. The datatype can be
omitted only for columns with generation clauses.

42XAA The NEW value of generated column '<columnName>' is mentioned in the
BEFORE action of a trigger. This is not allowed.

42XAB NOT NULL is allowed only if you explicitly declare a datatype.

42XAC 'INCREMENT BY' value can not be zero.

42XAE '<argName>' value out of range of datatype '<datatypeName>'. Must be
between '<minValue>' and '<maxValue>'.

42XAF Invalid 'MINVALUE' value '<minValue>'. Must be smaller than 'MAXVALUE:
<maxValue>'.

42XAG Invalid 'START WITH' value '<startValue>'. Must be between '<minValue>'
and '<maxValue>'.

42XAH A NEXT VALUE FOR expression may not appear in many contexts,
including WHERE, ON, HAVING, ORDER BY, DISTINCT, CASE,
GENERATION, and AGGREGATE clauses as well as WINDOW functions
and CHECK CONSTRAINTS.

Derby Reference Manual

314

SQLSTATE Message Text

42XAI The statement references the following sequence more than once:
'<sequenceName>'.

42XAJ The CREATE SEQUENCE statement has a redundant '<clauseName>'
clause.

42XAK The target table of a MERGE statement must be a base table.

42XAL The source table of a MERGE statement must be a base table or table
function.

42XAM The source and target tables of a MERGE statement may not have the same
correlation name.

42XAN Constraint characteristics not allowed for NOT NULL.

42XAO Subqueries are not allowed in the WHEN [NOT] MATCHED clauses of
MERGE statements.

42XAP Synonyms are not allowed as the source or target tables of MERGE
statements.

42XAQ The source and target tables of MERGE statements may not have derived
column lists.

42XAR The NEXT VALUE operator may not be used on a system-owned sequence
generator.

42XBA The schema, table or column does not exist or the column is not a string
type.

42XBB The table does not have a primary key.

42XBC Type not supported by the Lucene optional tool: '<typeName>'

42XBD Character not allowed in Derby identifiers used by the Lucene optional tool:
'<invalidCharacter>'

42XBE Lucene index does not exist.

42XBF The schema doesn't exist or the current user isn't the DBO and doesn't own
the schema.

42XBG The luceneSupport tool has already been loaded.

42XBH The luceneSupport tool has already been unloaded.

42XBI Cannot drop '<directoryName>' because it is not a directory.

42XBJ Cannot create a Lucene index involving a column named '<columnName>'.
Try renaming the column by declaring a view.

42XBK The current Lucene version '<luceneVersion>' cannot read an index created
by Lucene version '<indexVersion>'.

42XBL Lucene indexes cannot be created in an encrypted database and,
conversely, a database containing a Lucene index cannot be encrypted.

42XBM Argument '<argumentName>' may not be null.

42XBN A field and a key have the same name: '<fieldName>'

42XBO Duplicate or null field name: '<fieldName>'

Derby Reference Manual

315

SQLSTATE Message Text

42Y00 Class '<className>' does not implement
org.apache.derby.iapi.db.AggregateDefinition and thus cannot be used as an
aggregate expression.

42Y01 Constraint '<constraintName>' is invalid.

42Y03 '<statement>' is not recognized as a function or procedure.

42Y03 '<statement>' is not recognized as a procedure.

42Y03 '<statement>' is not recognized as a function.

42Y03 '<statement>' is a procedure but it is being used as a function.

42Y03 '<statement>' is a function but it is being called as a procedure.

42Y04 Cannot create a procedure or function with EXTERNAL NAME '<name>'
because it is not a list separated by periods. The expected format is <full
java path>.<method name>.

42Y05 There is no Foreign Key named '<key>'.

42Y07 Schema '<schemaNamet>' does not exist

42Y08 Foreign key constraints are not allowed on system tables.

42Y09 Void methods are only allowed within a CALL statement.

42Y10 A table constructor that is not in an INSERT statement has all ? parameters
in one of its columns. For each column, at least one of the rows must have a
non-parameter.

42Y11 A join specification is required with the '<clauseName>' clause.

42Y12 The ON clause of a JOIN is a '<expressionType>' expression. It must be a
BOOLEAN expression.

42Y13 Column name '<columnName>' appears more than once in the CREATE
VIEW statement.

42Y16 No public static method '<methodName>' was found in class '<className>'.
The method might exist, but it is not public, or it is not static.

42Y22 Aggregate <aggregateType> cannot operate on type <type>.

42Y23 Incorrect JDBC type info returned for column <colunmName>.

42Y24 View '<viewName>' is not updatable. (Views are currently not updatable.)

42Y25 '<tableName>' is a system table. Users are not allowed to modify the
contents of this table.

42Y26 Aggregates are not allowed in the GROUP BY list.

42Y26 Subqueries are not allowed in the GROUP BY list.

42Y27 Parameters are not allowed in the trigger action.

42Y29 The SELECT list of a non-grouped query contains at least one invalid
expression. When the SELECT list contains at least one aggregate then all
entries must be valid aggregate expressions.

42Y30 The SELECT list of a grouped query contains at least one invalid expression.
If a SELECT list has a GROUP BY, the list may only contain valid grouping
expressions and valid aggregate expressions.

42Y32

Derby Reference Manual

316

SQLSTATE Message Text

Aggregator class '<className>' for aggregate
'<aggregateName>' on type <type> does not implement
org.apache.derby.iapi.sql.execute.ExecAggregator.

42Y33 Aggregate <aggregateName> contains one or more aggregates.

42Y34 Column name '<columnName>' matches more than one result column in
table '<tableName>'.

42Y35 Column reference '<reference>' is invalid. When the SELECT list contains at
least one aggregate then all entries must be valid aggregate expressions.

42Y36 Column reference '<reference>' is invalid, or is part of an invalid expression.
For a SELECT list with a GROUP BY, the columns and expressions being
selected may only contain valid grouping expressions and valid aggregate
expressions.

42Y37 '<javaTypeName>' is a Java primitive and cannot be used with this operator.

42Y38 insertMode = replace is not permitted on an insert where the target table,
'<tableName>', is referenced in the SELECT.

42Y39 '<sqlObjectName>' may not appear in a CHECK CONSTRAINT definition
because it may return non-deterministic results.

42Y40 '<columnName>' appears multiple times in the UPDATE OF column list for
trigger '<triggerName>'.

42Y41 '<storedPreparedStatementName>' cannot be directly invoked via EXECUTE
STATEMENT because it is part of a trigger.

42Y42 Scale '<scaleValue>' is not a valid scale for a <dataType>.

42Y43 Scale '<scaleValue>' is not a valid scale with precision of '<precision>'.

42Y44 Invalid key '<key>' specified in the Properties list of a FROM list. The
case-sensitive keys that are currently supported are '<key>'.

42Y45 VTI '<vtiName>' cannot be bound because it is a special trigger VTI and this
statement is not part of a trigger action or WHEN clause.

42Y46 Invalid Properties list in FROM list. There is no index '<index>' on table
'<tableName>'.

42Y48 Invalid Properties list in FROM list. Either there is no named constraint
'<constraintName>' on table '<tableName>' or the constraint does not have a
backing index.

42Y49 Multiple values specified for property key '<key>'.

42Y50 Properties list for table '<tableName>' may contain values for index or for
constraint but not both.

42Y55 '<sqlText>' cannot be performed on '<sqlObjectName>' because it does not
exist.

42Y56 Invalid join strategy '<strategyValue>' specified in Properties list on table
'<tableName>'. The currently supported values for a join strategy are: 'hash'
and 'nestedloop'.

42Y58 NumberFormatException occurred when converting value '<invalidNumber>'
for optimizer override '<optimizerOverrideName>'.

Derby Reference Manual

317

SQLSTATE Message Text

42Y59 Invalid value, '<invalidNumber>', specified for hashInitialCapacity override.
Value must be greater than 0.

42Y60 Invalid value, '<invalidNumber>', specified for hashLoadFactor override.
Value must be greater than 0.0 and less than or equal to 1.0.

42Y61 Invalid value, '<invalidNumber>', specified for hashMaxCapacity override.
Value must be greater than 0.

42Y62 '<statement>' is not allowed on '<viewName>' because it is a view.

42Y63 Hash join requires an optimizable equijoin predicate on a column in the
selected index or heap. An optimizable equijoin predicate does not exist on
any column in table or index '<index>'. Use the 'index' optimizer override to
specify such an index or the heap on table '<tableName>'.

42Y64 bulkFetch value of '<invalidNumber>' is invalid. The minimum value for
bulkFetch is 1.

42Y65 bulkFetch is not permitted on '<joinType>' joins.

42Y66 bulkFetch is not permitted on updatable cursors.

42Y67 Schema '<schemaNamet>' cannot be dropped.

42Y69 No valid execution plan was found for this statement. This may have many
causes: 1) you specified a hash join strategy when hash join is not allowed
(no optimizable equijoin), 2) you are attempting to join two external virtual
tables, each of which references the other, and so the statement cannot be
evaluated, 3) you have specified a plan shape which the optimizer would
never consider.

42Y70 The user specified an illegal join order. This could be caused by a join
column from an inner table being passed as a parameter to an external
virtual table.

42Y71 System function or procedure '<procedureName>' cannot be dropped.

42Y82 System generated stored prepared statement '<statement>' that cannot be
dropped using DROP STATEMENT. It is part of a trigger.

42Y83 An untyped NULL is not permitted as an argument to aggregate
<aggregateName>. Please cast the NULL to a suitable type.

42Y84 '<sqlText>' may not appear in a DEFAULT definition.

42Y85 The DEFAULT keyword is only allowed in a VALUES clause when the
VALUES clause appears within an INSERT statement.

42Y90 FOR UPDATE is not permitted in this type of statement.

42Y91 The USING clause is not permitted in an EXECUTE STATEMENT for a
trigger action.

42Y92 <sqlKeyword> triggers may only reference <sqlKeyword> transition
variables/tables.

42Y93 Illegal REFERENCING clause: only one name is permitted for each type of
transition variable/table.

42Y94 An AND or OR has a non-boolean operand. The operands of AND and OR
must evaluate to TRUE, FALSE, or UNKNOWN.

Derby Reference Manual

318

SQLSTATE Message Text

42Y95 The '<operatorName>' operator with a left operand type of '<operandType>'
and a right operand type of '<operandType>' is not supported.

42Y97 Invalid escape character at line '<lineNumber>', column '<columnName>'.

42Y98 '<sqlObjectName>' may not appear in this context because it may return
unreliable results.

42Z02 Multiple DISTINCT aggregates are not supported at this time.

42Z07 Aggregates are not permitted in the ON clause.

42Z08 Bulk insert replace is not permitted on '<tableName>' because it has an
enabled trigger (<triggerName>).

42Z09 Aggregates are not permitted in the MERGE matching clause.

42Z15 Invalid type specified for column '<columnName>'. The type of a column may
not be changed.

42Z16 Only columns of type VARCHAR, CLOB, and BLOB may have their length
altered.

42Z17 Invalid length specified for column '<columnName>'. Length must be greater
than the current column length.

42Z18 Column '<columnName>' is part of a foreign key constraint
'<constraintName>'. To alter the length of this column, you should drop the
constraint first, perform the ALTER TABLE, and then recreate the constraint.

42Z19 Column '<columnName>' is being referenced by at least one foreign key
constraint '<constraintName>'. To alter the length of this column, you should
drop referencing constraints, perform the ALTER TABLE and then recreate
the constraints.

42Z20 Column '<columnName>' cannot be made nullable. It is part of a primary key
or unique constraint, which cannot have any nullable columns.

42Z20 Column '<columnName>' cannot be made nullable. It is part of a primary key,
which cannot have any nullable columns.

42Z21 Invalid increment specified for identity for column '<columnName>'.
Increment cannot be zero.

42Z22 Invalid type specified for identity column '<columnName>'. The only valid
types for identity columns are BIGINT, INT and SMALLINT.

42Z23 Attempt to modify an identity column '<columnName>'.

42Z24 Overflow occurred in identity value for column '<columnName>' in table
'<tableName>'.

42Z25 Internal Error identity counter. Update was called without arguments with
current value \= NULL.

42Z26 A column, '<columnName>', with an identity default cannot be made nullable.

42Z27 A nullable column, '<columnName>', cannot be modified to have identity
default.

42Z50 Internal Error: Unable to generate code for <queryTreeNodeIdentifier>.

42Z53 Internal Error: Type of activation to generate for node choice <number> is
unknown.

Derby Reference Manual

319

SQLSTATE Message Text

42Z60 <sqlText> not allowed unless database property <propertyName> has value
'<propertyValue>'.

42Z70 Binding directly to an XML value is not allowed; try using XMLPARSE.

42Z71 XML values are not allowed in top-level result sets; try using
XMLSERIALIZE.

42Z72 Missing SQL/XML keyword(s) '<keywords>' at line <lineNumber>, column
<columnNumber>.

42Z73 Invalid target type for XMLSERIALIZE: '<typeName>'.

42Z74 XML feature not supported: '<featureName>'.

42Z75 XML query expression must be a string literal.

42Z76 Multiple XML context items are not allowed.

42Z77 Context item must have type 'XML'; '<dataType>' is not allowed.

42Z79 Unable to determine the parameter type for XMLPARSE; try using a CAST.

42Z90 Class '<className>' does not return an updatable ResultSet.

42Z91 SELECT

42Z92 repeatable read

42Z93 Constraints '<constraintName>' and '<constraintName>' have the same set
of columns, which is not allowed.

42Z97 Renaming column '<columnName>' will cause check constraint
'<constraintName>' to break.

42Z99 String or Hex literal cannot exceed 64K.

42Z9A read uncommitted

42Z9D Procedures that modify SQL data are not allowed in BEFORE triggers.

42Z9D '<statement>' statements are not allowed in '<triggerName>' triggers.

42Z9E Constraint '<constraintName>' is not a <constraintType> constraint.

42Z9F Too many indexes (<index>) on the table <tableName>. The limit is
<number>.

42ZA0 Statement too complex. Try rewriting the query to remove complexity.
Eliminating many duplicate expressions or breaking up the query and storing
interim results in a temporary table can often help resolve this error.

42ZA1 Invalid SQL in Batch: '<batch>'.

42ZA2 Operand of LIKE predicate with type <dataType> and collation
<collationType> is not compatable with LIKE pattern operand with type
<dataType> and collation <collationType>.

42ZA3 The table will have collation type <collationType> which is different than
the collation of the schema <schemaName> hence this operation is not
supported .

42ZB1 Parameter style DERBY_JDBC_RESULT_SET is only allowed for table
functions.

42ZB2 Table functions can only have parameter style
DERBY_JDBC_RESULT_SET.

Derby Reference Manual

320

SQLSTATE Message Text

42ZB3 XML is not allowed as the datatype of a user-defined aggregate or of a
column returned by a table function.

42ZB4 '<schemaName>'.'<functionName>' does not identify a table function.

42ZB5 Class '<className>' implements VTICosting but does not provide a public,
no-argument constructor.

42ZB6 A scalar value is expected, not a row set returned by a table function.

42ZB7 Illegal reference to column '<columnName>' by a table function or VTI.

42ZC0 Window '<windowName>' is not defined.

42ZC1 Only one window is supported.

42ZC2 Window function is illegal in this context: '<clauseName>' clause

42ZC3 A user defined aggregate may not have the name of an aggregate defined
by the SQL Standard or the name of a builtin Derby function having one
argument: '<aggregateName>'

42ZC4 User defined aggregate '<schemaName>'.'<aggregateName>' is bound to
external class '<className>'. The parameter types of that class could not be
resolved.

42ZC6 User defined aggregate '<schemaName>'.'<aggregateName>' was declared
to have this input Java type: '<javaDataType>'. This does not extend the
following actual bounding input Java type: '<javaDataType>'.

42ZC7 User defined aggregate '<schemaName>'.'<aggregateName>' was declared
to have this return Java type: '<javaDataType>'. This does not extend the
following actual bounding return Java type: '<javaDataType>'.

42ZC8 Implementing class '<className>' for user defined aggregate
'<schemaName>'.'<aggregateName>' could not be instantiated or was
malformed. Detailed message follows: <detailedMessage>

42ZC9 A varargs routine must have parameter style DERBY or
DERBY_JDBC_RESULT_SET.

42ZCA Parameter style DERBY is only allowed for varargs routines.

42ZCB A varargs procedure may not return result sets.

42ZCC Bad optimizer override. There are <rowSourceCountInPlan> row sources in
the plan but there should be <actualRowSourceCount>.

42ZCD Bad optimizer override. The plan is not a left-deep tree.

42ZCE Bad optimizer override. Row sources have not been resolved.

Table 100. Class 57: DRDA Network Protocol: Execution Failure

SQLSTATE Message Text

57017 There is no available conversion for the source code page, <codePage>, to
the target code page, <codePage>. The connection has been terminated.

Table 101. Class 58: DRDA Network Protocol: Protocol Error

Derby Reference Manual

321

SQLSTATE Message Text

58009 Network protocol exception: only one of the VCM, VCS length can be greater
than 0. The connection has been terminated.

58009 The connection was terminated because the encoding is not supported.

58009 Network protocol exception: actual code point, <codePoint>, does not match
expected code point, <codePoint>. The connection has been terminated.

58009 Network protocol exception: DDM collection contains less than 4 bytes of
data. The connection has been terminated.

58009 Network protocol exception: collection stack not empty at end of same id
chain parse. The connection has been terminated.

58009 Network protocol exception: DSS length not 0 at end of same id chain parse.
The connection has been terminated.

58009 Network protocol exception: DSS chained with same id at end of same id
chain parse. The connection has been terminated.

58009 Network protocol exception: end of stream prematurely reached while
reading InputStream, parameter #<number>. The connection has been
terminated.

58009 Network protocol exception: invalid FDOCA LID. The connection has been
terminated.

58009 Network protocol exception: SECTKN was not returned. The connection has
been terminated.

58009 Network protocol exception: only one of NVCM, NVCS can be non-null. The
connection has been terminated.

58009 Network protocol exception: SCLDTA length, <length>, is invalid for
RDBNAM. The connection has been terminated.

58009 Network protocol exception: SCLDTA length, <length>, is invalid for
RDBCOLID. The connection has been terminated.

58009 Network protocol exception: SCLDTA length, <length>, is invalid for PKGID.
The connection has been terminated.

58009 Network protocol exception: PKGNAMCSN length, <length>, is invalid at
SQLAM <sqlApplicationManager>. The connection has been terminated.

58010 A network protocol error was encountered. A connection could not be
established because the manager <managerCodePoint> at level <level> is
not supported by the server.

58014 The DDM command 0x<distributedDataManagementCommand> is not
supported. The connection has been terminated.

58015 The DDM object 0x<distributedDataManagementObject> is not supported.
The connection has been terminated.

58016 The DDM parameter 0x<distributedDataManagementParameter> is not
supported. The connection has been terminated.

58017 The DDM parameter value 0x<distributedDataManagementParameterValue>
is not supported. An input host variable may not be within the range the
server supports. The connection has been terminated.

Table 102. Class X0: Execution exceptions

Derby Reference Manual

322

SQLSTATE Message Text

X0A00 The select list mentions column '<columnName>' twice. This is not allowed
in queries with GROUP BY or HAVING clauses. Try aliasing one of the
conflicting columns to a unique name.

X0X02 Table '<tableName>' cannot be locked in '<mode>' mode.

X0X03 Invalid transaction state - held cursor requires same isolation level

X0X05 Table/View '<tableName>' does not exist.

X0X07 Cannot remove jar file '<fileName>' because it is on your
derby.database.classpath '<fileName>'.

X0X0D Invalid column array length '<columnArrayLength>'. To return generated
keys, column array must be of length 1 and contain only the identity column.

X0X0E Table '<tableName>' does not have an auto-generated column at column
position '<columnPosition>'.

X0X0F Table '<tableName>' does not have an auto-generated column named
'<columnName>'.

X0X10 The USING clause returned more than one row; only single-row ResultSets
are permissible.

X0X11 The USING clause did not return any results so no parameters can be set.

X0X13 Jar file '<fileName>' does not exist in schema '<schemaNamet>'.

X0X57 An attempt was made to put a Java value of type '<type>' into a SQL value,
but there is no corresponding SQL type. The Java value is probably the
result of a method call or field access.

X0X60 A cursor with name '<cursorName>' already exists.

X0X61 The values for column '<columnName>' in index '<indexName>' and
table '<schemaName>.<tableName>' do not match for row location
<rowLocation>. The value in the index is '<dataValue>', while the value in the
base table is '<dataValue>'. The full index key, including the row location, is
'<indexKey>'. The suggested corrective action is to recreate the index.

X0X62 Inconsistency found between table '<tableName>' and index '<indexName>'.
Error when trying to retrieve row location '<rowLocation>' from the table. The
full index key, including the row location, is '<indexKey>'. The suggested
corrective action is to recreate the index.

X0X63 Got IOException '<exceptionText>'.

X0X67 Columns of type '<type>' may not be used in CREATE INDEX, ORDER
BY, GROUP BY, UNION, INTERSECT, EXCEPT or DISTINCT statements
because comparisons are not supported for that type.

X0X81 <sqlObjectType> '<sqlObjectName>' does not exist.

X0X85 Index '<indexName>' was not created because '<indexType>' is not a valid
index type.

X0X86 0 is an invalid parameter value for ResultSet.absolute(int row).

X0X87 ResultSet.relative(int row) cannot be called when the cursor is not positioned
on a row.

X0X95 Operation '<operationName>' cannot be performed on object '<objectName>'
because there is an open ResultSet dependent on that object.

Derby Reference Manual

323

SQLSTATE Message Text

X0X99 Index '<indexName>' does not exist.

X0Y16 '<sqlObjectName>' is not a view. If it is a table, then use DROP TABLE
instead.

X0Y23 Operation '<operationName>' cannot be performed on object '<objectName>'
because VIEW '<viewName>' is dependent on that object.

X0Y24 Operation '<operationName>' cannot be performed on object '<objectName>'
because STATEMENT '<statement>' is dependent on that object.

X0Y25 Operation '<operationName>' cannot be performed on object
'<sqlObjectName>' because <sqlObjectType> '<sqlObjectName>' is
dependent on that object.

X0Y26 Index '<indexName>' is required to be in the same schema as table
'<tableName>'.

X0Y28 Index '<indexName>' cannot be created on system table '<tableName>'.
Users cannot create indexes on system tables.

X0Y29 Operation '<operationName>' cannot be performed on object '<objectName>'
because TABLE '<tableName>' is dependent on that object.

X0Y30 Operation '<operationName>' cannot be performed on object '<objectName>'
because ROUTINE '<routineName>' is dependent on that object.

X0Y32 <sqlObjectType> '<sqlObjectName>' already exists in <sqlObjectType>
'<sqlObjectName>'.

X0Y38 Cannot create index '<indexName>' because table '<tableName>' does not
exist.

X0Y41 Constraint '<constraintName>' is invalid because the referenced table
<tableName> has no primary key. Either add a primary key to <tableName>
or explicitly specify the columns of a unique constraint that this foreign key
references.

X0Y42 Constraint '<constraintName>' is invalid: the types of the foreign key columns
do not match the types of the referenced columns.

X0Y43 Constraint '<constraintName>' is invalid: the number of columns (<number>)
does not match the number of columns in the referenced key (<number>).

X0Y44 Constraint '<constraintName>' is invalid: there is no unique or primary key
constraint on table '<tableName>' that matches the number and types of the
columns in the foreign key.

X0Y45 Foreign key constraint '<constraintName>' cannot be added to or enabled on
table <tableName> because one or more foreign keys do not have matching
referenced keys.

X0Y46 Constraint '<constraintName>' is invalid: referenced table <tableName> does
not exist.

X0Y47 Constraint '<constraintName>' is invalid: the unique or primary key constraint
on table '<tableName>' is deferrable and the referential action is CASCADE
or SET NULL.

X0Y54 Schema '<schemaNamet>' cannot be dropped because it is not empty.

X0Y55 The number of rows in the base table does not match the number of rows
in at least 1 of the indexes on the table. Index '<indexName>' on table

Derby Reference Manual

324

SQLSTATE Message Text

'<schemaNamet>.<tableName>' has <number> rows, but the base table has
<number> rows. The suggested corrective action is to recreate the index.

X0Y56 '<sqlText>' is not allowed on the System table '<tableName>'.

X0Y57 A non-nullable column cannot be added to table '<tableName>' because the
table contains at least one row. Non-nullable columns can only be added to
empty tables.

X0Y58 Attempt to add a primary key constraint to table '<tableName>' failed
because the table already has a constraint of that type. A table can only have
a single primary key constraint.

X0Y59 Attempt to add or enable constraint(s) on table '<tableName>' failed because
the table contains <rowCount> row(s) that violate the following check
constraint(s): <constraintName>.

X0Y63 The command on table '<tableName>' failed because null data was found
in the primary key or unique constraint/index column(s). All columns in a
primary or unique index key must not be null.

X0Y63 The command on table '<tableName>' failed because null data was found in
the primary key/index column(s). All columns in a primary key must not be
null.

X0Y66 Cannot issue commit in a nested connection when there is a pending
operation in the parent connection.

X0Y67 Cannot issue rollback in a nested connection when there is a pending
operation in the parent connection.

X0Y68 <sqlObjectType> '<sqlObjectName>' already exists.

X0Y69 DDL is not supported in trigger <triggerName>.

X0Y70 INSERT, UPDATE and DELETE are not permitted on table <tableName>
because trigger <triggerName> is active.

X0Y71 Transaction manipulation such as SET ISOLATION is not permitted because
trigger <triggerName> is active.

X0Y72 Bulk insert replace is not permitted on '<tableName>' because it has an
enabled trigger (<triggerName>).

X0Y77 Cannot issue set transaction isolation statement on a global transaction
that is in progress because it would have implicitly committed the global
transaction.

X0Y78 Statement.executeQuery() cannot be called with a statement that returns a
row count.

X0Y78 <javaInterfaceName>.executeQuery() cannot be called because multiple
result sets were returned. Use <javaInterfaceName>.execute() to obtain
multiple results.

X0Y78 <javaInterfaceName>.executeQuery() was called but no result set was
returned. Use <javaInterfaceName>.executeUpdate() for non-queries.

X0Y79 Statement.executeUpdate() cannot be called with a statement that returns a
ResultSet.

X0Y80 ALTER table '<tableName>' failed. Null data found in column
'<columnName>'.

Derby Reference Manual

325

SQLSTATE Message Text

X0Y83 Warning: While deleting a row from a table the index row for base table row
<rowName> was not found in index with conglomerate id <id>. This problem
has automatically been corrected as part of the delete operation.

X0Y84 Too much contention on sequence <sequenceName>. This is probably
caused by an uncommitted scan of the SYS.SYSSEQUENCES
catalog. Do not query this catalog directly. Instead, use the
SYSCS_UTIL.SYSCS_PEEK_AT_SEQUENCE function to view the current
value of a sequence generator.

X0Y85 The Derby property '<propertyName>' identifies a class which cannot be
instantiated: '<className>'. See the next exception for details.

X0Y85 The Derby property '<propertyName>' identifies a class which does not
implement the org.apache.derby.catalog.SequencePreallocator interface.

X0Y86 Derby could not obtain the locks needed to release the unused, preallocated
values for the sequence '<schemaName>'.'<sequenceName>'. As a result,
unexpected gaps may appear in this sequence.

X0Y87 There is already an aggregate or function with one argument whose name is
'<schemaName>'.'<aggregateOrFunctionName>'.

X0Y88 Unknown optional tool: '<toolName>'

X0Y88 The class '<className>' does not implement the
org.apache.derby.iapi.sql.dictionary.OptionalTool interface.

X0Y89 Bad arguments passed to SYSCS_UTIL.SYSCS_REGISTER_TOOL().
Please consult the Reference Manual section which describes this system
procedure.

X0Y90 Cannot create an instance of <className>. Maybe this class is not visible
on the classpath. Maybe it doesn not have a 0-arg constructor.

X0Y91 Cannot change constraint mode of <constraintName>. It is not a deferrable
constraint.

X0Y92 Cannot change the names of this table function's columns.

Table 103. Class XBCA: CacheService

SQLSTATE Message Text

XBCA0 Cannot create new object with key <keyValue> in <cacheName> cache. The
object already exists in the cache.

Table 104. Class XBCM: ClassManager

SQLSTATE Message Text

XBCM1 Java linkage error thrown during load of generated class <className>.

XBCM2 Cannot create an instance of generated class <className>.

XBCM3 Method <methodName>() does not exist in generated class <className>.

XBCM4 Java class file format limit(s) exceeded: <limitDescriptor> in generated class
<className>.

Table 105. Class XBCX: Cryptography

Derby Reference Manual

326

SQLSTATE Message Text

XBCX0 Exception from Cryptography provider. See next exception for details.

XBCX1 Initializing cipher with illegal mode, must be either CipherFactory.ENCRYPT
or CipherFactory.DECRYPT.

XBCX2 Initializing cipher with a boot password that is too short. The password must
be at least <number> characters long.

XBCX5 Cannot change boot password to null.

XBCX6 Cannot change boot password to a non-string serializable type.

XBCX7 Wrong format for changing boot password. Format must be :
old_boot_password, new_boot_password.

XBCX8 Cannot change boot password for a non-encrypted database.

XBCX9 Cannot change boot password for a read-only database.

XBCXA Wrong boot password.

XBCXB Bad encryption padding '<paddingDirective>' or padding not specified.
'NoPadding' must be used.

XBCXC Encryption algorithm '<algorithmName>' does not exist. Please check that
the chosen provider '<providerName>' supports this algorithm.

XBCXD The encryption algorithm cannot be changed after the database is created.

XBCXE The encryption provider cannot be changed after the database is created.

XBCXF The class '<className>' representing the encryption provider cannot be
found.

XBCXF The class '<className>' does not implement the java.security.Provider
interface.

XBCXG The encryption provider '<providerName>' does not exist.

XBCXH The encryptionAlgorithm '<algorithmName>' is not in the correct format. The
correct format is algorithm/feedbackMode/NoPadding.

XBCXI The feedback mode '<mode>' is not supported. Supported feedback modes
are CBC, CFB, OFB and ECB.

XBCXJ The application is using a version of the Java Cryptography Extension (JCE)
earlier than 1.2.1. Please upgrade to JCE 1.2.1 and try the operation again.

XBCXK The given encryption key does not match the encryption key used when
creating the database. Please ensure that you are using the correct
encryption key and try again.

XBCXL The verification process for the encryption key was not successful. This
could have been caused by an error when accessing the appropriate file to
do the verification process. See next exception for details.

XBCXM The length of the external encryption key must be an even number.

XBCXN The external encryption key contains one or more illegal characters. Allowed
characters for a hexadecimal number are 0-9, a-f and A-F.

XBCXO Cannot encrypt, re-encrypt or decrypt the database when there is a global
transaction in the prepared state.

XBCXQ Cannot encrypt, re-encrypt or decrypt a read-only database.

Derby Reference Manual

327

SQLSTATE Message Text

XBCXS Cannot encrypt, re-encrypt or decrypt a database when it is in the log archive
mode.

XBCXU Encryption, re-encryption or decryption of a database failed:
<failureMessage>

XBCXW The message digest algorithm '<algorithmName>' is not supported by
any of the available cryptography providers. Please install a cryptography
provider that supports that algorithm, or specify another algorithm in the
derby.authentication.builtin.algorithm property.

Table 106. Class XBM: Monitor

SQLSTATE Message Text

XBM01 Startup failed due to an exception. See next exception for details.

XBM02 Startup failed due to missing functionality for <moduleName>. Please ensure
your classpath includes the correct Derby software.

XBM05 Startup failed due to missing product version information for <productName>.

XBM06 Startup failed. An encrypted database cannot be accessed without the
correct boot password.

XBM07 Startup failed. Boot password must be at least 8 bytes long.

XBM08 Could not instantiate <subSubProtocol> StorageFactory class <className>.

XBM0A The database directory '<directoryName>' exists. However, it does not
contain the expected '<servicePropertiesName>' file. Perhaps Derby was
brought down in the middle of creating this database. You may want to
delete this directory and try creating the database again.

XBM0B Failed to edit/write service properties file: <errorMessage>

XBM0C Missing privilege for operation '<operation>' on file '<path>': <errorMessage>

XBM0G Failed to start encryption engine. Please make sure you are running Java 2
and have downloaded an encryption provider such as jce and put it in your
class path.

XBM0H Directory <directoryName> cannot be created.

XBM0I Directory <directoryName> cannot be removed.

XBM0J Directory <directoryName> already exists.

XBM0K Unknown sub-protocol for database name <databaseName>.

XBM0L Specified authentication scheme class <className> does implement the
authentication interface <interfaceName>.

XBM0M Error creating an instance of a class named '<className>'. This class
name was the value of the derby.authentication.provider property and was
expected to be the name of an application-supplied implementation of
org.apache.derby.authentication.UserAuthenticator. The underlying problem
was: <detail>

XBM0N JDBC Driver registration with java.sql.DriverManager failed. See next
exception for details.

XBM0P Service provider is read-only. Operation not permitted.

Derby Reference Manual

328

SQLSTATE Message Text

XBM0Q File <fileName> not found. Please make sure that backup copy is the correct
one and it is not corrupted.

XBM0R Unable to remove File <fileName>.

XBM0S Unable to rename file '<fileName>' to '<fileName>'

XBM0T Ambiguous sub-protocol for database name <databaseName>.

XBM0U No class was registered for identifier <identifierName>.

XBM0V An exception was thrown while loading class <className> registered for
identifier <identifierName>.

XBM0W An exception was thrown while creating an instance of class <className>
registered for identifier <identifierName>.

XBM0X Supplied locale description '<localeID>' is invalid, expecting ln[_CO[_variant]]
ln=lower-case two-letter ISO-639 language code, CO=upper-case two-letter
ISO-3166 country codes, see java.util.Locale.

XBM03 Supplied value '<collationName>' for collation attribute is invalid, expecting
UCS_BASIC or TERRITORY_BASED.

XBM04 Collator support not available from the JVM for the database's locale
'<localeName>'.

XBM0Y Backup database directory <directoryName> not found. Please make sure
that the specified backup path is right.

XBM0Z Unable to copy file '<fileName>' to '<fileName>'. Please make sure that there
is enough space and permissions are correct.

Table 107. Class XBD: Communication exceptions

SQLSTATE Message Text

XBDA0 Login timeout exceeded.

Table 108. Class XCL: Execution exceptions

SQLSTATE Message Text

XCL01 Result set does not return rows. Operation <operationName> not permitted.

XCL05 Activation closed, operation <operationName> not permitted.

XCL07 Cursor '<cursorName>' is closed. Verify that autocommit is off.

XCL08 Cursor '<cursorName>' is not on a row.

XCL09 An Activation was passed to the '<methodName>' method that does not
match the PreparedStatement.

XCL10 A PreparedStatement has been recompiled and the parameters have
changed. If you are using JDBC you must prepare the statement again.

XCL12 An attempt was made to put a data value of type '<datatypeName>' into a
data value of type '<datatypeName>'.

XCL13 The parameter position '<parameterPosition>' is out of range. The number of
parameters for this prepared statement is '<number>'.

Derby Reference Manual

329

SQLSTATE Message Text

XCL14 The column position '<columnPosition>' is out of range. The number of
columns for this ResultSet is '<number>'.

XCL15 A ClassCastException occurred when calling the compareTo() method on an
object '<object>'. The parameter to compareTo() is of class '<className>'.

XCL16 ResultSet not open. Operation '<operation>' not permitted. Verify that
autocommit is off.

XCL18 Stream or LOB value cannot be retrieved more than once

XCL19 Missing row in table '<tableName>' for key '<key>'.

XCL20 Catalogs at version level '<versionNumber>' cannot be upgraded to version
level '<versionNumber>'.

XCL21 You are trying to execute a Data Definition statement (CREATE, DROP,
or ALTER) while preparing a different statement. This is not allowed. It
can happen if you execute a Data Definition statement from within a static
initializer of a Java class that is being used from within a SQL statement.

XCL22 Parameter <parameterName> cannot be registered as an OUT parameter
because it is an IN parameter.

XCL23 SQL type number '<type>' is not a supported type by registerOutParameter().

XCL24 Parameter <parameterName> appears to be an output parameter, but it
has not been so designated by registerOutParameter(). If it is not an output
parameter, then it has to be set to type <type>.

XCL25 Parameter <parameterName> cannot be registered to be of type <type>
because it maps to type <type> and they are incompatible.

XCL26 Parameter <parameterName> is not an output parameter.

XCL27 Return output parameters cannot be set.

XCL30 An IOException was thrown when reading a '<dataType>' from an
InputStream.

XCL31 Statement closed.

XCL33 The table cannot be defined as a dependent of table <tableName> because
of delete rule restrictions. (The relationship is self-referencing and a
self-referencing relationship already exists with the SET NULL delete rule.)

XCL34 The table cannot be defined as a dependent of table <tableName> because
of delete rule restrictions. (The relationship forms a cycle of two or more
tables that cause the table to be delete-connected to itself (all other delete
rules in the cycle would be CASCADE)).

XCL35 The table cannot be defined as a dependent of table <tableName>
because of delete rule restrictions. (The relationship causes the table to be
delete-connected to the indicated table through multiple relationships and the
delete rule of the existing relationship is SET NULL.).

XCL36 The delete rule of foreign key must be <sqlText>. (The referential constraint
is self-referencing and an existing self-referencing constraint has the
indicated delete rule (NO ACTION, RESTRICT or CASCADE).)

XCL37 The delete rule of foreign key must be <sqlText>. (The referential constraint
is self-referencing and the table is dependent in a relationship with a delete
rule of CASCADE.)

Derby Reference Manual

330

SQLSTATE Message Text

XCL38 The delete rule of foreign key must be <ruleName>. The relationship would
cause the table to be delete-connected to the same table through multiple
relationships and such relationships must have the same delete rule (NO
ACTION, RESTRICT or CASCADE).

XCL39 The delete rule of foreign key cannot be CASCADE. (A self-referencing
constraint exists with a delete rule of SET NULL, NO ACTION or
RESTRICT.)

XCL40 The delete rule of foreign key cannot be CASCADE. (The relationship would
form a cycle that would cause a table to be delete-connected to itself. One
of the existing delete rules in the cycle is not CASCADE, so this relationship
may be definable if the delete rule is not CASCADE.)

XCL41 The delete rule of foreign key can not be CASCADE. (The relationship
would cause another table to be delete-connected to the same table through
multiple paths with different delete rules or with delete rule equal to SET
NULL.)

XCL47 Use of '<sqlText>' requires database to be upgraded from version
<versionNumber> to version <versionNumber> or later.

XCL48 TRUNCATE TABLE is not permitted on '<tableName>' because
unique/primary key constraints on this table are referenced by enabled
foreign key constraints from other tables.

XCL49 TRUNCATE TABLE is not permitted on '<tableName>' because it has an
enabled DELETE trigger (<triggerName>).

XCL50 Upgrading the database from a previous version is not supported. The
database being accessed is at version level '<versionNumber>', this software
is at version level '<versionNumber>'.

XCL51 The requested function can not reference tables in SESSION schema.

XCL52 The statement has been cancelled or timed out.

Table 109. Class XCW: Upgrade unsupported

SQLSTATE Message Text

XCW00 Unsupported upgrade from '<versionID>' to '<versionID>'.

Table 110. Class XCX: Internal Utility Errors

SQLSTATE Message Text

XCXA0 Invalid identifier.

XCXB0 Invalid database classpath: '<classpath>'.

XCXC0 Invalid id list.

XCXE0 You are trying to do an operation that uses the locale of the database, but
the database does not have a locale.

Table 111. Class XCY: Derby Property Exceptions

Derby Reference Manual

331

SQLSTATE Message Text

XCY00 Invalid value for property '<propertyName>'='<propertyValue>'.

XCY02 The requested property change is not supported
'<propertyName>'='<propertyValue>'.

XCY03 Required property '<propertyName>' has not been set.

XCY04 Invalid syntax for optimizer overrides. The syntax should be --
DERBY-PROPERTIES propertyName = value [, propertyName = value]*

XCY05 Invalid setting of the derby.authentication.provider property. This property is
already set to enable NATIVE authentication and cannot be changed.

XCY05 Invalid setting of the derby.authentication.provider property. To enable
NATIVE authentication, use the SYSCS_UTIL.SYSCS_CREATE_USER
procedure to store credentials for the database owner.

Table 112. Class XCZ: org.apache.derby.database.UserUtility

SQLSTATE Message Text

XCZ00 Unknown permission '<permissionName>'.

XCZ01 Unknown user '<authorizationID>'.

XCZ02 Invalid parameter '<propertyName>'='<propertyValue>'.

Table 113. Class XD00: Dependency Manager

SQLSTATE Message Text

XD004 Unable to store dependencies.

Table 114. Class XIE: Import/Export Exceptions

SQLSTATE Message Text

XIE01 Connection was null.

XIE03 Data found on line <lineNumber> for column <columnName> after the stop
delimiter.

XIE04 Data file not found: <fileName>

XIE05 Data file cannot be null.

XIE06 Entity name was null.

XIE07 Field and record separators cannot be substrings of each other.

XIE08 There is no column named: <columnName>.

XIE09 The total number of columns in the row is: <number>.

XIE0B Column '<columnName>' in the table is of type <type>, it is not supported by
the import/export feature.

XIE0D Cannot find the record separator on line <lineNumber>.

XIE0E Read end of file at unexpected place on line <lineNumber>.

XIE0I An IOException occurred while writing data to the file.

Derby Reference Manual

332

SQLSTATE Message Text

XIE0J A delimiter is not valid or is used more than once.

XIE0K The period was specified as a character string delimiter.

XIE0M Table '<tableName>' does not exist.

XIE0N An invalid hexadecimal string '<hexString>' detected in the import file.

XIE0P Lob data file <fileName> referenced in the import file not found.

XIE0Q Lob data file name cannot be null.

XIE0R Import error on line <lineNumber> of file <fileName>: <details>

XIE0S The export operation was not performed, because the specified output file
(<fileName>) already exists. Export processing will not overwrite an existing
file, even if the process has permissions to write to that file, due to security
concerns, and to avoid accidental file damage. Please either change the
output file name in the export procedure arguments to specify a file which
does not exist, or delete the existing file, then retry the export operation.

XIE0T The export operation was not performed, because the specified large
object auxiliary file (<fileName>) already exists. Export processing will not
overwrite an existing file, even if the process has permissions to write to that
file, due to security concerns, and to avoid accidental file damage. Please
either change the large object auxiliary file name in the export procedure
arguments to specify a file which does not exist, or delete the existing file,
then retry the export operation.

Table 115. Class XJ: Connectivity Errors

SQLSTATE Message Text

XJ004 Database '<databaseName>' not found.

XJ008 Cannot rollback or release a savepoint when in auto-commit mode.

XJ009 Use of CallableStatement required for stored procedure call or use of output
parameters: <sqlText>

XJ010 Cannot issue SAVEPOINT when autoCommit is on.

XJ011 Cannot pass null for SAVEPOINT name.

XJ012 '<interfaceName>' already closed.

XJ013 No identifier for named SAVEPOINTS.

XJ014 No name for un-named SAVEPOINTS.

XJ015 Derby system shutdown.

XJ016 Method '<methodName>' not allowed on prepared statement.

XJ017 No savepoint command allowed inside the trigger code.

XJ018 Column name cannot be null.

XJ020 Object type not convertible to type '<typeName>', invalid java.sql.Types
value, or object was null.

XJ021 Type is not supported.

XJ022 Unable to set stream: '<name>'.

Derby Reference Manual

333

SQLSTATE Message Text

XJ023 Input stream did not have exact amount of data as the requested length.

XJ025 Input stream cannot have negative length.

XJ028 The URL '<urlValue>' is not properly formed.

XJ030 Cannot set Autocommit On when in a nested connection.

XJ040 Failed to start database '<databaseName>' with class loader <classLoader>,
see the next exception for details.

XJ041 Failed to create database '<databaseName>', see the next exception for
details.

XJ042 '<propertyValue>' is not a valid value for property '<propertyName>'.

XJ044 '<number>' is an invalid scale.

XJ045 Invalid or (currently) unsupported isolation level, '<levelName>', passed
to Connection.setTransactionIsolation(). The currently supported
values are java.sql.Connection.TRANSACTION_SERIALIZABLE,
java.sql.Connection.TRANSACTION_REPEATABLE_READ,
java.sql.Connection.TRANSACTION_READ_COMMITTED, and
java.sql.Connection.TRANSACTION_READ_UNCOMMITTED.

XJ048 Conflicting boot attributes specified: <attributes>

XJ049 Conflicting create attributes specified.

XJ04B Batch cannot contain a command that attempts to return a result set.

XJ04C CallableStatement batch cannot contain output parameters.

XJ056 Cannot set Autocommit On when in an XA connection.

XJ057 Cannot commit a global transaction using the Connection, commit
processing must go thru XAResource interface.

XJ058 Cannot rollback a global transaction using the Connection, commit
processing must go thru XAResource interface.

XJ059 Cannot close a connection while a global transaction is still active.

XJ05B JDBC attribute '<attributeName>' has an invalid value '<attributeValue>',
valid values are '<attributeValues>'.

XJ05C Cannot set holdability ResultSet.HOLD_CURSORS_OVER_COMMIT for a
global transaction.

XJ061 The '<methodName>' method is only allowed on scroll cursors.

XJ062 Invalid parameter value '<invalidNumber>' for ResultSet.setFetchSize(int
rows).

XJ063 Invalid parameter value '<invalidNumber>' for Statement.setMaxRows(int
maxRows). Parameter value must be >= 0.

XJ064 Invalid parameter value '<invalidNumber>' for setFetchDirection(int
direction).

XJ065 Invalid parameter value '<invalidNumber>' for Statement.setFetchSize(int
rows).

XJ066 Invalid parameter value '<invalidNumber>' for Statement.setMaxFieldSize(int
max).

Derby Reference Manual

334

SQLSTATE Message Text

XJ067 SQL text pointer is null.

XJ068 Only executeBatch and clearBatch allowed in the middle of a batch.

XJ069 No SetXXX methods allowed in case of USING execute statement.

XJ070 Negative or zero position argument '<argument>' passed in a Blob or Clob
method.

XJ071 Negative length argument '<argument>' passed in a BLOB or CLOB method.

XJ072 Null pattern or searchStr passed in to a BLOB or CLOB position method.

XJ073 The data in this BLOB or CLOB is no longer available. The BLOB/CLOB's
transaction may be committed, its connection closed or it has been freed.

XJ074 Invalid parameter value '<invalidNumber>' for
Statement.setQueryTimeout(int seconds).

XJ076 The position argument '<positionArgument>' exceeds the size of the
BLOB/CLOB.

XJ077 Got an exception when trying to read the first byte/character of the
BLOB/CLOB pattern using getBytes/getSubString.

XJ078 Offset '<invalidNumber>' is either less than zero or is too large for the current
BLOB/CLOB.

XJ079 The length specified '<number>' exceeds the size of the BLOB/CLOB.

XJ080 USING execute statement passed <number> parameters rather than
<number>.

XJ081 Conflicting create/restore/recovery attributes specified.

XJ081 Invalid value '<parameterValue>' passed as parameter '<parameterName>'
to method '<methodName>'

XJ085 Stream has already been read and end-of-file reached and cannot be
re-used.

XJ086 This method cannot be invoked while the cursor is not on the insert row or if
the concurrency of this ResultSet object is CONCUR_READ_ONLY.

XJ087 Sum of position('<pos>') and length('<length>') is greater than the size of the
LOB plus one.

XJ088 Invalid operation: wasNull() called with no data retrieved.

XJ090 Invalid parameter: calendar is null.

XJ091 Invalid argument: parameter index <indexNumber> is not an OUT or INOUT
parameter.

XJ093 Length of BLOB/CLOB, <number>, is too large. The length cannot exceed
<number>.

XJ095 An attempt to execute a privileged action failed.

XJ097 Cannot rollback or release a savepoint that was not created by this
connection.

XJ098 The auto-generated keys value <keyValue> is invalid

XJ099 The Reader/Stream object does not contain length characters

XJ100

Derby Reference Manual

335

SQLSTATE Message Text

The scale supplied by the registerOutParameter method does not match with
the setter method. Possible loss of precision!

XJ103 Table name can not be null

XJ104 Shared key length is invalid: <invalidNumber>.

XJ105 DES key has the wrong length, expected length <number>, got length
<number>.

XJ106 No such padding

XJ107 Bad Padding

XJ108 Illegal Block Size

XJ110 Primary table name can not be null

XJ111 Foreign table name can not be null

XJ112 Security exception encountered, see next exception for details.

XJ113 Unable to open file <fileName> : <error>

XJ114 Invalid cursor name '<cursorName>'

XJ115 Unable to open resultSet with requested holdability <invalidNumber>.

XJ116 No more than <number> commands may be added to a single batch.

XJ117 Batching of queries not allowed by J2EE compliance.

XJ118 Query batch requested on a non-query statement.

XJ121 Invalid operation at current cursor position.

XJ122 No updateXXX methods were called on this row.

XJ123 This method must be called to update values in the current row or the insert
row.

XJ124 Column not updatable.

XJ125 This method should only be called on ResultSet objects that are scrollable
(type TYPE_SCROLL_INSENSITIVE).

XJ126 This method should not be called on sensitive dynamic cursors.

XJ128 Unable to unwrap for '<interfaceName>'

XJ200 Exceeded maximum number of sections <number>

XJ202 Invalid cursor name '<cursorName>'.

XJ203 Cursor name '<cursorName>' is already in use

XJ204 Unable to open result set with requested holdability <holdValue>.

XJ206 SQL text '<sqlText>' has no tokens.

XJ207 executeQuery method can not be used for update.

XJ208 Non-atomic batch failure. The batch was submitted, but at least
one exception occurred on an individual member of the batch. Use
getNextException() to retrieve the exceptions for specific batched elements.

XJ209 The required stored procedure is not installed on the server.

XJ210 The load module name for the stored procedure on the server is not found.

Derby Reference Manual

336

SQLSTATE Message Text

XJ211 Non-recoverable chain-breaking exception occurred during batch processing.
The batch is terminated non-atomically.

XJ212 Invalid attribute syntax: <attributeSyntax>

XJ213 The traceLevel connection property does not have a valid format for a
number.

XJ214 An IO Error occurred when calling free() on a CLOB or BLOB.

XJ215 You cannot invoke other java.sql.Clob/java.sql.Blob methods after calling
the free() method or after the Blob/Clob's transaction has been committed or
rolled back.

XJ216 The length of this BLOB/CLOB is not available yet. When a BLOB or CLOB
is accessed as a stream, the length is not available until the entire stream
has been processed.

XJ217 The locator that was supplied for this CLOB/BLOB is invalid

Table 116. Class XK: Security Exceptions

SQLSTATE Message Text

XK000 The security policy could not be reloaded: <reason>

XK001 Username not found in SYS.SYSUSERS.

Table 117. Class XN: Network Client Exceptions

SQLSTATE Message Text

XN001 Connection reset is not allowed when inside a unit of work.

XN008 Query processing has been terminated due to an error on the server.

XN009 Error obtaining length of BLOB/CLOB object, exception follows.

XN010 Procedure name can not be null.

XN011 Procedure name length <number> is not within the valid range of 1 to
<number>.

XN012 On <operatingSystemName> platforms, XA supports version
<versionNumber> and above, this is version <versionNumber>

XN013 Invalid scroll orientation.

XN014 Encountered an Exception while reading from the stream specified by
parameter #<number>. The remaining data expected by the server has been
filled with 0x0. The Exception had this message: <messageText>.

XN015 Network protocol error: the specified size of the InputStream, parameter
#<number>, is less than the actual InputStream length.

XN016 Encountered an Exception while trying to verify the length of the stream
specified by parameter #<number>. The Exception had this message:
<messageText>.

XN017 End of stream prematurely reached while reading the stream specified by
parameter #<number>. The remaining data expected by the server has been
filled with 0x0.

Derby Reference Manual

337

SQLSTATE Message Text

XN018 Network protocol error: the specified size of the Reader, parameter
#<number>, is less than the actual InputStream length.

XN019 Error executing a <xaFunctionName>, server returned <xaError>.

XN020 Error marshalling or unmarshalling a user defined type: <messageDetail>

XN021 An object of type <sourceClassName> cannot be cast to an object of type
<targetClassName>.

XN022 A write chain that has transmitted data to the server cannot be reset until the
request is finished and the chain terminated.

XN023 The stream specified by parameter #<number> is locator-based and requires
a nested request on the same connection to be materialized. This is not
supported.

XN024 Encountered an exception which terminated the connection, while reading
from the stream specified by parameter #<number>. The Exception had this
message: '<messageText>'.

Table 118. Class XRE: Replication Exceptions

SQLSTATE Message Text

XRE00 This LogFactory module does not support replication.

XRE01 The log received from the master is corrupted.

XRE02 Master and Slave at different versions. Unable to proceed with Replication.

XRE03 Unexpected replication error. See derby.log for details.

XRE04 Could not establish a connection to the peer of the replicated database
'<dbname>' on address '<hostname>:<portname>'.

XRE04 Connection lost for replicated database '<dbname>'.

XRE05 The log files on the master and slave are not in synch for replicated database
'<dbname>'. The master log instant is <masterfile>:<masteroffset>, whereas
the slave log instant is <slavefile>:<slaveoffset>. This is fatal for replication -
replication will be stopped.

XRE06 The connection attempts to the replication slave for the database <dbname>
exceeded the specified timeout period.

XRE07 Could not perform operation because the database is not in replication
master mode.

XRE08 Replication slave mode started successfully for database '<dbname>'.
Connection refused because the database is in replication slave mode.

XRE09 Cannot start replication slave mode for database '<dbname>'. The database
has already been booted.

XRE10 Conflicting attributes specified. See reference manual for attributes allowed
in combination with replication attribute '<attribute>'.

XRE11 Could not perform operation '<command>' because the database
'<dbname>' has not been booted.

XRE12 Replication network protocol error for database '<dbname>'. Expected
message type '<expectedtype>', but received type '<receivedtype>'.

Derby Reference Manual

338

SQLSTATE Message Text

XRE20 Failover performed successfully for database '<dbname>', the database has
been shutdown.

XRE21 Error occurred while performing failover for database '<dbname>', Failover
attempt was aborted.

XRE22 Replication master has already been booted for database '<dbname>'

XRE23 Replication master cannot be started since unlogged operations are in
progress, unfreeze to allow unlogged operations to complete and restart
replication

XRE40 Could not perform operation because the database is not in replication slave
mode.

XRE41 Replication operation 'failover' or 'stopSlave' refused on the slave database
because the connection with the master is working. Issue the 'failover' or
'stopMaster' operation on the master database instead.

XRE42 Replicated database '<dbname>' shutdown.

XRE43 Unexpected error when trying to stop replication slave mode. To stop
replication slave mode, use operation 'stopSlave' or 'failover'.

Table 119. Class XSAI: Store - access.protocol.interface

SQLSTATE Message Text

XSAI2 The conglomerate (<conglomerateNumber>) requested does not exist.

XSAI3 Feature not implemented.

Table 120. Class XSAM: Store - AccessManager

SQLSTATE Message Text

XSAM0 Exception encountered while trying to boot module for '<interfaceName>'.

XSAM2 There is no index or conglomerate with conglomerate id '<conglomID>' to
drop.

XSAM3 There is no index or conglomerate with conglomerate id '<conglomID>'.

XSAM4 There is no sort called '<sortName>'.

XSAM5 Scan must be opened and positioned by calling next() before making other
calls.

XSAM6 Record <recordNumber> on page <pageNumber> in container
<containerName> not found.

Table 121. Class XSAS: Store - Sort

SQLSTATE Message Text

XSAS0 A scan controller interface method was called which is not appropriate for a
scan on a sort.

XSAS1 An attempt was made to fetch a row before the beginning of a sort or after
the end of a sort.

Derby Reference Manual

339

SQLSTATE Message Text

XSAS3 The type of a row inserted into a sort does not match the sort's template.

XSAS6 Could not acquire resources for sort.

Table 122. Class XSAX: Store - access.protocol.XA statement

SQLSTATE Message Text

XSAX0 XA protocol violation.

XSAX1 An attempt was made to start a global transaction with an Xid of an existing
global transaction.

Table 123. Class XSCB: Store - BTree

SQLSTATE Message Text

XSCB0 Could not create container.

XSCB1 Container <containerName> not found.

XSCB2 The required property <propertyName> not found in the property list given to
createConglomerate() for a btree secondary index.

XSCB3 Unimplemented feature.

XSCB4 A method on a btree open scan has been called prior to positioning the scan
on the first row (i.e. no next() call has been made yet). The current state of
the scan is (<number>).

XSCB5 During logical undo of a btree insert or delete the row could not be found in
the tree.

XSCB6 Limitation: Record of a btree secondary index cannot be updated
or inserted due to lack of space on the page. Use the parameters
derby.storage.pageSize and/or derby.storage.pageReservedSpace to work
around this limitation.

XSCB7 An internal error was encountered during a btree scan - current_rh is null =
<trueOrFalse>, position key is null = <trueOrFalse>.

XSCB8 The btree conglomerate <conglomerateNumber> is closed.

XSCB9 Reserved for testing.

Table 124. Class XSCG0: Conglomerate

SQLSTATE Message Text

XSCG0 Could not create a template.

Table 125. Class XSCH: Heap

SQLSTATE Message Text

XSCH0 Could not create container.

XSCH1 Container <containerName> not found.

XSCH4 Conglomerate could not be created.

Derby Reference Manual

340

SQLSTATE Message Text

XSCH5 In a base table there was a mismatch between the requested column
number <number> and the maximum number of columns <number>.

XSCH6 The heap container with container id <containerID> is closed.

XSCH7 The scan is not positioned.

XSCH8 The feature is not implemented.

Table 126. Class XSDA: RawStore - Data.Generic statement

SQLSTATE Message Text

XSDA1 An attempt was made to access an out of range slot on a page

XSDA2 An attempt was made to update a deleted record

XSDA3 Limitation: Record cannot be updated or inserted due to lack of space
on the page. Use the parameters derby.storage.pageSize and/or
derby.storage.pageReservedSpace to work around this limitation.

XSDA4 An unexpected exception was thrown

XSDA5 An attempt was made to undelete a record that is not deleted

XSDA6 Column <columnName> of row is null, it needs to be set to point to an object.

XSDA7 Restore of a serializable or SQLData object of class <className>,
attempted to read more data than was originally stored

XSDA8 Exception during restore of a serializable or SQLData object of class
<className>

XSDA9 Class not found during restore of a serializable or SQLData object of class
<className>

XSDAA Illegal time stamp <timestamp>, either time stamp is from a different page or
of incompatible implementation

XSDAB Cannot set a null time stamp.

XSDAC Attempt to move either rows or pages from one container to another.

XSDAD Attempt to move zero rows from one page to another.

XSDAE Can only make a record handle for special record handle id.

XSDAF Using special record handle as if it were a normal record handle.

XSDAG The allocation nested top transaction cannot open the container.

XSDAI Page <page> being removed is already locked for deallocation.

XSDAJ Exception during write of a serializable or SQLData object

XSDAK Wrong page is gotten for record handle <recordHandle>.

XSDAL Record handle <recordHandle> unexpectedly points to overflow page.

XSDAM Exception during restore of a SQLData object of class <className>. The
specified class cannot be instantiated.

XSDAN Exception during restore of a SQLData object of class <className>. The
specified class encountered an illegal access exception.

XSDAO Internal error: page <pageNumber> attempted latched twice.

Derby Reference Manual

341

SQLSTATE Message Text

XSDAP Unexpected no space error while attempting to update a row on page
<pageId>. Values of internal fields at time of error are as follows:
slot = <slot>, recordId = <recordId>, newColumnList = <columnList>,
nextColumn = <nextColumn>, mode = <updateMode>, nextPortionHandle =
<nextPortionHandle>, page dump = <pageDump>.

Table 127. Class XSDB: RawStore - Data.Generic transaction

SQLSTATE Message Text

XSDB0 Unexpected exception on in-memory page <page>

XSDB1 Unknown page format at page <page>

XSDB2 Unknown container format at container <containerName> : <number>

XSDB3 Container information cannot change once written: was <number>, now
<number>

XSDB4 Page <page> is at version <versionNumber>, the log file contains change
version <versionNumber>, either there are log records of this page missing,
or this page did not get written out to disk properly.

XSDB5 Log has change record on page <page>, which is beyond the end of the
container.

XSDB6 Another instance of Derby may have already booted the database
<databaseName>.

XSDB7 Warning: Derby (instance <derbyInstanceID>) is attempting to
boot the database <databaseName> even though Derby (instance
<derbyInstanceID>) may still be active. Only one instance of Derby should
boot a database at a time. Severe and non-recoverable corruption can result
and may have already occurred.

XSDB8 Warning: Derby (instance <derbyInstanceID>) is attempting to
boot the database <databaseName> even though Derby (instance
<derbyInstanceID>) may still be active. Only one instance of Derby should
boot a database at a time. Severe and non-recoverable corruption can result
if 2 instances of Derby boot on the same database at the same time. The
derby.database.forceDatabaseLock=true property has been set, so the
database will not boot until the db.lck is no longer present. Normally this
file is removed when the first instance of Derby to boot on the database
exits, but it may be left behind in some shutdowns. It will be necessary to
remove the file by hand in that case. It is important to verify that no other VM
is accessing the database before deleting the db.lck file by hand.

XSDB9 Stream container <containerName> is corrupt.

XSDBA Attempt to allocate object <object> failed.

XSDBB Unknown page format at page <page>, page dump follows: <hexDump>

XSDBC Write of container information to page 0 of container <container> failed. See
nested error for more information.

Table 128. Class XSDF: RawStore - Data.Filesystem statement

Derby Reference Manual

342

SQLSTATE Message Text

XSDF0 Could not create file <fileName> as it already exists.

XSDF1 Exception during creation of file <fileName> for container

XSDF2 Exception during creation of file <fileName> for container, file could not be
removed. The exception was: <exceptionText>.

XSDF3 Cannot create segment <segmentName>.

XSDF4 Exception during remove of file <fileName> for dropped container, file could
not be removed <detailedException>.

XSDF6 Cannot find the allocation page <page>.

XSDF7 Newly created page failed to be latched <pageKey>

XSDF8 Cannot find page <page> to reuse.

XSDFB Operation not supported by a read only database

XSDFD Different page image read on 2 I/Os on Page <page>, first image has
incorrect checksum, second image has correct checksum. Page images
follows: <hexDump><hexDump>

XSDFF The requested operation failed due to an unexpected exception.

XSDFH Cannot backup the database, got an I/O Exception while writing to the
backup container file <fileName>.

XSDFI Error encountered while trying to write data to disk during database recovery.
Check that the database disk is not full. If it is then delete unnecessary files,
and retry connecting to the database. It is also possible that the file system
is read only, or the disk has failed, or some other problem with the media.
System encountered error while processing page <page>.

XSDFJ Error encountered while trying to remove database file <fileName>, as part of
encrypting or decrypting database files. Incorrect file or directory ownership
or permissions could cause remove of the file to fail. Processes not
controlled by Derby like backup or virus checkers could also be responsible.

XSDFK Error encountered while trying to remove a jar file <fileName> stored in the
database. Incorrect file or directory ownership or permissions could cause
remove of the file to fail. Processes not controlled by Derby like backup or
virus checkers could also be responsible.

Table 129. Class XSDG: RawStore - Data.Filesystem database

SQLSTATE Message Text

XSDG0 Page <page> could not be read from disk.

XSDG1 Page <page> could not be written to disk, please check if the disk is full,
or if a file system limit, such as a quota or a maximum file size, has been
reached.

XSDG2 Invalid checksum on Page <page>, expected=<number>, on-disk
version=<number>, page dump follows: <hexDump>

XSDG3 Meta-data for <containerName> could not be accessed to <type><file>

XSDG4 Unrecoverable internal error encountered while attempting to read
low level metadata about the table or index. Please provide your

Derby Reference Manual

343

SQLSTATE Message Text

support organization with the following exception information: Failed:
arraycopy of embryonic page byte[<pageArrayLength>] to container
information byte[<containerArrayLength>]. Values of variables and
constants: MAX_BORROWED_SPACE: <maxBorrowedSpace>,
BORROWED_SPACE_OFFSET(<borrowedSpaceOffset>) +
BORROWED_SPACE_LENG(<borrowedSpaceLength>) =
<arraycopySourcePosition>; arraycopylength: <maxBorrowableSpace>;
embryonic page <hexdump>.

XSDG5 Database is not in create mode when createFinished is called.

XSDG6 Data segment directory not found in <directoryPath> backup during restore.
Please make sure that backup copy is the right one and it is not corrupted.

XSDG7 Directory <directoryName> could not be removed during restore. Please
make sure that permissions are correct.

XSDG8 Unable to copy directory '<directoryName>' to '<directoryName>' during
restore. Please make sure that there is enough space and permissions are
correct.

XSDG9 Derby thread received an interrupt during a disk I/O operation, please check
your application for the source of the interrupt.

Table 130. Class XSLA: RawStore - Log.Generic database exceptions

SQLSTATE Message Text

XSLA0 Cannot flush the log file to disk <filePath>.

XSLA1 Log Record has been sent to the stream, but it cannot be applied to the store
(Object <object>). This may cause recovery problems also.

XSLA2 System will shutdown, got I/O Exception while accessing log file.

XSLA3 Log Corrupted, has invalid data in the log stream.

XSLA4 Error encountered when attempting to write the transaction recovery log.
Most likely the disk holding the recovery log is full. If the disk is full, the
only way to proceed is to free up space on the disk by either expanding it
or deleting files not related to Derby. It is also possible that the file system
and/or disk where the Derby transaction log resides is read-only. The error
can also be encountered if the disk or file system has failed.

XSLA5 Cannot read log stream for some reason to rollback transaction
<transactionID>.

XSLA6 Cannot recover the database.

XSLA7 Cannot redo operation <operation> in the log.

XSLA8 Cannot rollback transaction <transactionID>, trying to compensate
<undoableOperation> operation with <compensationOperation>

XSLAA The store has been marked for shutdown by an earlier exception.

XSLAB Cannot find log file <logfileName>, please make sure your logDevice
property is properly set with the correct path separator for your platform.

XSLAC Database at <directoryPath> has a format incompatible with the current
version of software. It may have been created by or upgraded by a later
version.

Derby Reference Manual

344

SQLSTATE Message Text

XSLAD Log Record at instant <logInstant> in log file <logfileName> corrupted.
Expected log record length <length>, real length <length>.

XSLAE Control file at <fileName> cannot be written or updated.

XSLAF A Read Only database was created with dirty data buffers.

XSLAH A Read Only database is being updated.

XSLAI Cannot log the checkpoint log record

XSLAJ The logging system has been marked to shut down due to an earlier problem
and will not allow any more operations until the system shuts down and
restarts.

XSLAK Database has exceeded largest log file number <number>.

XSLAL Log record size <size> exceeded the maximum allowable log file size <size>.
Error encountered in log file <logfileName>, position <position>.

XSLAM Cannot verify database format at <directoryPath> due to IOException:
<exceptionDetails>

XSLAN Database at <directoryPath> has an incompatible format with the current
version of the software. The database was created by or upgraded by
version <versionNumber>.

XSLAO Recovery failed unexpected problem: <detailedMessage>.

XSLAP Database at <directoryPath> is at version <versionNumber>. Beta databases
cannot be upgraded.

XSLAQ Cannot create log file at directory <directoryName>.

XSLAR Unable to copy log file '<logfileName>' to '<logFileName>' during restore.
Please make sure that there is enough space and permissions are correct.

XSLAS Log directory <directoryName> not found in backup during restore. Please
make sure that backup copy is the correct one and it is not corrupted.

XSLAT The log directory '<directoryName>' exists. The directory might belong
to another database. Check that the location specified for the logDevice
attribute is correct.

Table 131. Class XSLB: RawStore - Log.Generic statement exceptions

SQLSTATE Message Text

XSLB1 Log operation <logOperation> encounters error writing itself out to the log
stream, this could be caused by an errant log operation or internal log buffer
full due to excessively large log operation.

XSLB2 Log operation <logOperation> logging excessive data, it filled up the internal
log buffer.

XSLB5 Illegal truncationLWM instant <truncationPoint> for truncation point
<logInstant>. Legal range is from <logInstant> to <logInstant>.

XSLB6 Trying to log a 0 or -ve length log Record.

XSLB8 Trying to reset a scan to <logInstant>, beyond its limit of <logInstant>.

XSLB9 Cannot issue any more change, log factory has been stopped.

Derby Reference Manual

345

Table 132. Class XSRS: RawStore - protocol.Interface statement

SQLSTATE Message Text

XSRS0 Cannot freeze the database after it is already frozen.

XSRS1 Cannot backup the database to <directoryPath>, which is not a directory.

XSRS4 Error renaming file (during backup) from <fileName> to <fileName>.

XSRS5 Error copying file (during backup) from <path> to <path>.

XSRS6 Cannot create backup directory <directoryName>.

XSRS7 Backup caught unexpected exception.

XSRS8 Log Device can only be set during database creation time, it cannot be
changed on the fly.

XSRS9 Record <recordName> no longer exists

XSRSA Cannot backup the database when unlogged operations are uncommitted.
Please commit the transactions with backup blocking operations.

XSRSB Backup cannot be performed in a transaction with uncommitted unlogged
operations.

XSRSC Cannot backup the database to <directoryLocation>, it is a database
directory.

Table 133. Class XSTA2: XACT_TRANSACTION_ACTIVE

SQLSTATE Message Text

XSTA2 A transaction was already active, when attempt was made to make another
transaction active.

Table 134. Class XSTB: RawStore - Transactions.Basic system

SQLSTATE Message Text

XSTB0 An exception was thrown during transaction abort.

XSTB2 Cannot log transaction changes, maybe trying to write to a read only
database.

XSTB3 Cannot abort transaction because the log manager is null, probably due to
an earlier error.

XSTB5 Creating database with logging disabled encountered unexpected problem.

XSTB6 Cannot substitute a transaction table with another while one is already in
use.

Table 135. Class XXXXX: No SQLSTATE

SQLSTATE Message Text

XXXXX Normal database session close.

Derby Reference Manual

346

JDBC reference

This section provides reference information about Derby's implementation of the Java
Database Connectivity (JDBC) API and documents the way it conforms to the JDBC
APIs.

Derby comes with a built-in JDBC driver. That makes the JDBC API the only
API for working with Derby databases. The driver is a native-protocol fully Java
technology-enabled driver (Type 4 of the types described under "JDBC Architecture" in
http://www.oracle.com/technetwork/java/overview-141217.html).

See the Derby Developer's Guide for task-oriented instructions on working with the driver.

This JDBC driver implements the standard JDBC interfaces. When invoked from an
application running in the same Java Virtual Machine (JVM) as Derby, the JDBC driver
supports connections to a Derby database in embedded mode. No network transport is
required to access the database. In client/server mode, the client application dispatches
JDBC requests to the JDBC server over a network; the server, in turn, which runs in the
same JVM as Derby, sends requests to Derby through the embedded JDBC driver.

For information on the DataSource implementations provided by Derby, see DataSource
classes.

The Derby JDBC implementation provides access to Derby databases and supplies
all the required JDBC interfaces. Unimplemented aspects of the JDBC driver return an
SQLException with a message stating "Feature not implemented" and an SQLState of
XJZZZ. These unimplemented parts are for features not supported by Derby.

java.sql.Driver interface
The class that loads Derby's local JDBC driver is the class
org.apache.derby.jdbc.EmbeddedDriver. The class that loads Derby's network client
driver is the class org.apache.derby.jdbc.ClientDriver.

Usually, you will not need to create an instance of one of these classes, because the
driver class is loaded and registered automatically when the java.sql.DriverManager class
is initialized. That typically happens on the first call to a DriverManager method such as
DriverManager.getConnection. This section describes a few exceptions to this rule.

With the embedded driver, if your application shuts down Derby or calls the
DriverManager.deregisterDriver method, and you then want to reload the driver, call the
Class.forName().newInstance() method to do so:

Class.forName("org.apache.derby.jdbc.EmbeddedDriver").newInstance();

You also need to call the Class.forName method in this way if you need to boot the Derby
engine without actually connecting to it -- for example, if you want to start an embedded
Network Server instance. See, for example, "Overview of the SimpleNetworkServer
Sample program" in the Derby Server and Administration Guide.

The actual driver that gets registered in the DriverManager to handle the
jdbc:derby: protocol is not the class org.apache.derby.jdbc.EmbeddedDriver or
org.apache.derby.jdbc.ClientDriver; that class simply detects the type of Derby driver
needed and then causes the appropriate Derby driver to be loaded.

The only supported way to connect to a Derby system through the jdbc:derby:
protocol is using the DriverManager to obtain a driver (java.sql.Driver) or connection
(java.sql.Connection) through a getDriver or getConnection method call.

http://www.oracle.com/technetwork/java/overview-141217.html

Derby Reference Manual

347

java.sql.Driver.getPropertyInfo method

To get the DriverPropertyInfo object, request the JDBC driver from the driver manager.

java.sql.DriverManager.getDriver("jdbc:derby:").
 getPropertyInfo(URL, Prop)

Do not request it from org.apache.derby.jdbc.EmbeddedDriver, which is only an
intermediary class that loads the actual driver.

This method might return a DriverPropertyInfo object. In a Derby system, it consists
of an array of database connection URL attributes. The most useful attribute is
databaseName=nameofDatabase, which means that the object consists of a list of
booted databases in the current system.

For example, if a Derby system has the databases toursDB and flightsDB in its
system directory, all the databases in the system are set to boot automatically, and a
user has also connected to a database A:/dbs/tours94, the array returned from
getPropertyInfo contains one object corresponding to the databaseName attribute. The
choices field of the DriverPropertyInfo object will contain an array of three Strings with the
values toursDB, flightsDB, and A:/dbs/tours94. Note that this object is returned only if
the proposed connection objects do not already include a database name (in any form) or
include the shutdown attribute with the value true.

For more information about java.sql.Driver.getPropertyInfo, see "Offering connection
choices to the user" in the Derby Developer's Guide.

java.sql.DriverManager.getConnection method
A Java application that uses the JDBC API establishes a connection to a database by
obtaining a Connection object. The standard way to obtain a Connection object is to call
the method DriverManager.getConnection, which takes a String that contains a database
connection URL.

A JDBC database connection URL (uniform resource locator) provides a way of
identifying a database.

DriverManager.getConnection can take one argument besides a database connection
URL, a Properties object. You can use the Properties object to set database connection
URL attributes. If you specify any attributes both on the connection URL and in a
Properties object, the attributes on the connection URL override the attributes in the
Properties object.

You can also supply strings representing user names and passwords. When they
are supplied, Derby checks whether they are valid for the current system if user
authentication is enabled. User names are passed to Derby as authorization identifiers,
which are used to determine whether the user is authorized for access to the database
and for determining the default schema. When the connection is established, if no user
is supplied, Derby sets the default user to APP, which Derby uses to name the default
schema. If a user is supplied, the default schema is the same as the user name.

Derby database connection URL syntax

A Derby database connection URL consists of the basic database connection URL
followed by an optional subsubprotocol and optional attributes.

The following section provides reference information on the connection URL syntax for
applications with embedded databases. For information on the connection URL syntax
for accessing the Network Server, see "Accessing the Network Server by using the

Derby Reference Manual

348

network client driver" in the Derby Server and Administration Guide. For more conceptual
information, including examples, see "Connecting to databases" in the Derby Developer's
Guide.

Syntax of database connection URLs for applications with embedded databases

For applications with embedded databases, the syntax of the database connection URL
is as follows.

jdbc:derby:[subsubprotocol:][databaseName][;attributes]*

This syntax has the following components.

• jdbc:derby:

In JDBC terminology, derby is the subprotocol for connecting to a Derby database.
The subprotocol is always derby and does not vary.

• subsubprotocol:

subsubprotocol specifies where Derby looks for a database: in a directory, in
memory, in a classpath, or in a jar file. subsubprotocol is one of the following:

• directory: The default, which need not be specified explicitly. The database
is in the file system, and the path name is either relative to the system
directory or absolute.

• memory: Databases exist only in main memory and are not written to disk.
An in-memory database may be useful when there is no need to persist the
database -- for example, in some testing situations. See "Using in-memory
databases" in the Derby Developer's Guide for more information.

• classpath: Databases are treated as read-only databases, relative to the
classpath directory. All databaseNames must begin with at least a slash,
because you specify them "relative" to the classpath directory or archive. (You
do not have to specify classpath as the subsubprotocol; it is implied.) See
"Accessing databases from the classpath" in the Derby Developer's Guide for
more information.

• jar: Databases are treated as read-only databases. DatabaseNames might
require a leading slash, because you specify them "relative" to the jar file. See
"Accessing databases from a jar or zip file" in the Derby Developer's Guide for
details.

jar requires an additional element immediately before the database name:

(pathToArchive)

pathToArchive is the path name of the jar or zip file that holds the database.
• databaseName

Specify the databaseName to connect to an existing database or a new one.

The databaseName value can be either an absolute path name or a path name
relative to the system directory. For example, thisDB, databases/thisDB,
and c:/databases/2014/january/thisDB can all be valid values. See
"Connecting to databases" and its subsections in the Derby Developer's Guide. The
path separator in the connection URL is a forward slash (/), even in Windows path
names. The databaseName value cannot contain a colon (:), except for the colon
after the drive name in a Windows path name.

• attributes

Specify zero or more database connection URL attributes as detailed in Attributes of
the Derby database connection URL.

Derby Reference Manual

349

Additional SQL syntax

Derby also supports the following SQL standard syntax to obtain a reference to the
current connection in a database-side JDBC routine.

jdbc:default:connection

Attributes of the Derby database connection URL

You can supply an optional list of attributes to a database connection URL.

Derby translates these attributes into properties, so you can also set attributes
in a Properties object passed to DriverManager.getConnection. (You cannot
set those attributes as system properties, only in an object passed to the
DriverManager.getConnection method.)

If you specify any attributes both on the connection URL and in a Properties object, the
attributes on the connection URL override the attributes in the Properties object.

These attributes are specific to Derby and are listed in Setting attributes for the database
connection URL.

Attribute name/value pairs are converted into properties and added to the properties
provided in the connection call. If no properties are provided in the connection call, a
properties set is created that contains only the properties obtained from the database
connection URL.

import java.util.Properties;

Connection conn = DriverManager.getConnection(
 "jdbc:derby:sampleDB;create=true");

/* setting an attribute in a Properties object */
Properties myProps = new Properties();
myProps.put("create", "true");
Connection conn = DriverManager.getConnection(
 "jdbc:derby:sampleDB", myProps);

/* passing user name and password */
Connection conn = DriverManager.getConnection(
 "jdbc:derby:sampleDB", "dba", "password");

Note: Attributes are not parsed for correctness. If you pass in an incorrect attribute
or corresponding value, it is simply ignored. (Derby does provide a tool for parsing the
correctness of attributes. For more information, see the Derby Tools and Utilities Guide.)

java.sql.Connection interface
A Derby Connection object is not garbage-collected until all other JDBC objects created
from that connection are closed or are themselves garbage-collected.

Once the connection is closed, no further JDBC requests can be made against objects
created from the connection. Do not explicitly close the Connection object until you no
longer need it for executing statements.

The Connection interface extends AutoCloseable in JDK 7 and after. If you declare a
connection in a try-with-resources statement and there is an error that the code does not
catch, the JRE will attempt to close the connection automatically.

Note that a transaction-severity or higher exception causes Derby to abort an in-flight
transaction. But a statement-severity exception does NOT roll back the transaction. Also
note that Derby throws an exception if an attempt is made to close a connection with an
in-flight transaction. Suppose now that a Connection is declared in a try-with-resources

Derby Reference Manual

350

statement, a transaction is in-flight, and an unhandled statement-severity error occurs
inside the try-with-resources block. In this situation, Derby will raise a follow-on exception
as the JRE exits the try-with-resources block. (For details on error severity levels, see
derby.stream.error.logSeverityLevel.)

It is therefore always best to catch errors inside the try-with-resources block and to either
roll back or commit, as appropriate, to ensure that there is no pending transaction when
leaving the try-with-resources block. This action also improves application portability,
since DBMSs differ in their semantics when trying to close a connection with a pending
transaction.

The following table describes features of Connection methods that are specific to Derby.

Table 136. Implementation notes on Connection methods

Returns Signature Implementation Notes

PreparedStatement prepareStatement(String sql, int []
columnIndexes)

Every column index in
the array must correlate
to an auto-increment
column within the target
table of the INSERT.

PreparedStatement prepareStatement(String sql,
String [] columnNames)

Every column name in
the array must designate
an auto-increment
column within the target
table of the INSERT.

See Autogenerated keys for details on the use of the two forms of the
Connection.prepareStatement method shown in this table.

java.sql.Connection.setTransactionIsolation method

The transaction isolation levels java.sql.Connection.TRANSACTION_SERIALIZABLE,
java.sql.Connection.TRANSACTION_REPEATABLE_READ,
java.sql.Connection.TRANSACTION_READ_COMMITTED, and
java.sql.Connection.TRANSACTION_READ_UNCOMMITTED are available from a Derby
database.

TRANSACTION_READ_COMMITTED is the default isolation level.

Changing the current isolation for the connection with setTransactionIsolation commits
the current transaction and begins a new transaction. For more details about transaction
isolation, see "Locking, concurrency, and isolation" in the Derby Developer's Guide.

java.sql.Connection.setReadOnly method

The java.sql.Connection.setReadOnly method is supported.

See the section "Differences using the Connection.setReadOnly method" in the Derby
Server and Administration Guide for more information.

java.sql.Connection.isReadOnly method

If you connect to a read-only database, the appropriate isReadOnly DatabaseMetaData
value is returned.

Derby Reference Manual

351

For example, Connections set to read-only using the setReadOnly method, Connections
for which the user has been defined as a readOnlyAccess user (with one of the Derby
properties), and Connections to databases on read-only media return true.

Connection functionality not supported

Derby does not use catalog names. In addition, the following optional methods raise
"Feature not supported" exceptions.

• createArrayOf(java.lang.String, java.lang.Object[])
• createNClob()
• createSQLXML()
• createStruct(java.lang.String, java.lang.Object[])
• getTypeMap()
• prepareStatement(java.lang.String, int[])
• prepareStatement(java.lang.String, java.lang.String[])
• setTypeMap(java.util.Map)

java.sql.DatabaseMetaData interface
Derby implements the java.sql.DatabaseMetaData interface.

For methods that take a catalog parameter, always specify null for this parameter,
since Derby does not support catalogs. Similarly, methods that return a catalog in the
ResultSet will always return null in that column.

The Derby implementation of the getColumns method returns an empty ResultSet if the
table specified in the third argument is a SYNONYM. The method reports "YES" as the
value of IS_AUTOINCREMENT if a column is generated.

The Derby implementation of the getResultSetHoldability method returns
ResultSet.HOLD_CURSORS_OVER_COMMIT.

DatabaseMetaData result sets

DatabaseMetaData result sets do not close the result sets of other statements, even
when auto-commit is set to true.

DatabaseMetaData result sets are closed if a user performs any other action on a JDBC
object that causes an automatic commit to occur. If you need the DatabaseMetaData
result sets to be accessible while executing other actions that would cause automatic
commits, turn off auto-commit with setAutoCommit(false).

Columns in the ResultSets returned by getFunctionColumns and
getProcedureColumns

Columns in the ResultSets returned by getFunctionColumns and getProcedureColumns
are as described by the API.

The following table shows Derby-specific details for some specific columns returned by
getFunctionColumns.

Table 137. Columns in the ResultSet returned by getFunctionColumns

Column Description

COLUMN_TYPE A short indicating what the row describes. Is always
DatabaseMetaData.functionColumnIn if it represents

Derby Reference Manual

352

Column Description

a parameter; DatabaseMetaData.functionReturn
if it represents a return value; and
DatabaseMetaData.functionColumnResult if it represents a
column in a table function.

TYPE_NAME Derby-specific name for the type.

NULLABLE Always returns DatabaseMetaData.functionNullable.

REMARKS A String which describes the Java type of the method
parameter.

ORDINAL_POSITION The ordinal position, starting from 1, for the input and output
parameters for the function.

METHOD_ID A Derby-specific column.

PARAMETER_ID A Derby-specific column.

The following table shows Derby-specific details for some specific columns returned by
getProcedureColumns.

Table 138. Columns in the ResultSet returned by getProcedureColumns

Column Description

COLUMN_TYPE A short indicating what the row describes. Is always
DatabaseMetaData.procedureColumnIn if the parameter
is (possibly implicitly) declared as an IN parameter;
DatabaseMetaData.procedureColumnInOut if the
parameter is declared as an INOUT parameter; and
DatabaseMetaData.procedureColumnOut if the parameter is
declared as an OUT parameter.

TYPE_NAME Derby-specific name for the type.

NULLABLE Always returns DatabaseMetaData.procedureNullable.

REMARKS A String which describes the Java type of the method
parameter.

ORDINAL_POSITION The ordinal position, starting from 1, for the input and output
parameters for the procedure.

METHOD_ID A Derby-specific column.

PARAMETER_ID A Derby-specific column.

java.sql.DatabaseMetaData.getBestRowIdentifier method

The java.sql.DatabaseMetaData.getBestRowIdentifier method looks for identifiers in a
specific order. This order might not return a unique row.

The java.sql.DatabaseMetaData.getBestRowIdentifier method looks for identifiers in the
following order:

• A primary key on the table
• A unique constraint or unique index on the table
• All of the columns in the table

Note: If the java.sql.DatabaseMetaData.getBestRowIdentifier method does not find a
primary key, unique constraint, or unique index, the method must look for identifiers in all

Derby Reference Manual

353

of the columns in the table. When the method looks for identifiers this way, the method
will always find a set of columns that identify a row. However, a unique row might not be
identified if there are duplicate rows in the table.

java.sql.Statement interface
Derby does not implement the setEscapeProcessing method of java.sql.Statement. In
addition, the cancel method raises a "Feature not supported" exception.

The following table describes features of Statement methods that are specific to Derby.

Table 139. Implementation notes on Statement methods

Returns Signature Implementation Notes

ResultSet getGeneratedKeys() If the user has indicated that
auto-generated keys should be
made available, this method
returns the same results as a call
to the IDENTITY_VAL_LOCAL
function. Otherwise this method
returns null.

boolean execute(String sql, int []
columnIndexes)

Every column index in the
array must correlate to an
auto-increment column within the
target table of the INSERT.

boolean execute(String sql, String []
columnNames)

Every column name in the
array must designate an
auto-increment column within the
target table of the INSERT.

int executeUpdate(String sql, int []
columnIndexes)

Every column index in the
array must correlate to an
auto-increment column within the
target table of the INSERT.

int executeUpdate(String sql, String
[] columnNames)

Every column name in the
array must designate an
auto-increment column within the
target table of the INSERT.

ResultSet objects

An error that occurs when a SELECT statement is first executed prevents a ResultSet
object from being opened on it. The same error does not close the ResultSet if it occurs
after the ResultSet has been opened.

For example, a divide-by-zero error that happens while the executeQuery method is
called on a java.sql.Statement or java.sql.PreparedStatement throws an exception and
returns no result set at all, while if the same error happens while the next method is
called on a ResultSet object, it does not cause the result set to be closed.

Errors can happen when a ResultSet is first being created if the system partially executes
the query before the first row is fetched. This can happen on any query that uses more
than one table and on queries that use aggregates, GROUP BY, ORDER BY, DISTINCT,
INTERSECT, EXCEPT, or UNION.

Derby Reference Manual

354

Closing a Statement causes all open ResultSet objects on that statement to be closed as
well.

The cursor name for the cursor of a ResultSet can be set before the statement is
executed. However, once it is executed, the cursor name cannot be altered.

Autogenerated keys

JDBC's auto-generated keys feature provides a way to retrieve values from columns that
are part of an index or have a default value assigned.

Derby supports the auto-increment feature, which allows users to create columns in
tables for which the database system automatically assigns increasing integer values.
Users can call the method Statement.getGeneratedKeys to retrieve the value of such
a column. This method returns a ResultSet object with a column for the automatically
generated key.

The Derby implementation of Statement.getGeneratedKeys returns meaningful results
only if the last statement was a single-row insert statement. If it was a multi-row insert,
Statement.getGeneratedKeys will return a result set with only a single row, even though it
should return one row for each inserted row.

Calling ResultSet.getMetaData on the ResultSet object returned by getGeneratedKeys
produces a ResultSetMetaData object that is similar to that returned by
IDENTITY_VAL_LOCAL.

Users can indicate that auto-generated columns should be made available for
retrieval by passing one of the following values as a second argument to the
Connection.prepareStatement, Statement.execute, or Statement.executeUpdate
methods:

• A constant indicating that auto-generated keys should be made available. The
specific constant to use is Statement.RETURN_GENERATED_KEYS.

• An array of the names of the columns in the inserted row that should be made
available. If any column name in the array does not designate an auto-increment
column, Derby will throw an error with the Derby embedded driver. With the client
driver, the one element column name is ignored currently and the value returned
corresponds to the identity column. To ensure compatibility with future changes an
application should ensure the column described is the identity column. If the column
name corresponds to another column or a non-existent column then future changes
may result in a value for a different column being returned or an exception being
thrown.

• An array of the positions of the columns in the inserted row that should be made
available. If any column position in the array does not correlate to an auto-increment
column, Derby will throw an error with the Derby embedded driver. With the client
driver, the one element position array is ignored currently and the value returned
corresponds to the identity column. To ensure compatibility with future changes
an application should ensure the column described is the identity column. If the
position corresponds to another column or a non-existent column then future
changes may result in a value for a different column being returned or an exception
being thrown.

Example

Assume that we have a table TABLE1 defined as follows:

CREATE TABLE TABLE1 (C11 int, C12 int GENERATED ALWAYS AS IDENTITY)

The following three code fragments will all do the same thing: that is, they will create a
ResultSet that contains the value of C12 that is inserted into TABLE1.

Derby Reference Manual

355

Code fragment 1:

Statement stmt = conn.createStatement();
stmt.execute(
 "INSERT INTO TABLE1 (C11) VALUES (1)",
 Statement.RETURN_GENERATED_KEYS);
ResultSet rs = stmt.getGeneratedKeys();

Code fragment 2:

Statement stmt = conn.createStatement();
String [] colNames = new String [] { "C12" };
stmt.execute(
 "INSERT INTO TABLE1 (C11) VALUES (1)",
 colNames);
ResultSet rs = stmt.getGeneratedKeys();

Code fragment 3:

Statement stmt = conn.createStatement();
int [] colIndexes = new int [] { 2 };
stmt.execute(
 "INSERT INTO TABLE1 (C11) VALUES (1)",
 colIndexes);
ResultSet rs = stmt.getGeneratedKeys();

If there is no indication that auto-generated columns should be made available for
retrieval, a call to Statement.getGeneratedKeys will return a null ResultSet.

java.sql.CallableStatement interface
Derby supports all methods of CallableStatement except setBlob, getBlob, setClob, and
getClob.

CallableStatements and OUT Parameters

Derby supports OUT parameters and CALL statements that return values, as in the
following example.

CallableStatement cs = conn.prepareCall(
 "? = CALL getDriverType(cast (? as INT))"
cs.registerOutParameter(1, Types.INTEGER);
cs.setInt(2, 35);
cs.executeUpdate();

Note: Using a CALL statement with a procedure that returns a value is only supported
with the ? = syntax.

Register the output type of the parameter before executing the call.

CallableStatements and INOUT parameters

INOUT parameters map to an array of the parameter type in the Java programming
language. (The method must take an array as its parameter.) This conforms to the
recommendations of the SQL standard.

Given the following example:

CallableStatement call = conn.prepareCall(
 "{CALL doubleMyInt(?)}");
// for inout parameters, it is good practice to

Derby Reference Manual

356

// register the outparameter before setting the input value
call.registerOutParameter(1, Types.INTEGER);
call.setInt(1,10);
call.execute();
int retval = call.getInt(1);

The method doubleIt should take a one-dimensional array of ints. Here is sample
source code for that method:

public static void doubleMyInt(int[] i) {
 i[0] *=2;
 /* Derby returns the first element of the array.*/
}

Note: The return value is not wrapped in an array even though the parameter to the
method is.

The following table shows the parameter array types and return types that correspond to
JDBC types.

Table 140. INOUT parameter type correspondence

JDBC Type
Array Type for

Method Parameter Value and Return Type

BIGINT long[] long

BINARY byte[][] byte[]

BLOB java.sql.Blob[] java.sql.Blob

BOOLEAN boolean[] boolean

CLOB java.sql.Clob[] java.sql.Clob

DATE java.sql.Date[] java.sql.Date

DOUBLE double[] double

FLOAT double[] double

INTEGER int[] int

LONGVARBINARY byte[][] byte[]

REAL float[] float

SMALLINT short[] short

TIME java.sql.Time[] java.sql.Time

TIMESTAMP java.sql.Timestamp[] java.sql.Timestamp

VARBINARY byte[][] byte[]

OTHER yourType[] yourType

JAVA_OBJECT yourType[] yourType

Register the output type of the parameter before executing the call. For INOUT
parameters, it is good practice to register the output parameter before setting its input
value.

java.sql.PreparedStatement interface

Derby Reference Manual

357

Derby provides all the required JDBC type conversions and additionally allows use of
the individual setXXX methods for each type as if a setObject(Value, JDBCTypeCode)
invocation were made.

This means that setString can be used for any built-in target type.

The setCursorName method can be used on a PreparedStatement prior to an execute
request to control the cursor name used when the cursor is created.

Prepared statements and streaming columns

The setXXXStream methods request stream data between the application and the
database.

JDBC allows an IN parameter to be set to a Java input stream for passing in large
amounts of data in smaller chunks. When the statement is run, the JDBC driver makes
repeated calls to this input stream. Derby supports the following JDBC stream methods
for PreparedStatement objects:

• setBinaryStream

Use for streams that contain uninterpreted bytes
• setAsciiStream

Use for streams that contain ASCII characters
• setCharacterStream

Use for streams that contain characters

Note: Derby does not support the setNCharacterStream method or the deprecated
setUnicodeStream method.
Note: These methods do not require that you specify the length of the stream. However,
if you omit the length argument when the stream object is a LOB greater than a single
page in size, performance will be impaired if you later retrieve the length of the LOB. If
you are simply inserting or reading data, performance is unaffected.

The stream object passed to setBinaryStream and setAsciiStream can be either a
standard Java stream object or the user's own subclass that implements the standard
java.io.InputStream interface. The object passed to setCharacterStream must be a
subclass of the abstract java.io.Reader class.

According to the JDBC standard, streams can be stored only in columns with the data
types shown in the following table. The word "Preferred" indicates the preferred target
data type for the type of stream. See Mapping of java.sql.Types to SQL types.

Table 141. Streamable JDBC data types

Column
Data Type

Corresponding
Java Type AsciiStream CharacterStreamBinaryStream

CLOB java.sql.Clob Yes Yes No

CHAR None Yes Yes No

VARCHAR None Yes Yes No

LONGVARCHAR None Preferred Preferred No

BINARY None Yes Yes Yes

BLOB java.sql.Blob Yes Yes Yes

VARBINARY None Yes Yes Yes

LONGVARBINARY None Yes Yes Preferred

Derby Reference Manual

358

Note: Streams cannot be stored in columns of the other built-in data types or columns of
user-defined data types.

Example

The following code fragment shows how a user can store a streamed, ASCII-encoded
java.io.File in a LONG VARCHAR column:

 Statement s = conn.createStatement();
 s.executeUpdate("CREATE TABLE atable (a INT, b LONG VARCHAR)");
 conn.commit();

 java.io.File file = new java.io.File("derby.txt");
 int fileLength = (int) file.length();

 // create an input stream
 java.io.InputStream fin = new java.io.FileInputStream(file);
 PreparedStatement ps = conn.prepareStatement(
 "INSERT INTO atable VALUES (?, ?)");
 ps.setInt(1, 1);

 // set the value of the input parameter to the input stream
 ps.setAsciiStream(2, fin, fileLength);
 ps.execute();
 conn.commit();

java.sql.ResultSet interface
A positioned update or delete issued against a cursor being accessed through a
ResultSet object modifies or deletes the current row of the ResultSet object.

Some intermediate protocols might pre-fetch rows. This causes positioned updates and
deletes to operate against the row the underlying cursor is on, and not the current row of
the ResultSet.

JDBC does not define the sort of rounding to use for ResultSet.getBigDecimal. Derby
uses java.math.BigDecimal.ROUND_HALF_DOWN.

The following table describes features of ResultSet methods that are specific to Derby.

Table 142. Implementation notes on ResultSet methods

Returns Signature Implementation Notes

void deleteRow() After the row is deleted, the ResultSet
object will be positioned before the next
row. Before issuing any methods other than
close on the ResultSet object, the program
will need to reposition the ResultSet object.

int getConcurrency() If the Statement object has
CONCUR_READ_ONLY concurrency,
then this method will return
ResultSet.CONCUR_READ_ONLY.
But if the Statement object has
CONCUR_UPDATABLE concurrency, then
the return value will depend on whether
the underlying language ResultSet is
updatable or not. If the language ResultSet
is updatable, then getConcurrency() will
return ResultSet.CONCUR_UPDATABLE.
If the language ResultSet is not updatable,

Derby Reference Manual

359

Returns Signature Implementation Notes

then getConcurrency() will return
ResultSet.CONCUR_READ_ONLY.

boolean rowDeleted() For forward-only result sets this method
always returns false, for scrollable result
sets it returns true if the row has been
deleted, via result set or positioned delete.

boolean rowInserted() Always returns false.

boolean rowUpdated() For forward-only result sets this method
always returns false, for scrollable result
sets it returns true if the row has been
updated, via result set or positioned
update.

void updateRow() After the row is updated, the ResultSet
object will be positioned before the next
row. Before issuing any methods other than
close on the ResultSet object, the program
will need to reposition the ResultSet object.

ResultSets and streaming columns

If the underlying object is itself an OutputStream class, getBinaryStream returns the
object directly.

To get a field from the ResultSet using streaming columns, you can use the
getXXXStream methods if the type supports it. See Streamable JDBC data types for a list
of types that support the various streams. (See also Mapping of java.sql.Types to SQL
types.)

You can retrieve data from one of the supported data type columns as a stream, whether
or not it was stored as a stream.

The following code fragment shows how a user can retrieve a LONG VARCHAR column
as a stream:

 // retrieve data as a stream
 ResultSet rs = s.executeQuery("SELECT b FROM atable");
 while (rs.next()) {
 // use a java.io.Reader to get the data
 java.io.Reader ip = rs.getCharacterStream(1);

 // process the stream--this is just a generic way to
 // print the data
 char[] buff = new char[128];
 int size;
 while ((size = ip.read(buff)) != -1) {
 String chunk = new String(buff, 0, size);
 System.out.print(chunk);
 }
 }
 rs.close();
 s.close();
 conn.commit();

java.sql.ResultSetMetaData interface

Derby Reference Manual

360

Derby does not track the source or updatability of columns in ResultSets, and so always
returns the constants shown for the methods listed in the following table.

Table 143. Implementation notes on ResultSetMetadata methods

Method Name Value

isDefinitelyWritable false

isReadOnly false

isWritable false

java.sql.SQLException class
Derby supplies values for the getMessage, getSQLState, and getErrorCode calls of
SQLException.

In addition, Derby sometimes returns multiple SQLExceptions using the nextException
chain. The first exception is always the most severe exception, with SQL Standard
exceptions preceding those that are specific to Derby.

For information on processing SQLExceptions, see "Working with Derby SQLExceptions
in an application" in the Derby Developer's Guide.

Exceptions raised by Derby will generally be one of the refined subclasses of
SQLException. These refined exceptions are raised under the conditions described by
their respective API documentation. The subclasses include the following. For a complete
list, see the API documentation for your version of the Java SE platform.

• java.sql.SQLClientInfoException
• java.sql.SQLDataException
• java.sql.SQLFeatureNotSupportedException
• java.sql.SQLIntegrityConstraintViolationException
• java.sql.SQLInvalidAuthorizationSpecException
• java.sql.SQLSyntaxErrorException
• java.sql.SQLTransactionRollbackException
• java.sql.SQLTransientConnectionException

java.sql.SQLWarning class
Derby can generate a warning in certain circumstances. A warning is generated if, for
example, you try to connect to a database with the create attribute set to true if the
database already exists.

Aggregates like SUM also raise a warning if NULL values are encountered during the
evaluation.

All other informational messages are written to the Derby system's derby.log file.

java.sql.SQLXML interface
The java.sql.SQLXML interface is the mapping for the SQL XML data type. However,
Derby defines the XML data type and operators only in the SQL layer. There is no
JDBC-side support for the XML data type and operators.

You cannot instantiate a java.sql.SQLXML object in Derby, or bind directly into an XML
value or retrieve an XML value directly from a result set. You must bind and retrieve the

Derby Reference Manual

361

XML data as Java strings or character streams by explicitly specifying the XML operators,
XMLPARSE and XMLSERIALIZE, as part of your SQL queries.

Additionally, Derby does not provide JDBC metadata support for the XML data type.

java.sql.Savepoint interface
The Savepoint interface contains methods to set, release, or roll back a transaction to
designated savepoints. Once a savepoint has been set, the transaction can be rolled
back to that savepoint without affecting preceding work.

Savepoints provide finer-grained control of transactions by marking intermediate points
within a transaction.

Derby does not support savepoints within a trigger.

Derby does not release locks as part of the rollback to savepoint.

For more information on using savepoints, see the Derby Developer's Guide.

Mapping of java.sql.Types to SQL types
In Derby, the java.sql.Types are mapped to SQL data types.

The following table shows the mapping of java.sql.Types to SQL types.

Table 144. Mapping of java.sql.Types to SQL types

java.sql.Types SQL Types

BIGINT BIGINT

BINARY CHAR FOR BIT DATA

BLOB BLOB

BOOLEAN BOOLEAN

CHAR CHAR

CLOB CLOB

DATE DATE

DECIMAL DECIMAL

DOUBLE DOUBLE PRECISION

FLOAT DOUBLE PRECISION1

INTEGER INTEGER

LONGVARBINARY LONG VARCHAR FOR BIT DATA

LONGVARCHAR LONG VARCHAR

NULL Not a data type; always a value of a particular type

NUMERIC DECIMAL

REAL REAL

SMALLINT SMALLINT

SQLXML2 XML

TIME TIME

Derby Reference Manual

362

java.sql.Types SQL Types

TIMESTAMP TIMESTAMP

VARBINARY VARCHAR FOR BIT DATA

VARCHAR VARCHAR

Notes:
1. Values can be passed in using the FLOAT type code; however, these are stored as

DOUBLE PRECISION values, and so always have the type code DOUBLE when
retrieved.

2. SQLXML is only valid in JDBC 4.0 and later environments. SQLXML corresponds
to the SQL type XML in Derby. However, Derby does not recognize the
java.sql.Types.SQLXML data type and does not support any JDBC-side operations
for the XML data type. Support for XML and the related operators is implemented
only at the SQL layer. See XML data types for more.

Mapping of java.sql.Blob and java.sql.Clob interfaces

In the JDBC API, java.sql.Blob is the mapping for the SQL BLOB (binary large object)
type; java.sql.Clob is the mapping for the SQL CLOB (character large object) type. BLOB
and CLOB objects are collectively referred to as LOBs (large objects).

The Derby implementation of the java.sql.Blob and java.sql.Clob interfaces is
LOCATOR-based, meaning that the implementation provides a logical pointer to a LOB
rather than a complete copy of the object. Also, Derby does not materialize a LOB when
you use the BLOB or CLOB data type. You can, however, call methods on a java.sql.Blob
and java.sql.Clob object to materialize it (that is, to retrieve the entire object or parts of it).

You can access a LOB column only once within a row, by invoking a getter method on it.

To use the java.sql.Blob and java.sql.Clob features:
• Use the SQL BLOB type for columns which hold very large binary values.
• Use the SQL CLOB type for columns which hold very large string values.
• Use the getBlob and getClob methods of the java.sql.ResultSet interface to

retrieve a LOB using its locator. You can then materialize all or part of the LOB by
calling Blob and Clob methods. Alternatively, you can call the ResultSet.getBytes
method to materialize a BLOB, and you can call the ResultSet.getString method to
materialize a CLOB.

Casting between strings and BLOBs is not recommended because casting is platform-
and database-dependent. See CAST function for more information.

As with other character datatypes, Derby treats CLOBs as unicode strings and writes
them to disk using UTF8 encoding. With a Java database like Derby, you do not need to
worry about character sets and codepages.

Restrictions on BLOB and CLOB objects (LOB-types)
• LOB-types cannot be compared for equality (=) and non-equality (!=, <>).
• LOB-typed values are not orderable, so <, <=, >, >= tests are not supported.
• LOB-types cannot be used in indices or as primary key columns.
• DISTINCT, GROUP BY, and ORDER BY clauses are also prohibited on LOB-types.
• LOB-types cannot be involved in implicit casting as other base-types.

Recommendation: Because the lifespan of a java.sql.Blob or java.sql.Clob ends when
the transaction commits, turn off auto-commit with the java.sql.Blob or java.sql.Clob
features.

The following table describes features of java.sql.Blob methods that are specific to Derby.

Derby Reference Manual

363

Table 145. Implementation notes on java.sql.Blob methods

Returns Signature Implementation Notes

byte[] getBytes(long pos, int length) Exceptions are raised if pos < 1, if pos
is larger than the length of the Blob, or if
length <= 0.

long position(byte[] pattern, long
start)

Exceptions are raised if pattern == null, if
start < 1, or if pattern is an array of length
0.

long position(Blob pattern, long
start)

Exceptions are raised if pattern == null, if
start < 1, if pattern has length 0, or if an
exception is thrown when trying to read
the first byte of pattern.

The following table describes features of java.sql.Clob methods that are specific to
Derby.

Table 146. Implementation notes on java.sql.Clob methods

Returns Signature Implementation Notes

String getSubString(long pos, int
length)

Exceptions are raised if pos < 1, if pos
is larger than the length of the Clob, or if
length <= 0.

long position(Clob searchstr, long
start)

Exceptions are raised if searchStr == null
or start < 1, if searchStr has length 0, or if
an exception is thrown when trying to read
the first char of searchStr.

long position(String searchstr, long
start)

Exceptions are raised if searchStr == null
or start < 1, or if the pattern is an empty
string.

Notes on mapping of java.sql.Blob and java.sql.Clob interfaces

The usual Derby locking mechanisms (shared locks) prevent other transactions from
updating or deleting the database item to which the java.sql.Blob or java.sql.Clob object
is a pointer.

However, in some cases, Derby's instantaneous lock mechanisms could allow a period
of time in which the column underlying the java.sql.Blob or java.sql.Clob is unprotected.
A subsequent call to getBlob/getClob, or to a java.sql.Blob/java.sql.Clob method, could
cause undefined behavior.

Furthermore, there is nothing to prevent the transaction that holds the
java.sql.Blob/java.sql.Clob (as opposed to another transaction) from updating
the underlying row. (The same problem exists with the getXXXStream methods.)
Program applications to prevent updates to the underlying object while a
java.sql.Blob/java.sql.Clob is open on it; failing to do this could result in undefined
behavior.

Do not call more than one of the ResultSet getXXX methods on the same column if one
of the methods is one of the following:

• getBlob
• getClob
• getAsciiStream

Derby Reference Manual

364

• getBinaryStream
• getCharacterStream

These methods share the same underlying stream; calling more than one of these
methods on the same column could result in undefined behavior. For example:

 ResultSet rs = s.executeQuery("SELECT text FROM CLOBS WHERE i = 1");
 while (rs.next()) {
 aclob = rs.getClob(1);
 ip = rs.getAsciiStream(1);
 }

The streams that handle long-columns are not thread safe. This means that if a user
chooses to open multiple threads and access the stream from each thread, the resulting
behavior is undefined.

Clobs are not locale-sensitive.

Features supported on JDBC 4.1 and above
JDBC 4.1 added some functionality to the core API. This section documents the JDBC
4.1 features supported by Derby.

For information on features supported by all releases of JDBC 4, see JDBC reference.
For information about features supported only by JDBC 4.2, see JDBC 4.2-only features.

Note: JDBC 4.1 features are present only in a JDK 7 or higher environment.

java.sql.Connection interface: JDBC 4.1 features

JDBC 4.1 adds new features to the Connection interface.

• Aborting connections - The abort(Executor) method aborts a running connection.
Outstanding transactional work is rolled back, and the physical connection to the
database is destroyed. When running under a Java SecurityManager, this method
can be called only if SQLPermission("callAbort") has been granted both to the
Derby JDBC driver (in derby.jar and derbyclient.jar) and to the application code
that calls Connection.abort(). For security reasons, permission to execute this
method should not be granted lightly. Do not grant this permission to application
code unless you are certain that only superusers can invoke the code. For more
information, see "Configuring Java security" in the Derby Security Guide.

JDBC 4.2-only features
JDBC 4.2 adds some functionality to the core API. This section documents the JDBC 4.2
features supported by Derby.

For information on features supported by all versions of JDBC 4, see JDBC reference.
For information on features supported by both JDBC 4.1 and JDBC 4.2, see Features
supported on JDBC 4.1 and above.

Note: JDBC 4.2 features are present only in a JDK 8 or higher environment.

JDBC support for Java SE 8 Compact Profiles

Derby provides support for Compact Profiles on the Java SE 8 platform by means of a
group of JDBC DataSource classes.

Derby Reference Manual

365

These DataSource classes cannot be used in applications that use the Java Naming and
Directory Interface (JNDI) API. Otherwise, they are just like the versions for the full Java
SE platform.

Applications using Java SE 8 Compact Profile 2 must use these classes. Applications
using Java SE 8 Compact Profile 3 can use the ordinary DataSource classes. (Compact
Profile 1 does not provide any JDBC support, so Derby does not support it.)

The following DataSource classes are required for use with Java SE 8 Compact Profile 2:

• org.apache.derby.jdbc.BasicEmbeddedDataSource40
• org.apache.derby.jdbc.BasicEmbeddedConnectionPoolDataSource40
• org.apache.derby.jdbc.BasicEmbeddedXADataSource40
• org.apache.derby.jdbc.BasicClientDataSource40
• org.apache.derby.jdbc.BasicClientConnectionPoolDataSource40
• org.apache.derby.jdbc.BasicClientXADataSource40

java.sql.DatabaseMetaData interface: JDBC 4.2 features

Derby implements all of the new metadata methods added by JDBC 4.2.

The Derby implementation of the getMaxLogicalLOBSize method returns zero (0). For
details on the meaningful limits on Derby's BLOB and CLOB datatypes, see BLOB data
type and CLOB data type.

java.sql.SQLType interface

JDBC 4.2 introduces a new data type identifier, java.sql.SQLType, to help databases
describe data types which do not appear in the ANSI/ISO SQL Standard. Databases
which provide non-standard types can provide their own implementations of SQLType.

JDBC 4.2 also supplies its own implementation, java.sql.JDBCType, which provides an
enum for each of the type identifiers in java.sql.Types.

Derby does not expose any datatypes which are not represented by JDBCType enums.
Therefore, Derby does not need to provide its own implementation of SQLType.

Overloads with SQLType arguments have been added to a few interfaces, alongside
the existing methods which take int type identifiers from java.sql.Types. The affected
interfaces are as follows:

• java.sql.CallableStatement
• java.sql.PreparedStatement
• java.sql.ResultSet

With Derby, these methods raise a java.sql.SQLFeatureNotSupportedException
(SQLState 0A000) if the caller passes in a bad SQLType, which can be either of the
following:

• A SQLType from a foreign database; that is, a SQLType which is not one of the
JDBCType enums.

• A JDBCType enum whose corresponding int type identifier (from java.sql.Types)
is not supported by Derby. The supported int type identifiers are documented
in Mapping of java.sql.Types to SQL types and in the Data types section. The
JDBCType enums have the same names as their corresponding int identifiers in
java.sql.Types.

JDBC escape syntax
JDBC provides a way of smoothing out some of the differences in the ways different
DBMS vendors implement SQL. This is called escape syntax.

Derby Reference Manual

366

Escape syntax signals that the JDBC driver, which is provided by a particular vendor,
scans for any escape syntax and converts it into the code that the particular database
understands. This makes escape syntax DBMS-independent.

A JDBC escape clause begins and ends with curly braces. A keyword always follows the
opening curly brace:

{ keyword }

The JDBC escape keywords are case-insensitive.

Other JDBC escape keywords are not supported.
Note: Derby returns the SQL unchanged in the Connection.nativeSQL call,
since the escape syntax is native to SQL. In addition, it is unnecessary to call
Statement.setEscapeProcessing for this reason.

JDBC escape keyword for call statements

This escape syntax is supported for a java.sql.Statement and a
java.sql.PreparedStatement in addition to a CallableStatement.

Syntax

{ call statement }

Example

-- Call a Java procedure
{ call TOURS.BOOK_TOUR(?, ?) }

JDBC escape syntax for LIKE clauses

The percent sign (%) and underscore (_) are metacharacters within SQL LIKE clauses.
JDBC provides syntax to force these characters to be interpreted literally.

The JDBC clause immediately following a LIKE expression allows you to specify an
escape character.

Syntax

WHERE characterExpression [NOT] LIKE
 characterExpressionWithWildCard
 { ESCAPE 'escapeCharacter' }

Examples

-- find all rows in which a begins with the character "%"
SELECT a FROM tabA WHERE a LIKE '$%%' {escape '$'}
-- find all rows in which a ends with the character "_"
SELECT a FROM tabA WHERE a LIKE '%=_' {escape '='}

Note: ? is not permitted as an escape character if the LIKE pattern is also a dynamic
parameter (?).

In some languages, a single character consists of more than one collation unit (a 16-bit
character). The escapeCharacter used in the escape clause must be a single collation
unit in order to work properly.

You can also use the escape character sequence for LIKE without using JDBC's curly
braces; see Boolean expressions.

JDBC escape syntax for limit/offset clauses

Derby Reference Manual

367

The LIMIT escape clause can occur in a query at the point where an OFFSET/FETCH
FIRST clause can appear.

See The result offset and fetch first clauses for more information.

Syntax

{ LIMIT rowCount [OFFSET startRow] }

The rowCount is a non-negative integer that specifies the number of rows to return. If
rowCount is 0, all rows from startRow forward are returned.

The startRow is a non-negative number that specifies the number of rows to skip before
returning results.

Equivalent to

OFFSET startRow FETCH NEXT rowCount ROWS ONLY

Examples

-- return the first two rows of sorted table t
SELECT * FROM t
ORDER BY a
{ LIMIT 2 }
-- return two rows of sorted table t, starting with the eleventh row
SELECT * FROM t
ORDER BY a
{ LIMIT 2 OFFSET 10 }

JDBC escape syntax for fn keyword

You can specify functions in JDBC escape syntax by using the fn keyword.

Syntax

{ fn functionCall }

where functionCall is the name of one of the scalar functions listed below. The functions
are of the following types:

• Numeric functions
• String functions
• Date and time functions
• System function

Numeric functions
abs

Returns the absolute value of a number.

abs (numericExpression)

The JDBC escape syntax {fn abs(numericExpression)} is equivalent to the
built-in syntax ABS(numericExpression). For more information, see ABS or
ABSVAL function.

acos
Returns the arc cosine of a specified number.

acos (number)

The JDBC escape syntax {fn acos(number)} is equivalent to the built-in syntax
ACOS(number). For more information, see ACOS function.

asin

Derby Reference Manual

368

Returns the arc sine of a specified number.

asin (number)

The JDBC escape syntax {fn asin(number)} is equivalent to the built-in syntax
ASIN(number). For more information, see ASIN function.

atan
Returns the arc tangent of a specified number.

atan (number)

The JDBC escape syntax {fn atan(number)} is equivalent to the built-in syntax
ATAN(number). For more information, see ATAN function.

atan2
Returns the arc tangent in radians of y/x.

atan2 (y, x)

The JDBC escape syntax {fn atan2(y, x)} is equivalent to the built-in syntax
ATAN2(y, x). For more information, see ATAN2 function.

ceiling
Rounds the specified number up, and returns the smallest number that is greater than
or equal to the specified number.

ceiling (number)

The JDBC escape syntax {fn ceiling(number)} is equivalent to the built-in
syntax CEILING(number). For more information, see CEIL or CEILING function.

cos
Returns the cosine of a specified number.

cos (number)

The JDBC escape syntax {fn cos(number)} is equivalent to the built-in syntax
COS(number). For more information, see COS function.

cot
Returns the cotangent of a specified number.

cot (number)

The JDBC escape syntax {fn cot(number)} is equivalent to the built-in syntax
COT(number). For more information, see COT function.

degrees
Converts a specified number from radians to degrees.

degrees (number)

The JDBC escape syntax {fn degrees(number)} is equivalent to the built-in
syntax DEGREES(number). For more information, see DEGREES function.

exp
Returns e raised to the power of the specified number.

exp (number)

The JDBC escape syntax {fn exp(number)} is equivalent to the built-in syntax
EXP(number). For more information, see EXP function.

floor

Derby Reference Manual

369

Rounds the specified number down, and returns the largest number that is less than
or equal to the specified number.

floor (number)

The JDBC escape syntax {fn floor(number)} is equivalent to the built-in syntax
FLOOR(number). For more information, see FLOOR function.

log
Returns the natural logarithm (base e) of the specified number.

log (number)

The JDBC escape syntax {fn log(number)} is equivalent to the built-in syntax
LOG(number). For more information, see LN or LOG function.

log10
Returns the base-10 logarithm of the specified number.

log10 (number)

The JDBC escape syntax {fn log10(number)} is equivalent to the built-in syntax
LOG10(number). For more information, see LOG10 function.

mod
Returns the remainder (modulus) of argument 1 divided by argument 2. The result is
negative only if argument 1 is negative.

mod (integerExpression, integerExpression)

The JDBC escape syntax {fn mod(integerExpression,
integerExpression)} is equivalent to the built-in syntax
MOD(integerExpression, integerExpression). For more information, see
MOD function.

pi
Returns a value that is closer than any other value to pi.

pi ()

The JDBC escape syntax {fn pi()} is equivalent to the built-in syntax PI(). For
more information, see PI function.

radians
Converts a specified number from degrees to radians.

radians (number)

The JDBC escape syntax {fn radians(number)} is equivalent to the built-in
syntax RADIANS(number). For more information, see RADIANS function.

rand
Returns a random number given a seed number.

rand (seed)

The JDBC escape syntax {fn rand(seed)} is equivalent to the built-in syntax
RAND(seed). For more information, see RAND function.

sign
Returns an integer that represents the sign of a specified number (+1 if the number is
positive, -1 if it is negative, 0 if it is 0).

sign (number)

Derby Reference Manual

370

The JDBC escape syntax {fn sign(number)} is equivalent to the built-in syntax
SIGN(number). For more information, see SIGN function.

sin
Returns the sine of a specified number.

sin (number)

The JDBC escape syntax {fn sin(number)} is equivalent to the built-in syntax
SIN(number). For more information, see SIN function.

sqrt
Returns the square root of a floating-point number.

sqrt (number)

The JDBC escape syntax {fn sqrt(number)} is equivalent to the built-in syntax
SQRT(number). For more information, see SQRT function.

tan
Returns the tangent of a specified number.

tan (number)

The JDBC escape syntax {fn tan(number)} is equivalent to the built-in syntax
TAN(number). For more information, see TAN function.

String functions
concat

Returns the concatenation of character strings; that is, the character string formed
by appending the second string to the first string. If either string is null, the result is
NULL.

concat (characterExpression, characterExpression)

The JDBC escape syntax {fn concat(characterExpression,
characterExpression)} is equivalent to the built-in syntax
characterExpression || characterExpression. For more information, see
Concatenation operator.

lcase
Returns a string in which all alphabetic characters in the argument have been
converted to lowercase.

lcase (characterExpression)

The JDBC escape syntax {fn lcase(characterExpression)} is equivalent
to the built-in syntax LCASE(characterExpression). For more information, see
LCASE or LOWER function.

length
Returns the number of characters in a character string expression.

length (characterExpression)

The JDBC escape syntax {fn length(characterExpression)} is equivalent
to the built-in syntax LENGTH(characterExpression). For more information, see
LENGTH function.

locate
Returns the position in the second characterExpression of the first occurrence
of the first characterExpression. Searches from the beginning of the second
characterExpression, unless the startIndex parameter is specified.

Derby Reference Manual

371

locate (characterExpression, characterExpression [, startIndex])

The JDBC escape syntax {fn locate(characterExpression,
characterExpression [, startIndex])} is equivalent to the built-in
syntax LOCATE(characterExpression, characterExpression [,
startPosition]). For more information, see LOCATE function.

ltrim
Removes blanks from the beginning of a character string expression.

ltrim (characterExpression)

The JDBC escape syntax {fn ltrim(characterExpression)} is equivalent
to the built-in syntax LTRIM(characterExpression). For more information, see
LTRIM function.

rtrim
Removes blanks from the end of a character string expression.

rtrim (characterExpression)

The JDBC escape syntax {fn rtrim(characterExpression)} is equivalent
to the built-in syntax RTRIM(characterExpression). For more information, see
RTRIM function.

substring
Forms a character string by extracting length characters from the
characterExpression beginning at startIndex. The index of the first character in the
characterExpression is 1.

substring (characterExpression, startIndex, length)

The JDBC escape syntax {fn substring(characterExpression,
startIndex, length)} is equivalent to the built-in syntax
SUBSTR(characterExpression, startIndex, length). For more
information, see SUBSTR function.

ucase
Returns a string in which all alphabetic characters in the argument have been
converted to uppercase.

ucase (characterExpression)

The JDBC escape syntax {fn ucase(characterExpression)} is equivalent
to the built-in syntax UCASE(characterExpression). For more information, see
UCASE or UPPER function.

Date and time functions
curdate

Returns the current date.

curdate ()

The JDBC escape syntax {fn curdate()} is equivalent to the built-in syntax
CURRENT_DATE. For more information, see CURRENT_DATE function.

curtime
Returns the current time.

curtime ()

The JDBC escape syntax {fn curtime()} is equivalent to the built-in syntax
CURRENT_TIME. For more information, see CURRENT_TIME function.

Derby Reference Manual

372

hour
Returns the hour part of a time value.

hour (expression)

The JDBC escape syntax {fn hour(expression)} is equivalent to the built-in
syntax HOUR(expression). For more information, see HOUR function.

minute
Returns the minute part of a time value.

minute (expression)

The JDBC escape syntax {fn minute(expression)} is equivalent to the built-in
syntax MINUTE(expression). For more information, see MINUTE function.

month
Returns the month part of a date value.

month (expression)

The JDBC escape syntax {fn month(expression)} is equivalent to the built-in
syntax MONTH(expression). For more information, see MONTH function.

second
Returns the seconds part of a time value.

second (expression)

The JDBC escape syntax {fn second(expression)} is equivalent to the built-in
syntax SECOND(expression). For more information, see SECOND function.

TIMESTAMPADD
Use the TIMESTAMPADD function to add the value of an interval to a timestamp. The
function applies the integer to the specified timestamp based on the interval type and
returns the sum as a new timestamp. You can subtract from the timestamp by using
negative integers.

TIMESTAMPADD is a JDBC escaped function and is accessible only by using the
JDBC escape function syntax.

TIMESTAMPADD (interval, integerExpression, timestampExpression)

To perform TIMESTAMPADD on dates and times, it is necessary to convert the dates
and times to timestamps. Dates are converted to timestamps by putting 00:00:00.0 in
the time-of-day fields. Times are converted to timestamps by putting the current date
in the date fields.

Do not put a datetime column inside a timestamp arithmetic function in WHERE
clauses, because the optimizer will not use any index on the column.

TIMESTAMPDIFF
Use the TIMESTAMPDIFF function to find the difference between two timestamp
values at a specified interval. For example, the function can return the number of
minutes between two specified timestamps.

The TIMESTAMPDIFF is a JDBC escaped function and is accessible only by using
the JDBC escape function syntax.

TIMESTAMPDIFF (interval, timestampExpression1, timestampExpression2)

To perform TIMESTAMPDIFF on dates and times, it is necessary to convert the dates
and times to timestamps. Dates are converted to timestamps by putting 00:00:00.0 in

Derby Reference Manual

373

the time-of-day fields. Times are converted to timestamps by putting the current date
in the date fields.

Do not put a datetime column inside a timestamp arithmetic function in WHERE
clauses, because the optimizer will not use any index on the column.

year
Returns the year part of a date value.

year (expression)

The JDBC escape syntax {fn year(expression)} is equivalent to the built-in
syntax YEAR(expression). For more information, see YEAR function.

Valid intervals for TIMESTAMPADD and TIMESTAMPDIFF
The TIMESTAMPADD and TIMESTAMPDIFF functions are used to perform arithmetic
with timestamps. These two functions use the following valid intervals for arithmetic
operations:

• SQL_TSI_DAY
• SQL_TSI_FRAC_SECOND
• SQL_TSI_HOUR
• SQL_TSI_MINUTE
• SQL_TSI_MONTH
• SQL_TSI_QUARTER
• SQL_TSI_SECOND
• SQL_TSI_WEEK
• SQL_TSI_YEAR

Examples for the TIMESTAMPADD and TIMESTAMPDIFF escape functions

To return a timestamp value one month later than the current timestamp, use the
following syntax:

{fn TIMESTAMPADD(SQL_TSI_MONTH, 1, CURRENT_TIMESTAMP)}

To return the number of weeks between now and the specified time on January 1, 2008,
use the following syntax:

{fn TIMESTAMPDIFF(SQL_TSI_WEEK, CURRENT_TIMESTAMP,
 timestamp('2008-01-01-12.00.00.000000'))}

System function
user

Returns the authorization identifier or name of the current user. If there is no current
user, it returns APP.

user ()

The JDBC escape syntax {fn user()} is equivalent to the built-in syntax USER. For
more information, see USER function.

JDBC escape syntax for outer joins

Derby interprets the JDBC escape syntax for outer joins (and all join operations) as
equivalent to the correct SQL syntax for outer joins or the appropriate join operation.

For information about join operations, see JOIN operations.

Syntax

{ oj joinOperation [joinOperation]* }

Equivalent to

Derby Reference Manual

374

joinOperation [joinOperation]*

Examples

-- outer join
SELECT *
FROM
{oj Countries LEFT OUTER JOIN Cities ON
 (Countries.country_ISO_code=Cities.country_ISO_code)}
-- another join operation
SELECT *
FROM
{oj Countries JOIN Cities ON
 (Countries.country_ISO_code=Cities.country_ISO_code)}
-- a tableExpression can be a join operation. Therefore
-- you can have multiple join operations in a FROM clause
SELECT E.EMPNO, E.LASTNAME, M.EMPNO, M.LASTNAME
FROM {oj EMPLOYEE E INNER JOIN DEPARTMENT
INNER JOIN EMPLOYEE M ON MGRNO = M.EMPNO ON E.WORKDEPT = DEPTNO};

JDBC escape syntax for time formats

Derby interprets the JDBC escape syntax for time formats as equivalent to the correct
SQL syntax for times.

Derby also supports the ISO format of 8 characters (6 digits, and 2 decimal points).

Syntax

{ t 'hh:mm:ss' }

Equivalent to

TIME('hh:mm:ss')

Example

VALUES {t '20:00:03'}

JDBC escape syntax for date formats

Derby interprets the JDBC escape syntax for date formats as equivalent to the correct
SQL syntax for dates.

Syntax

{ d 'yyyy-mm-dd' }

Equivalent to

DATE('yyyy-mm-dd')

Example

VALUES {d '2010-10-19'}

JDBC escape syntax for timestamp formats

Derby interprets the JDBC escape syntax for timestamp formats as equivalent to the
correct SQL syntax for timestamps.

Derby also supports the ISO format of 23 characters (17 digits, 3 dashes, and 3 decimal
points).

Derby Reference Manual

375

Syntax

{ ts 'yyyy-mm-ddhh:mm:ss.f...' }

Equivalent to

TIMESTAMP('yyyy-mm-ddhh:mm:ss.f...')

The fractional portion of timestamp constants (.f...) can be omitted.

Example

VALUES {ts '1999-01-09 20:11:11.123455'}

Derby Reference Manual

376

Setting attributes for the database connection URL

Derby allows you to supply a list of attributes to its database connection URL, which is a
JDBC feature.

The attributes are specific to Derby.

You typically set attributes in a semicolon-separated list following the protocol and
subprotocol (and, in some cases, the subsubprotocol). For information on how you set
attributes, see Attributes of the Derby database connection URL. This section provides
reference information only.

The DriverManager.getConnection method can take both a connection URL and a
Properties object as arguments. If you specify any attributes both on the connection URL
and in a Properties object, the attributes on the connection URL override the attributes in
the Properties object.

Note: Attributes are not parsed for correctness. If you pass in an incorrect attribute or
corresponding value, it is simply ignored.

bootPassword=key attribute
The bootPassword=key attribute specifies a boot password (encryption key).

The attribute specifies the key to use to:
• Encrypt a new database
• Configure an existing unencrypted database for encryption
• Boot an existing encrypted database

Specify an alphanumeric string that is at least eight characters long.

For information about data encryption, see "Configuring database encryption" in the
Derby Security Guide.

Combining with other attributes

When you create a new database, the bootPassword=key attribute must be combined
with the create=true and dataEncryption=true attributes.

When you configure an existing unencrypted database for encryption, the
bootPassword=key attribute must be combined with the dataEncryption=true attribute.
For an existing, unencrypted database for which authentication and SQL authorization
are both enabled, only the database owner can perform encryption. See "Configuring
user authentication" and "Configuring user authorization" in the Derby Security Guide for
more information.

The bootPassword=key attribute can optionally be combined with the
encryptionProvider=providerName, encryptionAlgorithm=algorithm, and/or
encryptionKeyLength=length attributes.

Examples

-- create a new, encrypted database
jdbc:derby:newDB;create=true;dataEncryption=true;
 bootPassword=cseveryPlace
-- configure an existing unencrypted database for encryption
jdbc:derby:salesdb;dataEncryption=true;bootPassword=cseveryPlace
-- boot an existing encrypted database
jdbc:derby:encryptedDB;bootPassword=cseveryPlace
-- configure an existing encrypted database for encryption,
-- specifying the encryption algorithm
jdbc:derby:encryptedDB;dataEncryption=true;bootPassword=cseveryPlace;

Derby Reference Manual

377

 encryptionAlgorithm=DESede/CBC/NoPadding

collation=collation attribute
The collation=collation attribute is an optional attribute that specifies whether collation is
based on the locale specified for the database or on Unicode codepoint collation.

The valid values for the collation=collation attribute are:

UCS_BASIC
Unicode codepoint collation. This value is the default.

TERRITORY_BASED
Based on the language specified with the territory=ll_CC attribute. The default
collation strength for the locale is used. The default for Derby is commonly
TERTIARY, in which character case is significant in searches and comparisons.

TERRITORY_BASED:PRIMARY
Locale based with collation strength PRIMARY. Specify this value to make Derby
behave similarly to many other databases, for which PRIMARY is commonly the
default. PRIMARY typically means that only differences in base letters are considered
significant, whereas differences in accents or case are not considered significant.

TERRITORY_BASED:SECONDARY
Locale based with collation strength SECONDARY. SECONDARY typically means
that differences in base letters or accents are considered significant, whereas
differences in case are not considered significant.

TERRITORY_BASED:TERTIARY
Locale based with collation strength TERTIARY. TERTIARY typically means that
differences in base letters, accents, or case are all considered significant.

TERRITORY_BASED:IDENTICAL
Locale based with collation strength IDENTICAL. IDENTICAL means that all
differences are considered significant.

Restriction: The collation=collation attribute can be specified only when you create a
database. You cannot specify this attribute on an existing database or when you upgrade
a database.

If you specify the collation=collation attribute with the value TERRITORY_BASED, or one
of its variants with a specific collation strength, the collation is based on the language and
country codes that you specify with the territory=ll_CC attribute.

If you do not specify the territory=ll_CC attribute when you create the database, Derby
uses the java.util.Locale.getDefault method to determine the current value of the default
locale for this instance of the Java Virtual Machine (JVM).

Note: The collation=collation attribute applies only to user-defined tables. The system
tables use the Unicode codepoint collation.

For information on how Derby handles collation, see "Creating a database with
locale-based collation" and "Character-based collation in Derby" in the Derby Developer's
Guide.

Example

The following example shows the URL to create the MexicanDB database. The
territory=ll_CC attribute specifies Spanish for the language code and Mexico for the
country code. The collation=collation attribute specifies that the collation for the database
is locale based.

jdbc:derby:MexicanDB;create=true;territory=es_MX;collation=TERRITORY_BASED

Derby Reference Manual

378

create=true attribute
The create=true attribute creates the standard database specified within the database
connection URL Derby system and then connects to it.

If the database cannot be created, the error appears in the error log and the connection
attempt fails with an SQLException indicating that the database cannot be found.

If the database already exists, the attribute creates a connection to the existing database,
and an SQLWarning is issued.

JDBC does not remove the database on failure to connect at create time if failure occurs
after the database call occurs. If a database connection URL used create=true and the
connection fails to be created, check for the database directory. If it exists, remove it and
its contents before the next attempt to create the database.

Database owner

When the database is created, the current authorization identifier becomes the database
owner (see the user=userName attribute). If authentication and SQL authorization are
both enabled (see "Configuring user authentication" and "Configuring user authorization"
in the Derby Security Guide), only the database owner can shut down or drop the
database, encrypt it, reencrypt it with a new boot password or new encryption key, or
perform a full upgrade. If authentication is not enabled, and no user is supplied, the
database owner defaults to "APP", which is also the name of the default schema (see
SET SCHEMA statement).

Combining with other attributes

You must specify a databaseName (after the subprotocol or subsubprotocol in the
database connection URL) or a databaseName=nameofDatabase attribute with this
attribute.

You can combine this attribute with other attributes. To specify a locale when creating a
database, use the territory=ll_CC attribute.

Examples

Creating a file system database:

-- create a file system database
jdbc:derby:sampleDB;create=true
-- create a file system database using the databaseName attribute
jdbc:derby:;databaseName=newDB;create=true
-- create an in-memory database using the embedded driver
jdbc:derby:memory:myInMemDB;create=true
-- create an in-memory database using the databaseName attribute
jdbc:derby:;databaseName=memory:myInMemDB;create=true
-- create an in-memory database using the Network Server
jdbc:derby://localhost:1527/memory:myInMemDB;create=true

See "Using in-memory databases" in the Derby Developer's Guide for information on
creating in-memory databases.

createFrom=path attribute
The createFrom=path attribute creates a database using a full backup at a specified
location.

If there is a database with the same name in derby.system.home, an error will occur and
the existing database will be left intact. If there is not an existing database with the same
name in the current derby.system.home location, the whole database is copied from the
backup location to the derby.system.home location and started.

Derby Reference Manual

379

The log files are copied to the default location. The logDevice=logDirectoryPath attribute
can be used in conjunction with createFrom=path to store logs in a different location.
With createFrom=path you do not need to copy the individual log files to the log directory.

For more information about using this attribute, see "Creating a database from a backup
copy" in the Derby Server and Administration Guide.

Combining with other attributes

Do not combine this attribute with rollForwardRecoveryFrom, restoreFrom, or create.

Example

-- create the wombat database from a backup copy
jdbc:derby:wombat;createFrom=d:/backup/wombat

databaseName=nameOfDatabase attribute
The databaseName=nameOfDatabase attribute specifies a database path name for a
connection.

You can use this attribute instead of specifying the database name after the subprotocol.

The nameOfDatabase value can be either an absolute path name or a path name
relative to derby.system.home. For example, thisDB, databases/thisDB, and
c:/databases/2014/january/thisDB can all be valid values.

The path separator in the connection URL is a forward slash (/), even in Windows path
names. The nameOfDatabase value cannot contain a colon (:), except for the colon after
the drive name in a Windows path name.

For example, these URL (and Properties object) combinations are equivalent:
• jdbc:derby:toursDB
• jdbc:derby:;databaseName=toursDB
• jdbc:derby: (with a property databaseName and its value set to toursDB in the

Properties object passed into a connection request)

If you use a subsubprotocol to specify the database (for example, memory for an
in-memory database), include the subsubprotocol as part of the databaseName attribute
specification. For example:

jdbc:derby:;databaseName=memory:myDB

If the database name is specified both in the URL (as a subname) and as an attribute,
the database name set as the subname has priority. For example, the following database
connection URL connects to toursDB:

jdbc:derby:toursDB;databaseName=flightsDB

Allowing the database name to be set as an attribute allows the getPropertyInfo method
to return a list of choices for the database name based on the set of databases known to
Derby. For more information, see java.sql.Driver.getPropertyInfo method.

Combining with other attributes

You can combine this attribute with all other attributes.

Example

jdbc:derby:;databaseName=newDB;create=true

dataEncryption=true attribute

Derby Reference Manual

380

The dataEncryption=true attribute specifies data encryption on disk for a new database or
to configure an existing unencrypted database for encryption.

For information about data encryption, see "Configuring database encryption" in the
Derby Security Guide.

After you encrypt a database, you can return it to the unencrypted state by specifying the
decryptDatabase=true attribute.

Combining with other attributes

The dataEncryption=true attribute must be combined with either the bootPassword=key
attribute or the encryptionKey=key attribute.

With either bootPassword=key or encryptionKey=key, you have the option of also
specifying the encryptionProvider=providerName, encryptionAlgorithm=algorithm, and/or
encryptionKeyLength=length attributes.

An encryption key and a boot password use different storage mechanisms, so if, for
example, you create a database using a boot password, you must continue to specify
a boot password when you boot the database; you cannot switch to an encryption
key. You can change either the boot password or the encryption key by specifying
newBootPassword=newPassword or newEncryptionKey=key.

For an existing, unencrypted database for which authentication and SQL authorization
are both enabled, only the database owner can perform encryption. See "Configuring
user authentication" and "Configuring user authorization" in the Derby Security Guide for
more information.

After you encrypt an existing, unencrypted database, be sure to check for SQLWarnings.
The encryption succeeded only if there were no SQLWarnings or SQLExceptions.

Examples

-- encrypt a new database
jdbc:derby:encryptedDB;create=true;dataEncryption=true;
 bootPassword=cLo4u922sc23aPe
-- configure an existing unencrypted database for encryption
jdbc:derby:salesdb;dataEncryption=true;bootPassword=cLo4u922sc23aPe

decryptDatabase=true attribute
The decryptDatabase=true attribute returns an encrypted database to an unencrypted
state.

For information about data encryption, see "Configuring database encryption" in the
Derby Security Guide.

You must shut down the database before you decrypt it. An attempt to decrypt a booted
database has no effect.

Specifying this attribute for an unencrypted database has no effect.

Combining with other attributes

The decryptDatabase=true attribute must be combined with either the bootPassword=key
attribute or the encryptionKey=key attribute.

For an existing, encrypted database for which authentication and SQL authorization are
both enabled, only the database owner can perform decryption. See "Configuring user
authentication" and "Configuring user authorization" in the Derby Security Guide for more
information.

Derby Reference Manual

381

After you decrypt the database, be sure to check for SQLWarnings. The decryption
succeeded only if there were no SQLWarnings or SQLExceptions.

Examples

-- decrypt a database
jdbc:derby:encryptedDB;decryptDatabase=true;bootPassword=cLo4u922sc23aPe
-- decrypt a database with authentication and SQL authorization enabled
jdbc:derby:salesdb;decryptDatabase=true;user=user1;password=mypass;
 bootPassword=cLo4u922sc23aPe

deregister=false attribute
The deregister=false attribute, if set to true (the default), deregisters the embedded
JDBC driver from the DriverManager after a shutdown, so that the Derby classes can be
garbage-collected.

If you are running with a security manager on JDK 8 or higher, you must grant the
following permission to derby.jar to allow the JDBC driver to be deregistered:

permission java.sql.SQLPermission "deregisterDriver";

See "Configuring Java security" in the Derby Security Guide for details. If you do not
grant this permission when using a security manager, an error message and stack
trace will appear in derby.log on shutdown, and the embedded JDBC driver will remain
registered.

If you are running with a security manager on JDK 6 or 7, you do not need to set this
permission.

You initially register the embedded driver by calling a DriverManager method such as
DriverManager.getDrivers() or DriverManager.getConnection().

Once the embedded driver is registered, you can shut down the Derby engine by using
the shutdown=true connection URL attribute. If you also specify deregister=false with the
shutdown URL, the following will happen:

• The embedded driver will remain registered.
• The Derby classes will not be garbage-collected.
• You can get a Derby connection by issuing a call to

DriverManager.getConnection().

In contrast, if you use the default setting of deregister=true when you shut down the
database, the following will happen:

• The embedded driver will be deregistered.
• The Derby classes will be garbage-collected.
• You will have to call

Class.forName("org.apache.derby.jdbc.EmbeddedDriver").newInstance() before
you obtain a new Derby connection by calling DriverManager.getConnection().

This attribute has no meaning if it is used with the network driver.

Combining with other attributes

This attribute is valid only when issued in conjunction with the shutdown=true attribute.

Examples

-- shut down salesDB and deregister the driver
jdbc:derby:salesDB;shutdown=true
-- shut down salesDB, but do not deregister the driver
jdbc:derby:salesDB;shutdown=true;deregister=false

Derby Reference Manual

382

drop=true attribute
The drop=true attribute removes the in-memory database specified within the database
connection URL.

The attribute generates the SQLException 08006 if successful. If the database does not
exist, it generates an error reporting that the database could not be found.

For a database for which authentication and SQL authorization are both enabled, only the
database owner can drop that database.

It is not necessary to shut down the database before dropping it.

If you specify this attribute with a database that is not an in-memory database, Derby
generates the SQLException XBM0I.

Combining with other attributes

If authentication is turned on, you must specify this attribute in conjunction with the
user=userName and password=userPassword attributes. If both authentication and SQL
authorization are turned on, the user must be the database owner.

Examples

-- drop an in-memory database using the embedded driver
jdbc:derby:memory:myInMemDB;drop=true
-- drop an in-memory database using the Network Server
jdbc:derby://localhost:1527/memory:myInMemDB;drop=true

encryptionKey=key attribute
The encryptionKey=key attribute specifies an external encryption key.

The attribute specifies the external key to use to:
• Encrypt a new database
• Configure an existing unencrypted database for encryption
• Boot an existing encrypted database

Your application must provide the encryption key. The encryption key value must be
a hexadecimal string at least 16 digits in length (8 bytes), and it must contain an even
number of digits.

For information about data encryption, see "Configuring database encryption" in the
Derby Security Guide.

Combining with other attributes

When creating a new database, you must combine the encryptionKey=key attribute with
the create=true and dataEncryption=true attributes.

When you configure an existing unencrypted database for encryption, the
encryptionKey=key attribute must be combined with the dataEncryption=true attribute.
For an existing, unencrypted database for which authentication and SQL authorization
are both enabled, only the database owner can perform encryption. See "Configuring
user authentication" and "Configuring user authorization" in the Derby Security Guide for
more information.

The encryptionKey=key attribute can optionally be combined with the
encryptionProvider=providerName, encryptionAlgorithm=algorithm, and/or
encryptionKeyLength=length attributes.

Examples

Derby Reference Manual

383

-- create a new encrypted database
jdbc:derby:newDB;create=true;dataEncryption=true;
 encryptionKey=6162636465666768
-- configure an existing unencrypted database for encryption
jdbc:derby:salesdb;dataEncryption=true;encryptionKey=6162636465666768
-- boot an encrypted database
jdbc:derby:encryptedDB;encryptionKey=6162636465666768

encryptionKeyLength=length attribute
The encryptionKeyLength=length attribute specifies the number of bits in the encryption
key to be generated when a database is encrypted with the bootPassword=key attribute.

See bootPassword=key attribute for details.

The default encryption key length is 128.

You need to specify encryptionKeyLength=length only if all of the following circumstances
apply:

• You are specifying a non-default encryption algorithm (the default is DES).
• The encryption algorithm you are specifying allows for more than one key length.
• You want to use a non-default key length.

For information about data encryption, see "Configuring database encryption" in the
Derby Security Guide.

Combining with other attributes

The encryptionKeyLength=length attribute can be combined with either the
bootPassword=key attribute or the encryptionKey=key attribute (although it is redundant
if you use encryptionKey=key).

The encryptionKeyLength=length attribute may also be combined with the
encryptionProvider=providerName and/or encryptionAlgorithm=algorithm attributes.

If you use encryptionKeyLength=length with encryptionKey=key, the key you specify
must have the length you specify.

Examples

-- create a new, encrypted database
jdbc:derby:newDB;create=true;dataEncryption=true;
 encryptionKeyLength=192;encryptionAlgorithm=AES/CBC/NoPadding;
 bootPassword=Thursday
-- configure an existing unencrypted database for encryption
jdbc:derby:myDB;dataEncryption=true;
 encryptionKeyLength=168;encryptionAlgorithm=DESede/CBC/NoPadding;
 bootPassword=Wednesday

Note: If the specified algorithm does not support the specified encryption key length,
Derby returns an exception.

encryptionProvider=providerName attribute
The encryptionProvider=providerName attribute specifies the provider for data
encryption.

For information about data encryption, see "Configuring database encryption" in the
Derby Security Guide.

If this attribute is not specified, the default encryption provider is the one included in the
JVM that you are using.

Combining with other attributes

Derby Reference Manual

384

The encryptionProvider=providerName attribute must be combined with the
dataEncryption=true attribute and with either the bootPassword=key or the
encryptionKey=key attribute. You can also use the encryptionAlgorithm=algorithm
attribute to specify the encryption algorithm.

For an existing, unencrypted database for which authentication and SQL authorization
are both enabled, only the database owner can perform encryption or reencryption.
See "Configuring user authentication" and "Configuring user authorization" in the Derby
Security Guide for more information.

Examples

-- create a new, encrypted database
jdbc:derby:encryptedDB;create=true;dataEncryption=true;
 encryptionProvider=com.sun.crypto.provider.SunJCE;
 encryptionAlgorithm=DESede/CBC/NoPadding;
 bootPassword=cLo4u922sc23aPe
-- configure an existing database for encryption
jdbc:derby:salesdb;dataEncryption=true;
 encryptionProvider=com.sun.crypto.provider.SunJCE;
 encryptionAlgorithm=DESede/CBC/NoPadding;
 bootPassword=cLo4u922sc23aPe

encryptionAlgorithm=algorithm attribute
The encryptionAlgorithm=algorithm attribute specifies the algorithm for data encryption.

Use the Java conventions when you specify the algorithm. For example:

algorithmName/feedbackMode/padding

The only padding type that is allowed with Derby is NoPadding.

If no encryption algorithm is specified, the default value is DES/CBC/NoPadding.

For information about data encryption, see "Configuring database encryption" in the
Derby Security Guide.

Combining with other attributes

The encryptionAlgorithm=algorithm attribute must be combined with the
dataEncryption=true attribute and with either the bootPassword=key attribute or the
encryptionKey=key attribute. You can also use the encryptionProvider=providerName
attribute to specify the encryption provider of the algorithm.

For an existing database for which authentication and SQL authorization are both
enabled, only the database owner can perform encryption or reencryption. See
"Configuring user authentication" and "Configuring user authorization" in the Derby
Security Guide for more information.

Examples

-- encrypt a new database
jdbc:derby:encryptedDB;create=true;dataEncryption=true;
 encryptionProvider=com.sun.crypto.provider.SunJCE;
 encryptionAlgorithm=DESede/CBC/NoPadding;
 bootPassword=cLo4u922sc23aPe
-- configure an existing database for encryption
jdbc:derby:salesdb;dataEncryption=true;
 encryptionProvider=com.sun.crypto.provider.SunJCE;
 encryptionAlgorithm=DESede/CBC/NoPadding;
 bootPassword=cLo4u922sc23aPe

Note: If the specified provider does not support the specified algorithm, Derby returns an
exception.

Derby Reference Manual

385

failover=true attribute
The failover=true attribute stops database replication on the slave system and converts
the slave database into a normal database.

If you specify the failover=true attribute on the master, the attribute sends the remaining
log records to the slave instance and then sends a failover message to the slave. The
replication functionality and the database are then shut down on the master system. If
failover is successful, an exception with the error code XRE20 is thrown. Hence, when
issued on the master, the failover=true attribute does not return a valid connection.

You may specify this attribute on the slave only if the network connection between the
master and the slave is down.

When you specify this attribute on the slave, or when a failover message is sent as
part of the execution of the failover=true attribute on the master, all transaction log
chunks that have been received from the master are written to disk. The slave replication
functionality is shut down, and the boot process of the database is allowed to complete.
The database is now in a transaction consistent state, reflecting all transactions whose
commit log records were received from the master. When issued on the slave, the
failover=true command returns a valid connection.

The Derby instance where this command is issued must be serving the named database
in replication mode.

For more information, see the topics under "Replicating databases" in the Derby Server
and Administration Guide.

Combining with other attributes

You must specify a database name in the connection URL, either in the subprotocol or by
using the databaseName=nameofDatabase attribute.

If authentication is turned on, you must also specify this attribute in conjunction with the
user=userName and password=userPassword attributes. Authorization for the master
database cannot be checked when the network connection is down, so the requirement
that the user must be the database owner is not enforced.

You may not specify this attribute in conjunction with any attributes not mentioned in this
section.

Examples

-- start failover from master using database name in subprotocol,
-- authorization
jdbc:derby:myDB;failover=true;user=mary;password=little88lamb

-- start failover using databaseName attribute, no security
jdbc:derby:;databaseName=myDB;failover=true;

logDevice=logDirectoryPath attribute
The logDevice=logDirectoryPath attribute specifies the path to the directory on which to
store the database log during database creation or restoration.

Even if specified as a relative path, the logDirectoryPath is stored internally as an
absolute path.

For more information about using this attribute, see "Using the
logDevice=logDirectoryPath attribute" in the Derby Server and Administration Guide.

Combining with other attributes

Derby Reference Manual

386

Use in conjunction with create, createFrom, restoreFrom, or rollForwardRecoveryFrom.

Example

jdbc:derby:newDB;create=true;logDevice=d:/newDBlog

newBootPassword=newPassword attribute
The newBootPassword=newPassword attribute specifies a new boot password for an
encrypted database.

A new encryption key is generated internally by the engine, and the key is protected
using the new boot password. The newly generated encryption key encrypts the
database, including the existing data. For more information about this attribute, see
"Encrypting databases with a new boot password" in the Derby Security Guide.

Combining with other attributes

The newBootPassword=newPassword attribute must be combined with the
bootPassword=key attribute.

You cannot change the encryption provider or the encryption algorithm when you use the
newBootPassword=newPassword attribute.

For an existing encrypted database for which authentication and SQL authorization are
both enabled, only the database owner can perform reencryption. See "Configuring user
authentication" and "Configuring user authorization" in the Derby Security Guide for more
information.

After you change the boot password, be sure to check for SQLWarnings. The change
succeeded only if there were no SQLWarnings or SQLExceptions.

Example

-- specify a new boot password for a database
jdbc:derby:salesdb;bootPassword=abc1234xyz;newBootPassword=new1234xyz

newEncryptionKey=key attribute
The newEncryptionKey=key attribute specifies a new external encryption key for an
encrypted database.

All of the existing data in the database is encrypted using the new encryption key,
and any new data written to the database will use this key for encryption. For more
information about this attribute, see "Encrypting databases with a new external encryption
key" in the Derby Security Guide.

The encryption key value must be a hexadecimal string at least 16 digits in length (8
bytes), and it must contain an even number of digits.

Combining with other attributes

The newEncryptionKey=key attribute must be combined with the encryptionKey=key
attribute.

You cannot change the encryption provider or the encryption algorithm when you use the
newEncryptionKey=key attribute.

For an existing encrypted database for which authentication and SQL authorization are
both enabled, only the database owner can perform reencryption. See "Configuring user
authentication" and "Configuring user authorization" in the Derby Security Guide for more
information.

Derby Reference Manual

387

After you change the encryption key, be sure to check for SQLWarnings. The change
succeeded only if there were no SQLWarnings or SQLExceptions.

Example

-- specify a new encryption key for a database
jdbc:derby:salesdb;encryptionKey=6162636465666768;
 newEncryptionKey=6862636465666768

password=userPassword attribute
The password=userPassword attribute specifies a valid password for the given user
name.

Combining with other attributes

Use this attribute in conjunction with the user=userName attribute.

Example

-- connect the user jack to toursDB
jdbc:derby:toursDB;user=jack;password=upTheHill

restoreFrom=path attribute
The restoreFrom=path attribute restores a database using a full backup from the
specified location.

If a database with the same name exists in the derby.system.home location, the whole
database is deleted, copied from the backup location, and then restarted.

The log files are copied to the same location they were in when the backup was
taken. The logDevice=logDirectoryPath attribute can be used in conjunction with
restoreFrom=path to store logs in a different location.

For more information about using this attribute, see "Restoring a database from a backup
copy" in the Derby Server and Administration Guide.

Combining with other attributes

Do not combine this attribute with createFrom, rollForwardRecoveryFrom, or create.

Example

-- restore the wombat database from a backup copy
jdbc:derby:wombat;restoreFrom=d:/backup/wombat

retrieveMessageText=false attribute
The retrieveMessageText=false attribute, if set to true (the default), retrieves the
message text for each SQLException from the server.

A stored procedure call retrieves the message text and may start a new unit of work.

Set this property to false if you do not want the performance impact of the procedure call
or do not want to start a new unit of work.

This attribute is meaningful only if used with the network driver.

Combining with other attributes

You can combine this attribute with other attributes.

Example

Derby Reference Manual

388

-- do not retrieve message text for SQLExceptions
jdbc:derby://localhost:1527/salesDB;retrieveMessageText=false

rollForwardRecoveryFrom=path attribute
The rollForwardRecoveryFrom=path attribute restores a database using a backup copy
and performs roll-forward recovery using archived and active logs.

To restore a database using roll-forward recovery, you must already have a backup copy
of the database, all the archived logs since then, and the active log files. All the log files
should be in the database log directory.

After a database is restored from full backup, transactions from the online archived logs
and the active logs are replayed.

For more information about using this attribute, see "Roll-forward recovery" in the Derby
Server and Administration Guide.

Combining with other attributes

Do not combine this attribute with createFrom, restoreFrom, or create.

Example

-- restore and recover the wombat database
jdbc:derby:wombat;rollForwardRecoveryFrom=d:/backup/wombat

securityMechanism=value attribute
The securityMechanism=value attribute specifies a security mechanism for client access
to the Network Server.

The value is numeric.

Valid numeric values are:

• 9, which specifies Encrypted UserID and Encrypted Password security. If you
specify this mechanism, both the user ID and the password are encrypted. See the
subsection of "Configuring Network Server authentication without SSL/TLS" entitled
"Enabling the encrypted user ID and password security mechanism" in the Derby
Security Guide for additional requirements for the use of this security mechanism.

• 3, which specifies Clear Text Password security. Clear Text Password security is
the default if you do not specify the securityMechanism attribute and you specify
both the user=userName and password=userPassword attributes.

• 4, which specifies User Only security. User Only security is the default if you do
not specify the securityMechanism attribute and you specify the user=userName
attribute but not the password=userPassword attribute.

Combining with other attributes

The securityMechanism attribute must be combined with the user=userName attribute.

Example

-- specify Encrypted UserID and Encrypted Password security
jdbc:derby://localhost/
mydb;user=myuser;password=mypassword;securityMechanism=9

shutdown=true attribute
The shutdown=true attribute shuts down the specified database if you specify a
databaseName. (Reconnecting to the database reboots the database.)

Derby Reference Manual

389

For a database for which authentication and SQL authorization are both enabled, only
the database owner can perform shutdown of that database. See "Configuring user
authentication" and "Configuring user authorization" in the Derby Security Guide for more
information.

Shuts down the entire Derby system if and only if you do not specify a databaseName.

When you are shutting down a single database, the attribute lets Derby perform a final
checkpoint on the database.

When you are shutting down a system, the attribute lets Derby perform a final checkpoint
on all system databases, deregister the JDBC driver (if permitted; see deregister=false),
and shut down within the JVM before the JVM exits. A successful shutdown always
results in an SQLException indicating that Derby has shut down and that there is no
connection. Once Derby is shut down, you can restart it by reloading the driver. For
details on restarting Derby, see "Shutting down the system" in the Derby Developer's
Guide.

Checkpointing means writing all data and transaction information to disk so that no
recovery needs to be performed at the next connection.

The attribute is used to shut down the entire system only when it is embedded in an
application.
Note: Any request to the DriverManager with a shutdown=true attribute raises an
exception.

Combining with other attributes

This attribute may be combined with the deregister=false attribute.

When you shut down a database, if authentication is turned on, you must specify
this attribute in conjunction with the user=userName and password=userPassword
attributes. If both authentication and SQL authorization are turned on, the user must be
the database owner.

When you shut down the Derby system, if both authentication and SQL authorization are
turned on, you must specify this attribute in conjunction with the user=userName and
password=userPassword attributes.

Examples

-- shut down entire system
jdbc:derby:;shutdown=true
-- shut down salesDB (authentication not enabled)
jdbc:derby:salesDB;shutdown=true
-- shut down an in-memory database using the embedded driver
jdbc:derby:memory:myInMemDB;shutdown=true
-- shut down an in-memory database using the Network Server
jdbc:derby://localhost:1527/memory:myInMemDB;shutdown=true

slaveHost=hostname attribute
The slaveHost=hostname attribute specifies the system that will serve as the slave for
database replication.

For more information, see the topics under "Replicating databases" in the Derby Server
and Administration Guide.

Combining with other attributes

This attribute must be specified in conjunction with the startMaster=true attribute. It may
be specified in conjunction with the startSlave=true attribute; if it is not, the default value
is localhost.

Derby Reference Manual

390

This attribute may be specified only in conjunction with the other attributes permitted with
the startMaster=true and startSlave=true attributes.

Examples

For examples, see startMaster=true and startSlave=true.

slavePort=portValue attribute
The slavePort=portValue attribute specifies the port that the slave system will use in
database replication.

For more information, see the topics under "Replicating databases" in the Derby Server
and Administration Guide.

Combining with other attributes

This attribute may be specified in conjunction with the startMaster=true attribute and the
startSlave=true attribute. If it is not specified, the default port value is 4851.

This attribute may be specified only in conjunction with the other attributes permitted with
the startMaster=true and startSlave=true attributes.

Examples

For examples, see startMaster=true and startSlave=true.

ssl=sslMode attribute
The ssl=sslMode attribute specifies the SSL mode of the client.

The sslMode can be basic, peerAuthentication, or off (the default). See
"Configuring SSL/TLS" in the Derby Security Guide for details.

Combining with other attributes

May be combined with all other attributes.

Example

-- connect to mydb with basic SSL encryption
jdbc:derby://localhost/mydb;ssl=basic

startMaster=true attribute
The startMaster=true attribute starts replication of a database in master mode.

Before you specify this attribute, you must cleanly shut down the database on the master
system, perform a file system copy of the database to the slave system, and specify
the startSlave=true attribute. For details, see the topic "Starting and running replication"
under "Replicating databases" in the Derby Server and Administration Guide.

If the master database is already booted and any unlogged operations are running when
the user specifies startMaster=true, the attempt to start the master fails and an error
message appears.

For more information on replication, see the other topics under "Replicating databases" in
the Derby Server and Administration Guide.

Combining with other attributes

You must specify a database name in the connection URL, either in the subprotocol or by
using the databaseName=nameofDatabase attribute.

Derby Reference Manual

391

You must specify this attribute in conjunction with the slaveHost=hostname attribute. You
may also specify this attribute in conjunction with the slavePort=portValue attribute. If you
do not specify the slavePort=portValue attribute, the default port value is 4851.

If authentication is turned on, you must also specify this attribute in conjunction with the
user=userName and password=userPassword attributes. If both authentication and SQL
authorization are turned on, the user must be the database owner.

You may not specify this attribute in conjunction with any attributes not mentioned in this
section.

Examples

-- start master using database name in subprotocol, default slave
-- port, authorization
jdbc:derby:myDB;startMaster=true;slaveHost=elsewhere;user=mary;
 password=little88lamb

-- start master using databaseName attribute, non-default slave
-- port, no security
jdbc:derby:;databaseName=myDB;startMaster=true;slaveHost=elsewhere;
 slavePort=4852

startSlave=true attribute
The startSlave=true attribute starts replication of a database in slave mode.

Before you specify this attribute, you must cleanly shut down the database on the master
system and then perform a file system copy of the database to the slave system.

The startSlave=true attribute does the following:

1. Partially boots the specified database
2. Starts to listen on the specified port and accepts a connection from the master
3. Hangs until the master has connected to it
4. Reports the startup status to the caller (whether it has started, and if not, why not)
5. Continually receives chunks of the transaction log from the master and applies the

operations in the transaction log to the slave database

If replication is started successfully, an exception with the error code XRE08 is thrown.
Hence, the startSlave=true attribute does not return a valid connection.

For more information, see the topics under "Replicating databases" in the Derby Server
and Administration Guide.

Combining with other attributes

You must specify a database name in the connection URL, either in the subprotocol or by
using the databaseName=nameofDatabase attribute.

You may specify this attribute in conjunction with the slaveHost=hostname attribute. If
you do not specify the slaveHost=hostname attribute, the default value is localhost.

You may also specify this attribute in conjunction with the slavePort=portValue attribute.
If you do not specify the slavePort=portValue attribute, the default port value is 4851.

If authentication is turned on, you must also specify this attribute in conjunction with the
user=userName and password=userPassword attributes. If both authentication and SQL
authorization are turned on, the user must be the database owner.

You may not specify this attribute in conjunction with any attributes not mentioned in this
section.

Examples

Derby Reference Manual

392

-- start slave using database name in subprotocol, default slave host
-- and port, authorization
jdbc:derby:myDB;startslave=true;user=mary;password=little88lamb

-- start slave using databaseName attribute, non-default slave host
-- and port, no security
jdbc:derby:;databaseName=myDB;startSlave=true;slaveHost=localhost;
 slavePort=4852

stopMaster=true attribute
The stopMaster=true attribute stops database replication on the master system.

This attribute sends a stop-slave message to the slave system if the network connection
is working. Then it shuts down all replication-related functionality, without shutting down
the specified database.

The Derby instance where this attribute is specified must be the replication master for the
specified database.

For more information, see the topics under "Replicating databases" in the Derby Server
and Administration Guide.

Combining with other attributes

You must specify a database name in the connection URL, either in the subprotocol or by
using the databaseName=nameofDatabase attribute.

If authentication is turned on, you must also specify this attribute in conjunction with the
user=userName and password=userPassword attributes. If both authentication and SQL
authorization are turned on, the user must be the database owner.

You may not specify this attribute in conjunction with any attributes not mentioned in this
section.

Examples

-- stop master using database name in subprotocol, authorization
jdbc:derby:myDB;stopMaster=true;user=mary;password=little88lamb

-- stop master using databaseName attribute, no security
jdbc:derby:;databaseName=myDB;stopMaster=true;

stopSlave=true attribute
The stopSlave=true attribute stops database replication on the slave system.

You can specify this connection URL attribute only if the network connection between
the master and slave systems is down. If the network connection is working, the
slave system accepts commands only from the master, so you must specify the
stopMaster=true attribute on the master system to stop replication on both the master
and slave systems.

When this attribute is specified, or when a stop-slave message is sent as part of the
execution of the stopMaster=true attribute, all transaction log chunks that have been
received from the master are written to disk. Both the slave replication functionality and
the database are then shut down.

The Derby instance where this attribute is specified must be serving the specified
database in replication slave mode.

For more information, see the topics under "Replicating databases" in the Derby Server
and Administration Guide.

Derby Reference Manual

393

Combining with other attributes

You must specify a database name in the connection URL, either in the subprotocol or by
using the databaseName=nameofDatabase attribute.

If authentication is turned on, you must also specify this attribute in conjunction with the
user=userName and password=userPassword attributes. Authorization for the master
database cannot be checked when the network connection is down, so the requirement
that the user must be the database owner is not enforced.

You may not specify this attribute in conjunction with any attributes not mentioned in this
section.

Examples

-- stop slave from master using database name in subprotocol,
-- authorization
jdbc:derby:myDB;stopSlave=true;user=mary;password=little88lamb

-- stop slave using databaseName attribute, no security
jdbc:derby:;databaseName=myDB;stopSlave=true;

territory=ll_CC attribute
The territory=ll_CC attribute associates a non-default locale with a database at database
creation time.

Setting the territory=ll_CC attribute overrides the default system locale for that database.
To find the default system locale, use the java.util.Locale.getDefault method.

Specify a locale in the form ll_CC, where ll is the two-letter language code, and CC is the
two-letter country code.

Language codes consist of a pair of lowercase letters that conform to ISO 639-1. The
following table shows some examples.

Table 147. Sample language codes

Language Code Description

de German

en English

es Spanish

ja Japanese

To see a full list of ISO 639 codes, go to
http://www.loc.gov/standards/iso639-2/php/code_list.php.

Country codes consist of two uppercase letters that conform to ISO 3166. The following
table shows some examples.

Table 148. Sample country codes

Country Code Description

DE Germany

US United States

ES Spain

http://www.loc.gov/standards/iso639-2/php/code_list.php

Derby Reference Manual

394

Country Code Description

MX Mexico

JP Japan

A copy of ISO 3166 can be found at
http://userpage.chemie.fu-berlin.de/diverse/doc/ISO_3166.html.

Combining with other attributes

Use the territory=ll_CC attribute only when you create a database.

Example

In the following example, the new database has a locale of Spanish language and
Mexican nationality.

jdbc:derby:MexicanDB;create=true;territory=es_MX

You can use the collation=collation attribute with the territory=ll_CC attribute to specify
that collation is based on the locale, instead of being based on Unicode codepoint
collation. For more information, see "Creating a database with locale-based collation",
"Creating a case-insensitive database", and "Character-based collation in Derby" in the
Derby Developer's Guide.

traceDirectory=path attribute
The traceDirectory=path attribute specifies a directory to which the Derby Network Client
will send JDBC trace information.

If the program or session has multiple connections, the Network Client creates a separate
file for each connection. By default, the files are named _driver_0, _driver_1, and so
on. Use the traceFile=path attribute to specify a file name for the trace file.

If the directory does not exist, Derby issues an error message. If you do not specify an
absolute path name, the directory is assumed to be relative to the current directory.

For more information about tracing, see "Network client tracing" in the Derby Server and
Administration Guide. See traceFile=path, traceFileAppend=true, and traceLevel=value
for other attributes related to tracing.

Combining with other attributes

You can combine this attribute with other attributes.

Examples

-- enable tracing on an existing database that will have multiple
-- connections
jdbc:derby://localhost:1527/mydb;traceDirectory=/home/mydir/mydbtracedir
-- specify a trace file name within the directory
jdbc:derby://localhost:1527/mydb;
 traceDirectory=/home/mydir/mydbtracedir;traceFile=trace.out
-- append to the default trace file
jdbc:derby://localhost:1527/mydb;
 traceDirectory=/home/mydir/mydbtracedir;traceFileAppend=true

traceFile=path attribute
The traceFile=path attribute specifies a file to which the Derby Network Client will send
JDBC trace information.

http://userpage.chemie.fu-berlin.de/diverse/doc/ISO_3166.html

Derby Reference Manual

395

If you do not specify an absolute path name, the file is placed in the derby.system.home
directory (see "Defining the system directory" in the Derby Developer's Guide for details).

If you specify both traceFile=path and traceFileAppend=true, the output is appended
to the specified file, if it exists. If you specify traceFile=path but do not specify
traceFileAppend=true, any previous version of the file of the file is overwritten.

For more information about tracing, see "Network client tracing" in the Derby Server and
Administration Guide. See traceDirectory=path and traceLevel=value for other attributes
related to tracing.

Combining with other attributes

You can combine this attribute with other attributes.

Example

-- enable tracing on a new database
jdbc:derby://localhost:1527/mydb;create=true;traceFile=trace.out

traceFileAppend=true attribute
The traceFileAppend=true attribute specifies that the Derby Network Client should
append JDBC trace information to a trace file.

The file can be specified by the traceFile=path attribute. If you do not specify a trace file
but you specify the traceDirectory=path attribute, the trace information is appended to the
default file. If you do not specify traceFileAppend=true, any previous version of the trace
file is overwritten.

For more information about tracing, see "Network client tracing" in the Derby Server and
Administration Guide. See traceDirectory=path and traceLevel=value for other attributes
related to tracing.

Combining with other attributes

This attribute must be specified in conjunction with either the traceFile=path attribute
or the traceDirectory=path attribute. You can also combine this attribute with other
attributes.

Examples

-- enable tracing on an existing database, appending to the
-- specified file
jdbc:derby://localhost:1527/mydb;traceFile=trace.out;
 traceFileAppend=true
-- enable tracing on an existing database, appending to the default file
-- within the specified directory, relative to the Derby home directory
jdbc:derby://localhost:1527/mydb;traceDirectory=mytracedir;
 traceFileAppend=true

traceLevel=value attribute
If tracing is enabled, the traceLevel=value attribute specifies the level of tracing to be
used by the Derby Network Client.

The value is numeric. If you do not specify a trace level, the default is TRACE_ALL.

For more information about tracing, see "Network client tracing" in the Derby
Server and Administration Guide. See traceFile=path, traceFileAppend=true, and
traceDirectory=path for other attributes related to tracing.

Tracing levels

Derby Reference Manual

396

The following table shows the available tracing levels and their values.

Table 149. Available tracing levels and values

Trace Level
Hex

Value
Decimal

Value

org.apache.derby.jdbc.ClientDataSource.TRACE_NONE 0x0 0

org.apache.derby.jdbc.ClientDataSource.TRACE_CONNECTION_CALLS0x1 1

org.apache.derby.jdbc.ClientDataSource.TRACE_STATEMENT_CALLS 0x2 2

org.apache.derby.jdbc.ClientDataSource.TRACE_RESULT_SET_CALLS0x4 4

org.apache.derby.jdbc.ClientDataSource.TRACE_DRIVER_CONFIGURATION0x10 16

org.apache.derby.jdbc.ClientDataSource.TRACE_CONNECTS 0x20 32

org.apache.derby.jdbc.ClientDataSource.TRACE_PROTOCOL_FLOWS 0x40 64

org.apache.derby.jdbc.ClientDataSource.TRACE_RESULT_SET_META_DATA0x80 128

org.apache.derby.jdbc.ClientDataSource.TRACE_PARAMETER_META_DATA0x100 256

org.apache.derby.jdbc.ClientDataSource.TRACE_DIAGNOSTICS 0x200 512

org.apache.derby.jdbc.ClientDataSource.TRACE_XA_CALLS 0x800 2048

org.apache.derby.jdbc.ClientDataSource.TRACE_ALL 0xFFFFFFFF-1

Derby provides two ClientDataSource implementations. You can use the
org.apache.derby.jdbc.ClientDataSource class on all supported Java SE
versions except Java SE 8 Compact Profile 2. On Java SE 8 Compact Profile 2, you must
use the org.apache.derby.jdbc.BasicClientDataSource40 class. See JDBC
support for Java SE 8 Compact Profiles for more information.

To specify more than one trace level, use one of the following techniques:

• If you are using the ij tool, add the decimal values together and specify the sum.
For example, to trace both PROTOCOL flows and connection calls, add the values
for TRACE_PROTOCOL_FLOWS (64) and TRACE_CONNECTION_CALLS (1).
Specify the sum, the value 65.

• If you are running a JDBC program, do one of the following:
• Use bitwise OR operators (|) with two or more trace values. For example, to

trace protocol flows and connection calls, specify this value for traceLevel:

TRACE_PROTOCOL_FLOWS | TRACE_CONNECTION_CALLS
• Use a bitwise complement operator (~) with a trace value to specify all

except a certain trace. For example, to trace everything except protocol flows,
specify this value for traceLevel:

~TRACE_PROTOCOL_FLOWS

Combining with other attributes

If you specify this attribute, you must also specify either the traceFile=path attribute or the
traceDirectory=path attribute.

Example

-- enable tracing on a new database
jdbc:derby://localhost:1527/mydb;create=true;traceFile=trace.out;
 traceLevel=65

Derby Reference Manual

397

upgrade=true attribute
The upgrade=true attribute upgrades a database that was created using an earlier
version of Derby to the current version of Derby, then connects to it.

If the database does not exist, an error appears in the error log and the connection
attempt fails with an SQLException indicating that the database cannot be found.

This operation performs a full upgrade, as defined in "Upgrading a database" in the
Derby Developer's Guide. For more information about upgrades, see the other topics
under "Upgrades" in the Derby Developer's Guide.

For a database for which authentication and SQL authorization are both enabled, only the
database owner can perform a full upgrade. See "Configuring user authentication" and
"Configuring user authorization" in the Derby Security Guide for more information.

Note: You cannot perform a full upgrade on a database already booted in soft upgrade
mode. If a database is already booted in soft upgrade mode, the upgrade=true attribute
will have no effect. If a database is already booted in soft upgrade mode, you can
first shutdown the database with the shutdown=true attribute and then connect with
upgrade=true to perform the upgrade.

Combining with other attributes

You must specify a databaseName (after the subprotocol in the database connection
URL) or a databaseName=nameofDatabase attribute with this attribute.

You cannot combine this attribute with the collation or territory=ll_CC attributes.

Examples

jdbc:derby:sampleDB;upgrade=true

jdbc:derby:;databaseName=sampleDB;upgrade=true;

user=userName attribute
The user=userName attribute specifies a valid user name for the system, in conjunction
with a password.

A valid user name and password are required when user authentication is turned on.

Combining with other attributes

Use this attribute in conjunction with the password=userPassword attribute.

Example

-- connect the user jill to toursDB
jdbc:derby:toursDB;user=jill;password=toFetchAPail

Creating a connection without specifying attributes
If no attributes are specified, you must specify a databaseName.

Derby opens a connection to an existing database with that name in the current system
directory. If the database does not exist, the connection attempt returns an SQLException
indicating that the database cannot be found.

Example

jdbc:derby:mydb

Derby Reference Manual

398

Derby property reference

This section provides reference information on Derby properties. For information on using
these properties, see "Working with Derby properties" in the Derby Developer's Guide.

Scope of Derby properties
A property in Derby can have system-wide scope, database-wide scope, or both.

• system-wide

System-wide properties apply to an entire system, including all its databases and
tables if applicable.

• Set programmatically

System-wide properties set programmatically have precedence over
database-wide properties and system-wide properties set in the
derby.properties file.

• Set in the derby.properties file

The derby.properties file is an optional file that can be created to set properties
at the system level when the Derby driver is loaded. Derby looks for this file in
the directory defined by the derby.system.home property. Any property except
derby.system.home can be set by including it in the derby.properties file.

• database-wide

A database-wide property is stored in a database and is valid for that specific
database only.

Note: Database-wide properties are stored in the database and are simpler and safer
for deployment. System-wide properties can be more practical during the development
process.

For more information about scopes, precedence, and persistence, see "Properties
overview" in the Derby Developer's Guide.

Dynamic and static properties
A property in Derby can be dynamic or static.

Most properties are dynamic; that means you can set them while Derby is running, and
their values change without requiring a reboot of Derby. In some cases, this change
takes place immediately; in some cases, it takes place at the next connection.

Some properties are static, which means changes to their values will not take effect while
Derby is running. You must restart or set them before (or while) starting Derby.

Note: Properties set in the derby.properties file and on the command line of the
application that boots Derby are always static, because Derby reads this file and those
parameters only at startup.

Only properties set in the following ways have the potential to be dynamic:

• As database-wide properties
• As system-wide properties via a Properties object in the application in which the

Derby engine is embedded

Derby Reference Manual

399

Derby properties
The Derby properties are used for configuring the system and database, as well as for
diagnostics such as logging statements, and monitoring and tracing locks.

The table later in this topic lists all the core Derby properties.

Derby also supports a number of properties that are specific to the Network Server. For
information about these properties, see "Setting Network Server properties" in the Derby
Server and Administration Guide.

For information on how to set Derby properties, see "Setting Derby properties" in the
Derby Developer's Guide.

Note: When setting properties that have boolean values, be sure to trim extra spaces
around the word true. Extra spaces around the word true cause the property to be set to
false, regardless of its previous setting.

To disable or turn off a database-wide property setting, set its value to null. To determine
the result of this action, recall that the search order for properties is as follows (as stated
in "Precedence of properties" in the Derby Developer's Guide).

1. System-wide properties set programmatically (as a command-line option to the
JVM when starting the application or within application code); not consulted if
derby.database.propertiesOnly is set to true

2. Database-wide properties
3. System-wide properties set in the derby.properties file; not consulted if

derby.database.propertiesOnly is set to true

Setting the database-wide property to null has the effect of removing the property
from the list of database properties and restoring the system property setting from
derby.properties if there is one. As always, if no value can be determined from the
search, the built-in default applies.

For example, the following code fragment turns off a previous database-wide setting of
the derby.database.fullAccessUsers property:

Statement s = conn.createStatement();
s.executeUpdate("CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(" +
 "'derby.database.fullAccessUsers', null)");

If the property is a static one, the null setting does not take effect until you reboot the
database. Moreover, the static property derby.database.sqlAuthorization cannot be
disabled after it has been enabled, even with a reboot.

The following table summarizes the general Derby properties. In the Scope column of this
table, S stands for system-wide, D stands for database-wide, and C indicates the value
persists with newly created conglomerates.

Table 150. Derby properties

Property Scope Dynamic or Static

derby.authentication.builtin.algorithm S, D Dynamic

derby.authentication.builtin.iterations S, D Dynamic

derby.authentication.builtin.saltLength S, D Dynamic

derby.authentication.ldap.searchAuthDN S, D Static

derby.authentication.ldap.searchAuthPW S, D Static

derby.authentication.ldap.searchBase S, D Static

Derby Reference Manual

400

Property Scope Dynamic or Static

derby.authentication.ldap.searchFilter S, D Static

derby.authentication.native.passwordLifetimeMillisS, D Static

derby.authentication.native.passwordLifetimeThresholdS, D Static

derby.authentication.provider S, D Static

derby.authentication.server S, D Static

derby.connection.requireAuthentication S, D Static

derby.database.classpath D Dynamic

derby.database.defaultConnectionMode S, D See the main page for this
property for information about
when changes to the property
are dynamic

derby.database.forceDatabaseLock S Static

derby.database.fullAccessUsers S, D See the main page for this
property for information about
when changes to the property
are dynamic

derby.database.noAutoBoot D Static

derby.database.propertiesOnly D Dynamic

derby.database.readOnlyAccessUsers S, D See the main page for this
property for information about
when changes to the property
are dynamic

derby.database.sqlAuthorization S, D Static

derby.infolog.append S Static

derby.jdbc.xaTransactionTimeout S, D Dynamic

derby.language.logQueryPlan S Static

derby.language.logStatementText S, D Static

derby.language.sequence.preallocator S, D Static

derby.language.statementCacheSize S, D Static

derby.locks.deadlockTimeout S, D Dynamic

derby.locks.deadlockTrace S, D Dynamic

derby.locks.escalationThreshold S, D Dynamic

derby.locks.monitor S, D Dynamic

derby.locks.waitTimeout S, D Dynamic

derby.replication.logBufferSize S Static

derby.replication.maxLogShippingInterval S Static

derby.replication.minLogShippingInterval S Static

derby.replication.verbose S Static

derby.storage.indexStats.auto S, D Static

Derby Reference Manual

401

Property Scope Dynamic or Static

derby.storage.indexStats.log S, D Static

derby.storage.indexStats.trace S, D Static

derby.storage.initialPages C Static

derby.storage.minimumRecordSize S, D, C Dynamic

derby.storage.pageCacheSize S Static

derby.storage.pageReservedSpace S, D, C Dynamic

derby.storage.pageSize S, D, C Dynamic

derby.storage.rowLocking S, D Static

derby.storage.tempDirectory S, D Static

derby.storage.useDefaultFilePermissions S Dynamic

derby.stream.error.extendedDiagSeverityLevelS Static

derby.stream.error.field S Static

derby.stream.error.file S Static

derby.stream.error.logBootTrace S Static

derby.stream.error.logSeverityLevel S Static

derby.stream.error.method S Static

derby.stream.error.rollingFile.count S Static

derby.stream.error.rollingFile.limit S Static

derby.stream.error.rollingFile.pattern S Static

derby.stream.error.style S Static

derby.system.bootAll S Static

derby.system.durability S Static

derby.system.home S Static

derby.user.UserName S, D Dynamic

DataDictionaryVersion D Neither; value can be retrieved,
but not set

There are additional properties associated with the Derby tools. For more information
about tool-specific properties, see the Derby Tools and Utilities Guide.

derby.authentication.builtin.algorithm

The derby.authentication.builtin.algorithm property specifies the message digest
algorithm to use to protect the passwords that are stored in the database when using
NATIVE authentication.

The value is the name of a message digest algorithm available from one of the Java
Cryptography Extension (JCE) providers registered in the JVM. Some examples of valid
values are MD5, SHA-256, and SHA-512.

The specified algorithm will be applied on the concatenation of the user name and the
password before it is stored in the database.

Derby Reference Manual

402

Syntax

derby.authentication.builtin.algorithm=algorithm

If the value of algorithm is NULL or an empty string, SHA-1 will be used on the password
only.

Default

For a newly created database, the default value is SHA-256, if that algorithm is available.
If SHA-256 is not available, the default is SHA-1.

Example

-- system-wide property
derby.authentication.builtin.algorithm=SHA-512

-- database-level property
CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.authentication.builtin.algorithm', 'SHA-512');

Dynamic or static

Dynamic; the change takes effect immediately. For information about dynamic changes
to properties, see Dynamic and static properties.

derby.authentication.builtin.iterations

The derby.authentication.builtin.iterations property specifies the number of times to
apply the hash function (which is specified by the derby.authentication.builtin.algorithm
property) on the credentials.

Iteration slows down attackers by forcing them to spend more time calculating hashes.
See derby.authentication.builtin.algorithm for more information.

This property is in effect only if NATIVE authentication is specified by the
derby.authentication.provider property and if the derby.authentication.builtin.algorithm
property has a non-null value.

Syntax

derby.authentication.builtin.iteration=number_of_iterations

The minimum value is 1.

Default

1000.

Example

-- system-wide property
derby.authentication.builtin.iterations=2000

-- database-level property
CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.authentication.builtin.iterations', '2000');

Dynamic or static

Dynamic; the change takes effect immediately. For information about dynamic changes
to properties, see Dynamic and static properties.

derby.authentication.builtin.saltLength

Derby Reference Manual

403

The derby.authentication.builtin.saltLength property specifies the number of bytes of
random salt that will be added to users' credentials before hashing them.

Random salt has the effect of making it difficult for attackers to decode passwords by
constructing rainbow tables.

This property is in effect only if NATIVE authentication is specified by the
derby.authentication.provider property and if the derby.authentication.builtin.algorithm
property has a non-null value.

Syntax

derby.authentication.builtin.saltLength=number_of_bytes

Default

16.

Example

-- system-wide property
derby.authentication.builtin.saltLength=32

-- database-level property
CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.authentication.builtin.saltLength', '32');

Dynamic or static

Dynamic; the change takes effect immediately. For information about dynamic changes
to properties, see Dynamic and static properties.

derby.authentication.ldap.searchAuthDN

Along with derby.authentication.ldap.searchAuthPW, the
derby.authentication.ldap.searchAuthDN property indicates how Derby should bind with
the LDAP directory server to do searches for user DN (distinguished name).

This property specifies the DN; derby.authentication.ldap.searchAuthPW specifies the
password to use for the search.

If these two properties are not specified, an anonymous search is performed if it is
supported.

For more information about LDAP user authentication, see "Configuring LDAP
authentication" in the Derby Security Guide.

Syntax

derby.authentication.ldap.searchAuthDn=DN

Default

If not specified, an anonymous search is performed if it is supported.

Example

-- system-wide property
derby.authentication.ldap.searchAuthDn=
 cn=guest,o=example.com
-- database-wide property
CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.authentication.ldap.searchAuthDn',
 'cn=guest,o=example.com')

Dynamic or static

Derby Reference Manual

404

Static. For system-wide properties, you must reboot Derby for the change to take effect.
For database-wide properties, you must reboot the database for the change to take
effect.

derby.authentication.ldap.searchAuthPW

Along with derby.authentication.ldap.searchAuthDN, the
derby.authentication.ldap.searchAuthPW property indicates how Derby should bind
with the directory server to do searches in order to retrieve a fully qualified user DN
(distinguished name).

This property specifies the password; derby.authentication.ldap.searchAuthDN specifies
the DN to use for the search.

For more information about LDAP user authentication, see "Configuring LDAP
authentication" in the Derby Security Guide.

Default

If not specified, an anonymous search is performed if it is supported.

Example

-- system-wide property
derby.authentication.ldap.searchAuthPW=guestPassword
-- database-wide property
CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.authentication.ldap.searchAuthPW',
 'guestPassword')

Dynamic or static

Static. For system-wide properties, you must reboot Derby for the change to take effect.
For database-wide properties, you must reboot the database for the change to take
effect.

derby.authentication.ldap.searchBase

The derby.authentication.ldap.searchBase property specifies the root DN of the point in
your hierarchy from which to begin a guest or anonymous search for the user's DN.

For example:

ou=people,o=example.com

When using Netscape Directory Server, set this property to the root DN, the special entry
to which access control does not apply.

For more information about LDAP user authentication, see "Configuring LDAP
authentication" in the Derby Security Guide.

Example

-- system-wide property
derby.authentication.ldap.searchBase=
 ou=people,o=example.com
-- database-wide property
CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.authentication.ldap.searchBase',
 'ou=people,o=example.com')

Dynamic or static

Derby Reference Manual

405

Static. For system-wide properties, you must reboot Derby for the change to take effect.
For database-wide properties, you must reboot the database for the change to take
effect.

derby.authentication.ldap.searchFilter

The derby.authentication.ldap.searchFilter property specifies the search filter to use to
determine what constitutes a user (and other search predicate) for Derby searches for a
full DN during user authentication.

If you set this property to derby.user, Derby looks for cached full DNs for users that you
have defined with the derby.user.UserName property. For other users, Derby performs a
search using the default search filter.

For more information about LDAP user authentication, see "Configuring LDAP
authentication" in the Derby Security Guide.

Syntax

derby.authentication.ldap.searchFilter=
 { searchFilter | derby.user)

Default

(&(objectClass=inetOrgPerson)(uid=userName))

Note: Derby automatically uses the filter you specify with ((uid=userName)) unless you
include %USERNAME% in the definition. You might want to use %USERNAME% if your
user DNs map the user name to something other than uid (for example, user).

Example

-- system-wide properties
derby.authentication.ldap.searchFilter=objectClass=person
people in the marketing department
Derby automatically adds (uid=<userName>)
derby.authentication.ldap.searchFilter=(&(ou=Marketing)
 (objectClass=person))
all people but those in marketing
Derby automatically adds (uid=<userName>)
derby.authentication.ldap.searchFilter=(&(!(ou=Marketing)
 (objectClass=person))
map %USERNAME% to user, not uid
derby.authentication.ldap.searchFilter=(&((ou=People)
(user=%USERNAME%))
cache user DNs locally and use the default for others
derby.authentication.ldap.searchFilter=derby.user

-- database-wide property
CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.authentication.ldap.searchFilter',
 'objectClass=person')

Dynamic or static

Static. For system-wide properties, you must reboot Derby for the change to take effect.
For database-wide properties, you must reboot the database for the change to take
effect.

derby.authentication.native.passwordLifetimeMillis

The derby.authentication.native.passwordLifetimeMillis property specifies the number of
milliseconds a NATIVE authentication password remains valid after being created, reset,
or modified.

Derby Reference Manual

406

If the value is less than or equal to zero, the password never expires.

To avoid locking out the super-user, the password of the database owner of a credentials
database never expires.

If a connection attempt is made when the password's remaining lifetime is less than a
proportion of the maximum lifetime, a warning is issued. The proportion is specified by
the derby.authentication.native.passwordLifetimeThreshold property.

Syntax

derby.authentication.native.passwordLifetimeMillis=millis

Default

A number of milliseconds equal to 31 days (2,678,400,000).

Example

-- system-wide property
derby.authentication.native.passwordLifetimeMillis=5356800000

-- database-level property
CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.authentication.native.passwordLifetimeMillis', '5356800000');

Dynamic or static

Static. For system-wide properties, you must reboot Derby for the change to take effect.
For database-wide properties, you must reboot the database for the change to take
effect.

derby.authentication.native.passwordLifetimeThreshold

The derby.authentication.native.passwordLifetimeThreshold property specifies the
threshold that triggers a connection-time warning that a password is about to expire.

The threshold must be a DOUBLE value greater than 0.0.

To avoid locking out the super-user, the password of the database owner of a credentials
database never expires.

A warning is raised when a user logs in and the remaining lifetime of that user's
password is less than this proportion of the maximum password lifetime. That is,
Derby raises a warning when the remaining lifetime of a password is less than
(derby.authentication.native.passwordLifetimeThreshold *
derby.authentication.native.passwordLifetimeMillis).

To set the lifetime of the password, use the
derby.authentication.native.passwordLifetimeMillis property.

Syntax

derby.authentication.native.passwordLifetimeThreshold=proportion

Default

0.125 (1/8).

Example

-- system-wide property
derby.authentication.native.passwordLifetimeThreshold=0.2

-- database-level property
CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(

Derby Reference Manual

407

 'derby.authentication.native.passwordLifetimeThreshold', '0.2');

Dynamic or static

Static. For system-wide properties, you must reboot Derby for the change to take effect.
For database-wide properties, you must reboot the database for the change to take
effect.

derby.authentication.provider

The derby.authentication.provider property specifies the authentication provider for Derby
user authentication.

Legal values include:

• NATIVE:credentialsDB

NATIVE authentication using credentialsDB, a dedicated database, to store user
credentials. This value must be set by using system-wide Java Virtual Machine
(JVM) properties or by using the derby.properties file; it cannot be set in the
database by using the SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY
system procedure. When this system-wide value is set, credentialsDB is used to
authenticate all operations. Individual databases can override this directive by
specifying their own value for derby.authentication.provider.

The value of credentialsDB must be a valid name for a database.
• NATIVE:credentialsDB:LOCAL

NATIVE authentication using credentialsDB for system-wide operations, but using
an individual database's SYSUSERS system table to authenticate connections
to that database. This value must be set by using system-wide JVM properties or
by using the derby.properties file; it cannot be set in the database by using the
SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY procedure.

• LDAP

An external LDAP directory service.
• A complete Java class name

A user-defined class that provides user authentication.

For more information about these settings, see "Configuring NATIVE authentication" and
"Configuring LDAP authentication" in the Derby Security Guide.

To enable any Derby user authentication setting other than NATIVE, you must set
the derby.connection.requireAuthentication property to true. If you specify NATIVE
authentication, Derby behaves as if the derby.connection.requireAuthentication and
derby.database.sqlAuthorization properties were also set.

When using NATIVE authentication, you can also set the following related properties:

• derby.authentication.native.passwordLifetimeMillis
• derby.authentication.native.passwordLifetimeThreshold

When using NATIVE authentication, the database owner calls the
SYSCS_UTIL.SYSCS_CREATE_USER system procedure to create users, and can also
call the following additional user management procedures:

• SYSCS_UTIL.SYSCS_DROP_USER
• SYSCS_UTIL.SYSCS_RESET_PASSWORD

When using NATIVE authentication, any user can call the
SYSCS_UTIL.SYSCS_MODIFY_PASSWORD system procedure to change that user's
password.

Derby Reference Manual

408

For more information about user authentication, see "Configuring user authentication" in
the Derby Security Guide.

When using an external authentication service provider (LDAP), you must also set:

• derby.authentication.server

When using LDAP, you can set other LDAP-specific properties. See also:

• derby.authentication.ldap.searchAuthDN
• derby.authentication.ldap.searchAuthPW
• derby.authentication.ldap.searchFilter
• derby.authentication.ldap.searchBase

Alternatively, you can write your own class to provide a different external
authentication service. This class must implement the public interface
org.apache.derby.authentication.UserAuthenticator and throw exceptions of the type
java.sql.SQLException where appropriate. Using a user-defined class makes Derby
adaptable to various naming and directory services. For example, the class could allow
Derby to hook up to an existing user authentication service that uses any of the standard
directory and naming service providers to JNDI.

Syntax

derby.authentication.provider={ NATIVE:credentialsDB |
 NATIVE:credentialsDB:LOCAL |
 LDAP |
 classProviderName }

Default

No authentication.

Example

-- system-wide property
derby.authentication.provider=NATIVE:MyCredsDB:LOCAL
-- database-wide property
CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.authentication.provider',
 'LDAP')

Dynamic or static

Static. For system-wide properties, you must reboot Derby for the change to take effect.
For database-wide properties, you must reboot the database for the change to take
effect.

derby.authentication.server

The derby.authentication.server property specifies the location of the external directory
service that provides user authentication for the Derby system as defined with the
derby.authentication.provider property.

For LDAP, specify the host name and port number. See derby.authentication.provider for
more information.

The server must be known on the network.

For more information about external user authentication, see "Configuring LDAP
authentication" in the Derby Security Guide.

Default

Not applicable. Note that if the protocol type is unspecified, it defaults to LDAP.

Derby Reference Manual

409

Syntax

derby.authentication.server=
[{ ldap: | ldaps: | nisplus: }]
[//]

{
 hostname [:portnumber]
 |
 nisServerName/nisDomain
}

Example

-- system-wide property
##LDAP example
derby.authentication.server=godfrey:9090
##LDAP example
derby.authentication.server=ldap://godfrey:9090
##LDAP example
derby.authentication.server=//godfrey:9090
##LDAP over SSL example
derby.authentication.server=ldaps://godfrey:636/
-- database-wide property
CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.authentication.server',
 'godfrey:9090')

Dynamic or static

Static. For system-wide properties, you must reboot Derby for the change to take effect.
For database-wide properties, you must reboot the database for the change to take
effect.

derby.connection.requireAuthentication

The derby.connection.requireAuthentication property turns on user authentication for
Derby.

When user authentication is turned on, a connection request must provide a valid user
name and password.

Derby uses the type of user authentication specified with the
derby.authentication.provider property.

If the derby.authentication.provider property specifies NATIVE authentication, Derby
behaves as if derby.connection.requireAuthentication were set to TRUE, regardless of
how derby.connection.requireAuthentication has been set by other means.

For more information about user authentication, see "Configuring user authentication" in
the Derby Security Guide.

Default

False.

By default, no user authentication is required.

Example

-- system-wide property
derby.connection.requireAuthentication=true
-- database-wide property
CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.connection.requireAuthentication',
 'true')

Derby Reference Manual

410

Dynamic or static

Static. For system-wide properties, you must reboot Derby for the change to take effect.
For database-wide properties, you must reboot the database for the change to take
effect.

derby.database.classpath

The derby.database.classpath property specifies the classpath that Derby should use
when searching for jar files in a database.

This property must be set to enable Derby to load classes from jar files installed with the
SQLJ.INSTALL_JAR system procedure.

Make sure to do the following:

• Separate jar files with a colon (:).
• Use fully qualified identifiers for the jar files (schema name and jar name).
• Set the property as a database-level property for the database.

Derby searches the user's classpath before it searches the jar files specified by the
derby.database.classpath property setting. To force Derby to search the database only,
remove the classes from the user classpath.

Derby searches for classes and resources in the order specified by the property setting.

For more information, see the section "Loading classes from a database" in the Derby
Developer's Guide. For reference information on system procedures for storing jar files in
a database, see "System procedures for storing jar files in a database."

Syntax

-- database-level property
CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.database.classpath',
 'colonSeparatedJarFiles')

Example

-- database-level property
CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.database.classpath',
 'APP.ToursLogic:APP.ACCOUNTINGLOGIC')

Dynamic or static

Dynamic; the change takes effect immediately. For information about dynamic changes
to properties, see Dynamic and static properties.

derby.database.defaultConnectionMode

The derby.database.defaultConnectionMode property, one of the user authorization
properties, defines the default connection mode for users of the database or system for
which this property is set.

The possible values (which are case-insensitive) are:

• noAccess

Disallows connections.
• readOnlyAccess

Grants read-only connections.
• fullAccess

Derby Reference Manual

411

Grants full access.

If the property is set to an invalid value, an exception is raised.

Note: It is possible to configure a database so that it cannot be changed (or even
accessed) using this property. If you set this property to noAccess or readOnlyAccess,
be sure to allow at least one user full access. See derby.database.fullAccessUsers and
derby.database.readOnlyAccessUsers.

For more information about user authorization, see "Configuring user authorization" in the
Derby Security Guide.

Syntax

CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.database.defaultConnectionMode',
 '{ noAccess | readOnlyAccess | fullAccess}')

Example

-- database-wide property
CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.database.defaultConnectionMode', 'noAccess')
-- system-wide property
derby.database.defaultConnectionMode=noAccess

Default

fullAccess

Dynamic or static

Dynamic. Current connections are not affected, but all future connections are affected.
For information about dynamic changes to properties, see Dynamic and static properties.

derby.database.forceDatabaseLock

The derby.database.forceDatabaseLock property, if set to true on some platforms,
prevents Derby from booting a database if a db.lck file is present in the database
directory.

Derby attempts to prevent two JVMs from accessing a database at one time (and
potentially corrupting it) with the use of a file called db.lck in the database directory. On
some operating systems, the use of a lock file does not guarantee single access, and
so Derby only issues a warning and might allow multiple JVM access even when the file
is present. (For more information, see "Double-booting system behavior" in the Derby
Developer's Guide.)

Derby provides the property derby.database.forceDatabaseLock for use on platforms
that do not provide the ability for Derby to guarantee single JVM access. By default,
this property is set to false. When this property is set to true, if Derby finds the db.lck
file when it attempts to boot the database, it throws an exception and does not boot the
database.

Note: This situation can occur even when no other JVMs are accessing the database;
in that case, remove the db.lck file by hand in order to boot the database. If the db.lck file
is removed by hand while a JVM is still accessing a Derby database, there is no way for
Derby to prevent a second VM from starting up and possibly corrupting the database. In
this situation no warning message is logged to the error log.

Default

False.

Derby Reference Manual

412

Example

derby.database.forceDatabaseLock=true

Dynamic or static

This property is static; if you change it while Derby is running, the change does not take
effect until you reboot.

derby.database.fullAccessUsers

The derby.database.fullAccessUsers property, one of the user authorization properties,
specifies a list of users to which full (read-write) access to a database is granted.

The list consists of user names separated by commas. Do not put spaces after the
commas.

When set as a system property, specifies a list of users for which full access to all the
databases in the system is granted.

A malformed list of user names raises an exception. Do not specify a user both with this
property and in derby.database.readOnlyAccessUsers.

Note: User names, called authorization identifiers, follow the rules of SQLIdentifiers
and can be delimited. Specifying a user name that does not follow these rules raises an
exception.

For more information about user authorization, see "Configuring user authorization" in the
Derby Security Guide.

Syntax

-- database-level property
CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.database.fullAccessUsers',
 'commaSeparatedlistOfUsers')

Example

-- database-level property
CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.database.fullAccessUsers', 'dba,fred,peter')
--system-level property
derby.database.fullAccessUsers=dba,fred,peter

Dynamic or static

Dynamic. Current connections are not affected, but all future connections are affected.
For information about dynamic changes to properties, see Dynamic and static properties.

derby.database.noAutoBoot

The derby.database.noAutoBoot property specifies that a database should not be
automatically booted at startup time.

When this property is set to true, this database is booted only on the first connection.
Otherwise, the database is booted at startup if the derby.system.bootAll property is set to
true.

Default

False.

Example

Derby Reference Manual

413

-- database-level property
CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.database.noAutoBoot', 'true')

Scope

database-wide

Dynamic or static

This property is static; if you change it while Derby is running, the change does not take
effect until you reboot.

derby.database.propertiesOnly

The derby.database.propertiesOnly property, when set to true, ensures that
database-wide properties cannot be overridden by system-wide properties.

When this property is set to false, or not set, database-wide properties can be overridden
by system-wide properties (see "Precedence of properties" in the Derby Developer's
Guide).

This property ensures that a database's environment cannot be modified by the
environment in which it is booted.

This property can never be overridden by system properties.

Default

False.

Example

CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.database.propertiesOnly','true')

Dynamic or static

This property is dynamic; if you change it while Derby is running, the change takes effect
immediately. For information about dynamic changes to properties, see Dynamic and
static properties.

derby.database.readOnlyAccessUsers

The derby.database.readOnlyAccessUsers property, one of the user authorization
properties, specifies a list of users to which read-only access to a database is granted.

The list consists of user names separated by commas. Do not put spaces after the
commas.

When set as a system property, specifies a list of users for which read-only access to all
the databases in the system is granted.

A malformed list of user names raises an exception. Do not specify a user both in this
property and in derby.database.fullAccessUsers.

Note: User names, called authorization identifiers, follow the rules of SQLIdentifiers
and can be delimited. Specifying a user name that does not follow these rules raises an
exception.

Syntax

-- database-level property
CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.database.readOnlyAccessUsers',

Derby Reference Manual

414

 'commaSeparatedListOfUsers')

Example

-- database-level property
CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.database.readOnlyAccessUsers', 'ralph,guest')
-- system-level property
derby.database.readOnlyAccessUsers=ralph,guest

Dynamic or static

Dynamic. Current connection is not affected, but all future connections are affected. For
information about dynamic changes to properties, see Dynamic and static properties.

derby.database.sqlAuthorization

The derby.database.sqlAuthorization property, one of the user authorization properties,
enables the SQL standard authorization mode for the database or system on which this
property is set.

The possible values are:

• TRUE

SQL authorization for the database or system is enabled, which allows the use of
GRANT and REVOKE statements.

• FALSE

SQL authorization for the database or system is disabled. After this property is set
to TRUE, the property cannot be set back to FALSE.

The values are not case-sensitive.

Note: If you set this property as a system property before you create the databases,
all new databases will automatically have SQL authorization enabled. If the databases
already exist, you can set this property only as a database property.

Derby uses the type of user authentication that is specified with the
derby.authentication.provider property.

If the derby.authentication.provider property specifies NATIVE authentication, Derby
behaves as if derby.database.sqlAuthorization were set to TRUE, regardless of how
derby.database.sqlAuthorization has been set by other means.

For more information about user authorization, see "Configuring user authorization" in the
Derby Security Guide.

Example

-- system-wide property
derby.database.sqlAuthorization=true

-- database-level property
CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.database.sqlAuthorization', 'true');

Default

FALSE

Dynamic or static

This property is static; if you change it while Derby is running, the change does not take
effect until you reboot.

Derby Reference Manual

415

derby.infolog.append

The derby.infolog.append property specifies whether to append to or overwrite (delete
and recreate) the derby.log file when the Derby engine is started.

The derby.log file is used to record errors and other information. This information can
help you debug problems within a system.

You can set this property even if the file does not yet exist; Derby creates the file.

See derby.stream.error.style for information on how this property works if the
derby.stream.error.style property is set.

Default

False.

By default, the file is deleted and then re-created.

Example

derby.infolog.append=true

Scope

system-wide

Dynamic or static

This property is static; if you change it while Derby is running, the change does not take
effect until you reboot.

derby.jdbc.xaTransactionTimeout

The derby.jdbc.xaTransactionTimeout property specifies the default value of the XA
transaction timeout that is used when a user either does not specify the XA transaction
timeout or requests to use the default value.

It is possible to use the XAResource.setTransactionTimeout method to specify the
XA transaction timeout value for the global transaction.

A zero or negative value for this property means that the transaction timeout is not used.

Default

The transaction timeout is not used.

Example

-- system-wide property
derby.jdbc.xaTransactionTimeout=120

-- database-wide property
CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.jdbc.xaTransactionTimeout', '120')

Dynamic or static

Dynamic; the change takes effect immediately. For information about dynamic changes
to properties, see Dynamic and static properties.

derby.language.logQueryPlan

The derby.language.logQueryPlan property, when set to true, tells Derby to write the
query plan information into the derby.log file for all executed queries.

Derby Reference Manual

416

This information can help you debug problems within a system.

Example

derby.language.logQueryPlan=true

Default

False.

Dynamic or static

This property is static; if you change it while Derby is running, the change does not take
effect until you reboot.

derby.language.logStatementText

The derby.language.logStatementText property, when set to true, tells Derby to write
the text and parameter values of all executed statements to the information log at the
beginning of execution.

It also writes information about commits and rollbacks. Information includes the time and
thread number.

This property is useful for debugging.

Example

derby.language.logStatementText=true
-- database-wide property
CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.language.logStatementText', 'true')

Default

False.

Dynamic or static

This property is static; if you change it while Derby is running, the change does not take
effect until you reboot.

derby.language.sequence.preallocator

The derby.language.sequence.preallocator property specifies how many values to
preallocate for sequences.

If the database is shut down in an orderly fashion, Derby will not leak unused
preallocated values. Instead, any unused values will be thrown away, and the sequence
generator will continue where it left off once the database reboots. However, if the
database exits unexpectedly, the sequence generator will skip the unused preallocated
values when the database comes up again. This will leave a gap between the last NEXT
VALUE FOR (issued before the database exited unexpectedly) and the next NEXT
VALUE FOR (issued after the database reboots).

Syntax

derby.language.sequence.preallocator=number

or

derby.language.sequence.preallocator=className

If set to a positive number, that is the number of values which Derby preallocates for
each sequence. A higher value may improve the concurrency of sequences.

Derby Reference Manual

417

If set to a class name, that class must implement
org.apache.derby.catalog.SequencePreallocator. The class customizes the size of
the preallocation range for each sequence. For more information, see the public API
documentation for org.apache.derby.catalog.SequencePreallocator.

Default

100

By default, Derby preallocates 100 values for each sequence.

Example

derby.language.sequence.preallocator=125

Scope

system-wide, database-wide

Dynamic or static

This property is semi-static; changing it while Derby is running will not affect sequences
which are already being used. However, the new value will be picked up by sequences
which weren't being used before the value was changed. In addition, DDL causes the
old value to be forgotten. After performing DDL, the new value will be picked up by all
sequences.

derby.language.statementCacheSize

The derby.language.statementCacheSize property defines the size, in number of
statements, of the database statement cache (prepared statements kept in memory).

This property controls the number of precompiled statements which Derby keeps in its
statement cache. Consider raising this number if statement preparation is taking too
much time.

For more information on the statement cache, see "Using the statement cache" in Tuning
Derby.

Default

100 statements.

Example

derby.language.statementCacheSize=200

Dynamic or static

This property is static; if you change it while Derby is running, the change does not take
effect until you reboot.

derby.locks.deadlockTimeout

The derby.locks.deadlockTimeout property determines the number of seconds after
which Derby checks whether a transaction waiting to obtain a lock is involved in a
deadlock.

If a deadlock has occurred, and Derby chooses the transaction as a deadlock
victim, Derby aborts the transaction. The transaction receives an SQLException
of SQLState 40001. If the transaction is not chosen as the victim, it continues to
wait for a lock if derby.locks.waitTimeout is set to a higher value than the value of
derby.locks.deadlockTimeout.

Derby Reference Manual

418

If this property is set to a higher value than derby.locks.waitTimeout, no deadlock
checking occurs.

For more information about deadlock checking, see "Deadlocks" in the Derby Developer's
Guide.

Default

20 seconds.

Example

derby.locks.deadlockTimeout=30
-- database-wide property
CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.locks.deadlockTimeout', '30')

Dynamic or static

Dynamic; the change takes effect immediately. For information about dynamic changes
to properties, see Dynamic and static properties.

derby.locks.deadlockTrace

The derby.locks.deadlockTrace property causes a detailed list of locks at the time of a
deadlock or a timeout to be written to the error log (typically the file derby.log).

For a deadlock, Derby describes the cycle of locks which caused the deadlock. For
a timeout, Derby prints the entire lock list at the time of the timeout. This property is
meaningful only if the derby.locks.monitor property is set to true.

Note: This level of debugging is intrusive: it can alter the timing of the application,
reduce performance severely, and produce a large error log file. It should be used with
care.

Default

False.

Example

-- system property
derby.locks.deadlockTrace=true

CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.locks.deadlockTrace', 'true')

Dynamic or static

Dynamic; the change takes effect immediately. For information about dynamic changes
to properties, see Dynamic and static properties.

derby.locks.escalationThreshold

The derby.locks.escalationThreshold property is used by the Derby system at runtime in
determining when to attempt to escalate locking for at least one of the tables involved in a
transaction from row-level locking to table-level locking.

A large number of row locks use a lot of resources. If nearly all the rows are locked, it
might be worth the slight decrease in concurrency to lock the entire table to avoid the
large number of row locks.

For more information, see "Locking and performance" in Tuning Derby.

Derby Reference Manual

419

It is useful to increase this value for large systems (such as enterprise-level servers,
where there is more than 64 MB of memory), and to decrease it for very small systems
(such as palmtops).

Syntax

derby.locks.escalationThreshold=numberOfLocks

Default

5000.

Minimum value

100.

Maximum value

2,147,483,647.

Example

-- system-wide property
derby.locks.escalationThreshold=1000
-- database-wide property
CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.locks.escalationThreshold',
 '1000')

Dynamic or static

Dynamic; the change takes effect immediately. For information about dynamic changes
to properties, see Dynamic and static properties.

derby.locks.monitor

The derby.locks.monitor property specifies that all deadlock errors are logged to the error
log.

If derby.stream.error.logSeverityLevel is set to ignore deadlock errors,
derby.locks.monitor overrides it.

Default

False.

Example

-- system property
derby.locks.monitor=true

CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.locks.monitor', 'true')

Dynamic or static

Dynamic; the change takes effect immediately. For information about dynamic changes
to properties, see Dynamic and static properties.

derby.locks.waitTimeout

The derby.locks.waitTimeout property specifies the number of seconds after which Derby
aborts a transaction when it is waiting for a lock.

When Derby aborts (and rolls back) the transaction, the transaction receives an
SQLException of SQLState 40XL1.

Derby Reference Manual

420

The time specified by this property is approximate.

A zero value for this property means that Derby aborts a transaction any time it cannot
immediately obtain a lock that it requests.

A negative value for this property is equivalent to an infinite wait time; the transaction
waits forever to obtain the lock.

If this property is set to a value greater than or equal to zero but less than the value of
derby.locks.deadlockTimeout, Derby never performs any deadlock checking.

Default

60 seconds.

Example

CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.locks.waitTimeout', '15')
derby.locks.waitTimeout=60

Dynamic or static

Dynamic; the change takes effect immediately. For information about dynamic changes
to properties, see Dynamic and static properties.

derby.replication.logBufferSize

The derby.replication.logBufferSize property specifies the size of the replication log
buffers in bytes.

These buffers store the log on the master side before it is shipped to the slave. There is a
total of 10 such buffers.

Large buffers increase memory usage but reduce the chance that the buffers will fill up
(in turn increasing response time for transactions on the master, as described in the
failure situation "The master Derby instance is not able to send log data to the slave at
the same pace as the log is generated" in the topic "Replication failure handling" in the
Derby Server and Administration Guide).

You can also use the properties derby.replication.minLogShippingInterval and
derby.replication.maxLogShippingInterval to tune the rate at which the log is shipped
from the master to the slave.

Minimum value

8192 (8 KB).

Maximum value

The maximum value is 1048576 (1 MB).

Default

32768 bytes (32KB).

Example

derby.replication.logBufferSize=65536

Scope

system-wide

Dynamic or static

Derby Reference Manual

421

This property is static; if you change it while Derby is running, the change does not take
effect until you reboot.

derby.replication.maxLogShippingInterval

The derby.replication.maxLogShippingInterval property specifies, in milliseconds, the
longest interval between two consecutive shipments of the transaction log from the
master to the slave.

This property provides a "soft" guarantee that the slave will not deviate more than this
number of milliseconds from the master.

The value specified for the derby.replication.maxLogShippingInterval property must be
at least ten times the value specified for the derby.replication.minLogShippingInterval
property. If you set derby.replication.maxLogShippingInterval to a lower value, Derby
changes the derby.replication.minLogShippingInterval property value to the value of the
derby.replication.maxLogShippingInterval property divided by 10.

Default

5000 milliseconds (5 seconds).

Example

derby.replication.maxLogShippingInterval=10000

Scope

system-wide

Dynamic or static

This property is static; if you change it while Derby is running, the change does not take
effect until you reboot.

derby.replication.minLogShippingInterval

The derby.replication.minLogShippingInterval property specifies, in milliseconds, the
shortest interval between two consecutive shipments of the transaction log from the
master to the slave.

The value specified for the derby.replication.minLogShippingInterval property must be no
more than one-tenth the value specified for the derby.replication.maxLogShippingInterval
property. If you set derby.replication.minLogShippingInterval to a higher value, Derby
changes the derby.replication.minLogShippingInterval property value to the value of the
derby.replication.maxLogShippingInterval property divided by 10.

Default

100 milliseconds.

Example

derby.replication.minLogShippingInterval=500

Scope

system-wide

Dynamic or static

This property is static; if you change it while Derby is running, the change does not take
effect until you reboot.

Derby Reference Manual

422

derby.replication.verbose

The derby.replication.verbose property specifies whether replication messages are
written to the Derby log.

Default

True.

Example

derby.replication.verbose=false

Scope

system-wide

Dynamic or static

This property is static; if you change it while Derby is running, the change does not take
effect until you reboot.

derby.storage.indexStats.auto

The derby.storage.indexStats.auto property, if set to true (the default), specifies that
outdated index cardinality statistics are updated automatically during query compilation.

The query compiler schedules a job that updates the statistics in a separate thread.

The thread that updates the statistics in the background may affect the performance of
the user threads. If this causes problems, you can set derby.storage.indexStats.auto to
false.

To diagnose problems with automatic updating of index statistics, an application can set
the property derby.storage.indexStats.log to true. The derby.storage.indexStats.trace
property can be used to provide more detailed information.

For more information about index statistics, see "Working with cardinality statistics" in
Tuning Derby.

Default

True.

Example

-- system-wide property
derby.storage.indexStats.auto=false

-- database-level property
CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.storage.indexStats.auto', 'false')

Dynamic or static

Static. For system-wide properties, you must reboot Derby for the change to take effect.
For database-wide properties, you must reboot the database for the change to take
effect.

derby.storage.indexStats.log

The derby.storage.indexStats.log property, if set to true, specifies that the thread that
updates index cardinality statistics during query compilation will write messages to the
Derby system log (derby.log) every time it performs a task.

Derby Reference Manual

423

The log entries should help you to diagnose problems with the automatic updating of
index statistics.

The derby.storage.indexStats.trace property can be used to provide more detailed
information and to specify where the trace output should appear.

To disable the automatic updating of index statistics, set the database property
derby.storage.indexStats.auto to false.

For more information about index statistics, see "Working with cardinality statistics" in
Tuning Derby.

Default

False.

Example

-- system-wide property
derby.storage.indexStats.log=true

-- database-level property
CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.storage.indexStats.log', 'true')

Dynamic or static

Static. For system-wide properties, you must reboot Derby for the change to take effect.
For database-wide properties, you must reboot the database for the change to take
effect.

derby.storage.indexStats.trace

The derby.storage.indexStats.trace property allows you to enable more detailed logging
of index cardinality statistics than the derby.storage.indexStats.log property provides.

This property also allows you to specify where the tracing output should appear. Valid
values are as follows:

• off

Tracing is disabled (the default).
• log

Tracing output goes to the log file, derby.log.
• stdout

Tracing output goes to standard output.
• both

Tracing output goes to both derby.log and standard output.

See derby.storage.indexStats.log for details on that property. For more information about
index statistics, see "Working with cardinality statistics" in Tuning Derby.

Syntax

derby.storage.indexStats.trace=
 { off | log | stdout | both }

Default

off.

Example

-- system-wide property

Derby Reference Manual

424

derby.storage.indexStats.trace=log

-- database-level property
CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.storage.indexStats.trace', 'stdout')

Dynamic or static

Static. For system-wide properties, you must reboot Derby for the change to take effect.
For database-wide properties, you must reboot the database for the change to take
effect.

derby.storage.initialPages

The derby.storage.initialPages property creates a Derby table or index with a number of
pages already pre-allocated.

The on-disk size of a Derby table grows by one page at a time until eight pages of user
data (or nine pages of total disk use; one is used for overhead) have been allocated.
Then it will grow by eight pages at a time if possible.

To pre-allocate pages, specify the property prior to the CREATE TABLE or CREATE
INDEX statement. The property value defines the number of user pages the table or
index is to be created with. The purpose of this property is to preallocate a table or index
of reasonable size if the user expects that a large amount of data will be inserted into
the table or index. A table or index that has the pre-allocated pages will enjoy a small
performance improvement over a table or index that has no pre-allocated pages when
the data are loaded.

The total desired size of the table or index should be the following number of bytes:

(1 + derby.storage.initialPages) * derby.storage.pageSize

When you create a table or an index after setting this property, Derby attempts to
preallocate the requested number of user pages. However, the operations do not fail
even if they are unable to preallocate the requested number of pages, as long as they
allocate at least one page.

Default

1 page.

Minimum value

The minimum number of initialPages is 1.

Maximum value

The maximum number of initialPages is 1000.

Example

-- system-wide property
derby.storage.initialPages=30

-- database-wide property
CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
'derby.storage.initialPages', '30')

Dynamic or static

This property is static; if you change it while Derby is running, the change does not take
effect until you reboot.

Derby Reference Manual

425

derby.storage.minimumRecordSize

The derby.storage.minimumRecordSize property indicates the minimum user row size in
bytes for on-disk database pages for tables when you are creating a table.

This property ensures that there is enough room for a row to grow on a page when
updated without having to overflow. This is generally most useful for VARCHAR and
VARCHAR FOR BIT DATA data types and for tables that are updated often, in which the
rows start small and grow due to updates. Reserving the space at the time of insertion
minimizes row overflow due to updates, but it can result in wasted space. Set the
property prior to issuing the CREATE TABLE statement.

See also derby.storage.pageReservedSpace.

Valid conglomerates

Tables only.

Default

12 bytes.

Minimum value

12 bytes.

Maximum value

derby.storage.pageSize * (1 - derby.storage.pageReservedSpace/100) " 100.

If you set this property to a value outside the legal range, Derby uses the default value.

Example

-- changing the default for the system
derby.storage.minimumRecordSize=128
-- changing the default for the database
CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.storage.minimumRecordSize',
 '128')

Dynamic or static

This property is dynamic; if you change it while Derby is running, the change takes effect
immediately. For information about dynamic changes to properties, see Dynamic and
static properties.

derby.storage.pageCacheSize

The derby.storage.pageCacheSize property defines the size, in number of pages, of the
data page cache in the database (data pages kept in memory).

The actual amount of memory the page cache will use depends on the following:

• The size of the cache, configured with the derby.storage.pageCacheSize property.
• The size of the pages, configured with the derby.storage.pageSize property. Derby

automatically tunes for the database page size. If you have long columns, the
default page size for the table is set to 32768 bytes. Otherwise, the default is 4096
bytes.

• Overhead, which varies with JVMs.

When increasing the size of the page cache, you typically have to allow more memory
for the Java heap when starting the embedding application (taking into consideration, of
course, the memory needs of the embedding application as well). For example, using the

Derby Reference Manual

426

default page size of 4K, a page cache size of 2000 pages will require at least 8 MB of
memory (and probably more, given the overhead).

The minimum value is 40 pages. If you specify a lower value, Derby uses the default
value.

Default

1000 pages.

Example

derby.storage.pageCacheSize=160

Dynamic or static

This property is static; if you change it while Derby is running, the change does not take
effect until you reboot.

derby.storage.pageReservedSpace

The derby.storage.pageReservedSpace property defines the percentage of space
reserved for updates on an on-disk database page for tables only (not indexes) and
indicates the percentage of space to keep free on a page when inserting.

Leaving reserved space on a page can minimize row overflow (and the associated
performance hit) during updates. Once a page has been filled up to the reserved-space
threshold, no new rows are allowed on the page. This reserved space is used only for
rows that increase in size when updated, not for new inserts. Set this property prior to
issuing the CREATE TABLE statement.

Regardless of the value of derby.storage.pageReservedSpace, an empty page always
accepts at least one row.

Valid conglomerates

Tables only.

Default

20%.

Minimum value

The minimum value is 0% and the maximum is 100%. If you specify a value outside this
range, Derby uses the default value of 20%.

Example

-- modifying the default for the system
derby.storage.pageReservedSpace=40
-- modifying the default for the database
CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.storage.pageReservedSpace',
 '40')

Dynamic or static

This property is dynamic: if you change it while Derby is running, the change takes effect
immediately. For information about dynamic changes to properties, see Dynamic and
static properties.

derby.storage.pageSize

Derby Reference Manual

427

The derby.storage.pageSize property defines the page size, in bytes, for on-disk
database pages for tables or indexes used during table or index creation.

Set this property prior to issuing the CREATE TABLE or CREATE INDEX statement. This
value will be used for the lifetime of the newly created conglomerates.

Valid conglomerates

Tables and indexes, including the indexes created to enforce constraints.

Default

Derby automatically tunes for the database page size. If you have any LONG VARCHAR,
LONG VARCHAR FOR BIT DATA, BLOB, or CLOB columns, or if Derby estimates that
the total length of the columns declared at create time is greater than 4096 bytes, the
default page size for the table is set to 32768 bytes. Otherwise, the default is 4096 bytes.

Valid values

Page size can only be one of the following values: 4096, 8192, 16384, or 32768 bytes. If
you specify an invalid value, Derby uses the default value.

Example

-- changing the default for the system
derby.storage.pageSize=8192
-- changing the default for the database
CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.storage.pageSize',
 '8192')

Dynamic or static

This property is dynamic; if you change it while Derby is running, the change takes effect
immediately. For information about dynamic changes to properties, see Dynamic and
static properties.

derby.storage.rowLocking

The derby.storage.rowLocking property, if set to true, enables row-level locking.

When you disable row-level locking, you use table-level locking.

Row-level locking uses more system resources but allows greater concurrency, which
works better in multi-user systems. Table-level locking works best with single-user
applications or read-only applications.

If you use row-level locking (the default), the system decides whether to use table-level
locking or row-level locking for each table in each DML statement. In certain situations,
the system might choose to escalate the locking scheme from row-level locking to
table-level locking to improve performance.

For more information about locking, see "Locking and performance" in Tuning Derby, and
"Locking, concurrency, and isolation" in the Derby Developer's Guide.

Default

True.

Example

-- system-wide property
derby.storage.rowLocking=false

-- database-level property
CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(

Derby Reference Manual

428

 'derby.storage.rowLocking', 'false')

Dynamic or static

This property is static; if you change it while Derby is running, the change does not take
effect until you reboot.

derby.storage.tempDirectory

The derby.storage.tempDirectory property defines the location on disk for temporary file
space needed by Derby for performing large sorts and deferred deletes and updates.

Temporary files are automatically deleted after use and are removed when the database
restarts after a crash. The temporary directory named by this property will be created if
it does not exist, but will not be deleted when the system shuts down. The path name
specified by this property must have file separators that are appropriate to the current
operating system.

This property allows databases located on read-only media to write temporary files to a
writable location. If this property is not set, databases located on read-only media might
get an error like the following:

ERROR XSDF1: Exception during creation
 of file c:\databases\db\tmp\T887256591756.tmp
for container
ERROR XJ001: Java exception:
'a:\databases\db\tmp\T887256591756.tmp: java.io.IOException'.

This property moves the temporary directories for all databases being used by the
Derby system. Derby makes temporary directories for each database under the directory
referenced by this property. For example, if the property is set as follows:

derby.storage.tempDirectory=C:/Temp/dbtemp

the temporary directories for the databases in C:\databases\db1 and C:\databases\db2
will be in C:\Temp\dbtemp\db1 and C:\Temp\dbtemp\db2, respectively.

The temporary files of two databases running concurrently with the same name (for
example, C:\databases\db1 and E:\databases\db1) will conflict with each other if the
derby.storage.tempDirectory property is set. This will cause incorrect results, so users
are advised to give databases unique names.

Default

A subdirectory named tmp under the database directory.

For example, if the database db1 is stored in C:\databases\db1, the temporary files are
created in C:\databases\db1\tmp.

Example

-- system-wide property
derby.storage.tempDirectory=c:/Temp/dbtemp
-- database-wide property
CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.storage.tempDirectory',
 'c:/Temp/dbtemp')

Dynamic or static

This property is static; you must restart Derby for a change to take effect.

derby.storage.useDefaultFilePermissions

Derby Reference Manual

429

The derby.storage.useDefaultFilePermissions property overrides the default access to
files on systems that run on the Java SE 7 platform.

If you run with Java SE 7 or later, and if you start the Derby Network Server from the
command line, access to databases and to other files created by Derby is by default
restricted to the operating system account that started the Network Server. File access
is not restricted for embedded databases or for databases managed by servers that are
started programmatically inside application code using the Derby API.

You can override this default behavior by setting the system property
derby.storage.useDefaultFilePermissions to either true or false.

If you run with the Java SE 6 platform, this property is ignored, and Derby uses the
default file permissions the user has set for their system.

The two tables that follow show how file access works with Java SE 6 and with Java SE 7
and later JVMs. In both tables,

• "Environment" means that access is controlled entirely by the JVM environment and
the file location only (that is, by the umask setting on UNIX and Linux systems and
by the default file permissions on Windows NTFS).

• "Restricted" means that Derby restricts access to the operating system account that
started the JVM.

The following table shows how file access works on Java SE 6 systems.

Table 151. File access on Java SE 6 systems

Property
Setting

Server Started from
Command Line

Server Started
Programmatically

or Embedded

Not applicable Environment Environment

The following table shows how file access works on Java SE 7 and later systems with
various settings of the derby.storage.useDefaultFilePermissions property.

Table 152. File access on Java SE 7 and later systems

Property
Setting

Server Started from
Command Line

Server Started
Programmatically

or Embedded

No property
specified

Restricted Environment

Property set to
true

Environment Environment

Property set to
false

Restricted Restricted

For more information, see "Restricting file permissions" in the Derby Security Guide.

Default

By default, this property is not set.

Example

derby.storage.useDefaultFilePermissions=true

Scope

Derby Reference Manual

430

system-wide

Dynamic or static

Dynamic. Existing files will keep their previous permissions, but files created after the
property is set will have the permissions specified by the property. If you want all the files
in the database to have the same permissions, do not change the property while Derby is
running.

For information about dynamic changes to properties, see Dynamic and static properties.

derby.stream.error.extendedDiagSeverityLevel

The derby.stream.error.extendedDiagSeverityLevel property specifies whether thread
dump information and extended diagnostic information are created, and at what level, in
the event of a system crash or session error.

If errors have a severity level greater than or equal to the value of the
derby.stream.error.extendedDiagSeverityLevel property, thread dump and diagnostic
information will appear in the derby.log file. In addition, with IBM Java Virtual Machines
(JVMs), a javacore file with additional information is created.

To allow the information to be dumped to the log, you must grant two permissions to
Derby in your security policy file. See "Configuring Java security" in the Derby Security
Guide.

Any error raised in a Derby system is given a level of severity. This property indicates
the minimum severity necessary for an error to appear in the log file. The severities are
defined in the class org.apache.derby.types.ExceptionSeverity. The higher the number,
the more severe the error.

• 10000

Warnings.
• 20000

Errors that cause the statement to be rolled back, such as syntax errors and
constraint violations.

• 30000

Errors that cause the transaction to be rolled back, such as deadlocks.
• 40000

Errors that cause the session to be closed.
• 45000

Errors that cause the database to be closed.
• 50000

Errors that shut down the Derby system.

Default

40000.

Example

// send errors of level 30000 and higher to the log
derby.stream.error.extendedDiagSeverityLevel=30000

Scope

system-wide

Dynamic or static

Derby Reference Manual

431

This property is static; if you change it while Derby is running, the change does not take
effect until you reboot.

derby.stream.error.field

The derby.stream.error.field property specifies a static field that references a stream to
which the error log is written.

The field is specified using the fully qualified name of the class, then a dot (.),
and then the field name. The field must be public and static. Its type can be either
java.io.OutputStream or java.io.Writer.

The field is accessed once at Derby boot time, and the value is used until Derby
is rebooted. If the field is null, the error stream defaults to the system error stream
(java.lang.System.err).

If the field does not exist or is inaccessible, the error stream defaults to the system error
stream. Derby will not call the close() method of the object obtained from the field.

If you specify this property, the property setting appears in the error log.

Default

None.

Example

derby.stream.error.field=java.lang.System.err

Scope

system-wide

Dynamic or static

This property is static; if you change it while Derby is running, the change does not take
effect until you reboot.

derby.stream.error.file

The derby.stream.error.file property specifies the name of the file to which the error log is
written.

If the file name is relative, it is taken as relative to the system directory.

If this property is set, the derby.stream.error.method and derby.stream.error.field
properties are ignored.

If you specify this property, the property setting appears in the error log.

Default

derby.log.

Example

derby.stream.error.file=error.txt

Dynamic or static

This property is static; if you change it while Derby is running, the change does not take
effect until you reboot.

derby.stream.error.logBootTrace

Derby Reference Manual

432

The derby.stream.error.logBootTrace property specifies whether boot errors are written to
the Derby log file.

This property helps in diagnosing double-booting problems. Typically, when two Java
Virtual Machines (JVMs) or class loaders attempt to boot Derby, an error message like
the following appears:

ERROR XJ040: Failed to start database 'testdb' with class loader
sun.misc.Launcher$AppClassLoader@481e481e, see the next exception for
details.
ERROR XSDB6: Another instance of Derby may have already booted the
database C:\derby\testdb.

The message will also show the stack trace and class loader of the failed boot attempt.
It is sometimes also useful to see the stack trace when the first successful boot
attempt occurred. To see the stack trace of successful boots and shutdowns, set
derby.stream.error.logBootTrace=true to trace the successful attempt. If you think that
both attempts should be from the same class loader context, check also the class loader
information for boot and shutdown attempts and make sure they all come from the same
class loader context.

For more information, see "Double-booting system behavior" in Derby Developer's Guide.

Default

False.

Example

derby.stream.error.logBootTrace=true

Scope

system-wide

Dynamic or static

This property is static; if you change it while Derby is running, the change does not take
effect until you reboot.

derby.stream.error.logSeverityLevel

The derby.stream.error.logSeverityLevel property specifies which errors are logged to the
Derby error log (typically the derby.log file).

In test environments, use the setting derby.stream.error.logSeverityLevel=0 so that all
problems are reported.

Any error raised in a Derby system is given a level of severity. This property indicates
the minimum severity necessary for an error to appear in the error log. The severities are
defined in the class org.apache.derby.types.ExceptionSeverity. The higher the number,
the more severe the error.

• 20000

Errors that cause the statement to be rolled back, for example syntax errors and
constraint violations.

• 30000

Errors that cause the transaction to be rolled back, for example deadlocks.
• 40000

Errors that cause the connection to be closed.
• 50000

Derby Reference Manual

433

Errors that shut down the Derby system.

Default

40000.

Example

// send errors of level 30000 and higher to the log
derby.stream.error.logSeverityLevel=30000

Dynamic or static

This property is static; if you change it while Derby is running, the change does not take
effect until you reboot.

derby.stream.error.method

The derby.stream.error.method property specifies a static method that returns a stream
to which the Derby error log is written.

Specify the method using the fully qualified name of the class, then a dot (.) and then
the method name. The method must be public and static. Its return type can be either
java.io.OutputStream or java.io.Writer. Derby will not call the close() method of the object
returned by the method.

The method is called once at Derby boot time, and the return value is used for the lifetime
of Derby. If the method returns null, the error stream defaults to the system error stream.
If the method does not exist or is inaccessible, the error stream defaults to the system
error stream (java.lang.System.err).

If the value of this property is set, the property derby.stream.error.field is ignored.

If you specify this property, the property setting appears in the error log.

Default

Not set.

Example

derby.stream.error.method=java.sql.DriverManager.getLogStream

Scope

system-wide

Dynamic or static

This property is static; if you change it while Derby is running, the change does not take
effect until you reboot.

derby.stream.error.rollingFile.count

The derby.stream.error.rollingFile.count property specifies the number of rolling
log files to permit before deleting the oldest file when rolling to the next file, if
derby.stream.error.style is set to rollingFile.

If derby.stream.error.style is not set, this property setting is ignored.

You can override other rolling log file defaults by setting
derby.stream.error.rollingFile.limit or derby.stream.error.rollingFile.pattern.

Syntax

Derby Reference Manual

434

derby.stream.error.rollingFile.count=count

The specified count value must be equal to or greater than 1.

Default

10.

Example

derby.stream.error.rollingFile.count=1

Scope

system-wide

Dynamic or static

This property is static; if you change it while Derby is running, the change does not take
effect until you reboot.

derby.stream.error.rollingFile.limit

The derby.stream.error.rollingFile.limit property specifies the number of bytes to which to
limit each rolling log file before it is rolled over to the next file, if derby.stream.error.style is
set to rollingFile.

If derby.stream.error.style is not set, this property setting is ignored.

You can override other rolling log file defaults by setting
derby.stream.error.rollingFile.count or derby.stream.error.rollingFile.pattern.

Syntax

derby.stream.error.rollingFile.limit=limit

The specified limit value must be equal to or greater than 0 (zero). If you specify 0 as the
limit, the file size has no limit, and the log file will never roll over.

Default

1024000 (one megabyte).

Example

derby.stream.error.rollingFile.limit=2048000

Scope

system-wide

Dynamic or static

This property is static; if you change it while Derby is running, the change does not take
effect until you reboot.

derby.stream.error.rollingFile.pattern

The derby.stream.error.rollingFile.pattern property specifies the naming pattern to use for
the rolling log files, if derby.stream.error.style is set to rollingFile.

If derby.stream.error.style is not set, this property setting is ignored.

You can override other rolling log file defaults by setting
derby.stream.error.rollingFile.count or derby.stream.error.rollingFile.limit.

Derby Reference Manual

435

A pattern consists of a string that includes the following special components that will be
replaced at runtime.

Table 153. Rolling log file pattern components

Pattern component Description

/ Local path name separator

%t The system temporary directory

%h The value of the user.home system property

%d The value of the derby.system.home system property

%g The generation number to distinguish rotated log files.
Generation numbers follow the sequence 0, 1, 2, and so on.
If you do not specify a %g field and the file count is greater
than one, the generation number will be added to the end of
the generated filename, after a dot.

%u A unique number to resolve conflicts.

%% Translates to a single percent sign (%)

Thus, for example, a derby.stream.error.rollingFile.pattern setting of %t/java%g.log
with a derby.stream.error.rollingFile.count setting of 2 might cause log files on a UNIX
system to be written to /var/tmp/java0.log and /var/tmp/java1.log, whereas on a Windows
7 system they might be written to %USERPROFILE%\AppData\Local\Temp\java0.log
and %USERPROFILE%\AppData\Local\Temp\java1.log.

Normally, the %u unique field is set to 0 (zero). However, if Derby tries to open the file
by the specified name and finds that the file is currently in use by another process, it will
increment the unique number field and try again. This action will be repeated until Derby
finds a file name that is not currently in use. If there is a conflict and no %u field has been
specified, the unique number will be added at the end of the filename after a dot. (This
will be after any automatically added generation number.)

For example, if three processes are all trying to log to fred%u.%g.txt, they might
have log files named fred0.0.txt, fred1.0.txt, fred2.0.txt as the first file in their rotating
sequences.

Note: The use of unique fields to avoid conflicts is guaranteed to work reliably only when
you are using a local disk file system.

Syntax

derby.stream.error.rollingFile.pattern=pattern

The number of characters in the specified pattern value must be equal to or greater than
1.

Default

%d/derby-%g.log.

Example

The following setting creates files named myDBlog-0.txt, myDBlog-1.txt, and so on, in the
user's home directory:

derby.stream.error.rollingFile.pattern=%h/myDBlog-%g.txt

Scope

Derby Reference Manual

436

system-wide

Dynamic or static

This property is static; if you change it while Derby is running, the change does not take
effect until you reboot.

derby.stream.error.style

The derby.stream.error.style property specifies that the Derby log file should be rolled
over when it reaches a certain size.

Function

If you set this property to rollingFile (the only supported value), Derby by
default creates up to 10 rolling files named derby-0.log, derby-1.log, and so on, up to
derby-9.log, each with a maximum length of 1,024,000 bytes.

You can override any of these defaults by setting one or more of the following properties:

• derby.stream.error.rollingFile.count
• derby.stream.error.rollingFile.limit
• derby.stream.error.rollingFile.pattern

If you set this property, the derby.stream.error.field, derby.stream.error.file, and
derby.stream.error.method properties are ignored.

This property works in accordance with the setting of the derby.infolog.append
property. If derby.infolog.append is not set or is set to false, any existing log files will
be rolled over and a new log file will be created when the Derby engine is started. If
derby.infolog.append is set to true, the latest existing log file, if any, will be appended to.

Syntax

derby.stream.error.style=style

Default

Not set.

Example

derby.stream.error.style=rollingFile

Scope

system-wide

Dynamic or static

This property is static; if you change it while Derby is running, the change does not take
effect until you reboot.

derby.system.bootAll

The derby.system.bootAll property specifies that all databases in the directory specified
by the derby.system.home property should be automatically booted at startup time.

When this property is set to true, databases in the derby.system.home directory are
booted at startup. Otherwise, databases are booted when you first connect to them.

You may want to use the derby.system.bootAll property to avoid a delay at first
connection time. After a crash, a boot that requires recovery can take a long time, and
you may want to perform this boot as soon as Derby is restarted.

Derby Reference Manual

437

You can set the derby.database.noAutoBoot property on a particular database if you
want to prevent it from being automatically booted at startup.

Default

False.

Scope

system-wide

Example

derby.system.bootAll=true

Dynamic or static

This property is static; if you change it while Derby is running, the change does not take
effect until you reboot.

derby.system.durability

The derby.system.durability property changes the default durability of Derby to improve
performance at the expense of consistency and durability of the database.

The only valid supported case insensitive value is test. If this property is set to any
value other than test, this property setting is ignored. When derby.system.durability is
set to test, the store system will not force I/O synchronization calls for:

• The log file at each commit
• The log file before a data page is forced to disk
• Page allocation when a file is grown
• Data writes during checkpoints

While performance is improved, note that under these conditions, a commit no longer
guarantees that the transaction's modification will survive a system crash or JVM
termination, the database may not recover successfully upon restart, a near-full disk at
runtime may cause unexpected errors, and the database may be in an inconsistent state.

If you boot the database with this property set to test, the following warning message is
logged in the derby.log file:

WARNING: The database is booted with derby.system.durability=test.
In this mode, it is possible that database may not be able
to recover, committed transactions may be lost, and the database
may be in an inconsistent state. Please use this mode only when
these consequences are acceptable.

A similar message will appear in the derby.log file if the database was booted with
derby.system.durability=test at any time previously.

Once the database is booted with derby.system.durability=test, there are no
guarantees that the database is consistent.

Default

This property is ignored by default.

Supported values

The only supported value is test.

Example

derby.system.durability=test

Derby Reference Manual

438

Since this is a system property, you can set it in the derby.properties file or on the
command line of the JVM when starting the application.

You might enable this property when using Derby as a test database where consistency
or recoverability is not an issue.

Dynamic or static

This property is static; if you change it while Derby is running, the change does not take
effect until you reboot.

derby.system.home

The derby.system.home property specifies the Derby system directory, which is the
directory that contains subdirectories holding databases that you create and the text file
derby.properties.

If the system directory that you specify with derby.system.home does not exist at startup,
Derby creates the directory automatically.

Default

Current directory (the value of the JVM system property user.dir).

If you do not explicitly set the derby.system.home property when starting Derby, the
default is the directory in which Derby was started.

Note: You should always explicitly set the value of derby.system.home.

Example

-Dderby.system.home=C:\derby

Dynamic or static

This property is static; if you change it while Derby is running, the change does not take
effect until you reboot.

derby.user.UserName

The derby.user.UserName property caches user DNs locally when
derby.authentication.provider is set to LDAP and derby.authentication.ldap.searchFilter is
set to derby.user.

See derby.authentication.provider and derby.authentication.ldap.searchFilter for more
information.

When you provide a user DN with this property, Derby is able to avoid an LDAP
search for that user's DN before authenticating. For those users without DNs
defined with this property, Derby performs a search using the default value of
derby.authentication.ldap.searchFilter.

User names are SQLIdentifiers and can be delimited.

Syntax

derby.user.UserName=userDN

-- database-level property
CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.user.UserName',
 'userDN')

Default

Derby Reference Manual

439

None.

Example

-- system-level property
derby.user.Diana=uid=Diana,ou=People,o=example.com

-- database-level property
CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.user.richard',
 'uid=richard, ou=People, o=example.com')

Dynamic or static

Dynamic; the change takes effect immediately. For information about dynamic changes
to properties, see Dynamic and static properties.

DataDictionaryVersion

The DataDictionaryVersion property shows the version of the on-disk data in the
database.

The version is the first two numbers (the major and minor release values) in a Derby
release identifier. For newly created databases and for soft-upgraded databases, this
is the release identifier of the Derby engine jar used to create the database. For fully
upgraded databases, this is the release identifier of the Derby engine jar used to perform
a full upgrade of the database. See upgrade=true attribute for more information about
upgrading databases.

You can retrieve the value of this property by using the
SYSCS_UTIL.SYSCS_GET_DATABASE_PROPERTY system function, but you cannot
change it.

Syntax

-- database-level property
VALUES SYSCS_UTIL.SYSCS_GET_DATABASE_PROPERTY('DataDictionaryVersion')

Example

ij> connect 'jdbc:derby:firstdb';
ij> VALUES
 SYSCS_UTIL.SYSCS_GET_DATABASE_PROPERTY('DataDictionaryVersion');
1

10.10

1 row selected

Derby Reference Manual

440

Java EE compliance: Java Transaction API and javax.sql
interfaces

The Java Platform, Enterprise Edition (the Java EE platform) is a standard for
development of enterprise applications based on reusable components in a multi-tier
environment.

In addition to the features of the Java Platform, Standard Edition (the Java SE platform),
the Java EE platform adds support for Enterprise JavaBeans (EJB) technology, the Java
Persistence API, JavaServer Faces technology, Java Servlet technology, JavaServer
Pages (JSP) technology, and many more. The Java EE platform architecture is used to
bring together existing technologies and enterprise applications in a single, manageable
environment.

Derby is a Java EE platform conformant component in a distributed Java EE system.
As such, Derby is one part of a larger system that includes, among other things, a JNDI
server, a connection pool module, a transaction manager, a resource manager, and user
applications. Within this system, Derby can serve as the resource manager.

For more information on the Java EE platform, see
http://www.oracle.com/technetwork/java/javaee/documentation/index.html.

In order to qualify as a resource manager in a Java EE system, the Java EE platform
requires these basic areas of support:

• JNDI support

Allows calling applications to register names for databases and access
them through those names instead of through database connection URLs.
Implementation of one of the JDBC interfaces, javax.sql.DataSource, provides
this support (except for the DataSource implementations that support Java SE 8
Compact Profile 2).

• Connection pooling

A mechanism by which a connection pool server keeps a set of open connections
to a resource manager (Derby). A user requesting a connection can get one
of the available connections from the pool. Such a connection pool is useful
in client/server environments because establishing a connection is relatively
expensive. In an embedded environment, connections are much cheaper, making
the performance advantage of a connection pool negligible. Implementation
of two of the JDBC interfaces, javax.sql.ConnectionPoolDataSource and
javax.sql.PooledConnection, provides this support.

• XA support

XA is one of several standards for distributed transaction management. It is
based on two-phase commit. The javax.sql.XAxxx interfaces, along with the
java.transaction.xa package, are an abstract implementation of XA. For more
information about XA, see X/Open CAE Specification-Distributed Transaction
Processing: The XA Specification, X/Open Document No. XO/CAE/91/300
or ISBN 1 872630 24 3. Implementation of the JTA API, the interfaces of the
java.transaction.xa package (javax.sql.XAConnection, javax.sql.XADataSource,
javax.transaction.xa.XAResource, javax.transaction.xa.Xid, and
javax.transaction.xa.XAException), provides this support.

With the exception of the core JDBC interfaces, these interfaces are not visible to the
end-user application; instead, they are used only by the other back-end components in
the system.

http://www.oracle.com/technetwork/java/javaee/documentation/index.html

Derby Reference Manual

441

Note: For information on the classes that implement these interfaces and on how to use
Derby as a resource manager, see "Using Derby as a Java EE Resource Manager" in the
Derby Developer's Guide.

The JTA API
The JTA API is made up of the two interfaces and one exception that are part of the
java.transaction.xa package. Derby fully implements this API.

The implemented APIs are as follows. The following sections provide some
implementation details.

• javax.transaction.xa.XAResource
• javax.transaction.xa.Xid
• javax.transaction.xa.XAException

Recovered global transactions

Using the XAResource.prepare call causes a global transaction to enter a prepared state,
which allows it to be persistent.

Typically, the prepared state is just a transitional state before the transaction outcome is
determined. However, if the system crashes, recovery puts transactions in the prepared
state back into that state and awaits instructions from the transaction manager.

XAConnections, user names and passwords

The behavior of transactions created by XAConnection objects varies according to
whether a user name and password are specified when the XAConnection object is
created.

If a user opens an XAConnection with a user name and password, the transaction it
created cannot be attached to an XAConnection opened with a different user name and
password.

A transaction created with an XAConnection without a user name and password can be
attached to any XAConnection.

However, the user name and password for recovered global transactions are lost; any
XAConnection can commit or roll back that in-doubt transaction.

Note: Use the network client driver's XA DataSource interface
(org.apache.derby.jdbc.ClientXADataSource) when XA support is required in a remote
(client/server) environment.

XA transactions and deferred constraints

Derby defines how some XAResource methods behave in conjunction with deferred
constraints.

If an application calls XAResource.prepare(Xid), any constraints with a
constraint mode of DEFERRED are checked. If there is a violation, Derby throws
XAException.XA_RBINTEGRITY, and the XA transaction is rolled back.

If an application calls XAResource.commit(Xid, true) (with true indicating a one-phase
commit), any constraints with a constraint mode of DEFERRED are checked. If there is a
violation, Derby throws XAException.XA_RBINTEGRITY, and the XA transaction is rolled
back.

See CONSTRAINT clause and SET CONSTRAINTS statement for more information
about deferrable constraints.

Derby Reference Manual

442

javax.sql: JDBC interfaces
Derby implements a number of JDBC interfaces for Java EE compliance.

For more details about these interfaces, see the API documentation for your version of
the Java Development Kit, which you can find at http://docs.oracle.com/javase/.

• javax.sql.DataSource

An interface that is a factory for connections to the physical data source that the
object represents. An object that implements the DataSource interface will typically
be registered with a naming service based on the Java Naming and Directory
(JNDI) API. The org.apache.derby.jdbc DataSource classes support the JNDI API,
with the exception of the DataSource classes that support Java SE 8 Compact
Profile 2. See DataSource classes and JDBC support for Java SE 8 Compact
Profiles for more information.

• javax.sql.ConnectionPoolDataSource and javax.sql.PooledConnection

Establishing a connection to the database can be a relatively expensive operation
in client/server environments. Establishing the connection once and then using the
same connection for multiple requests can dramatically improve the performance of
a database.

The Derby implementation of the ConnectionPoolDataSource and
PooledConnection interfaces allows a connection pool server to maintain a set of
such connections to the resource manager (Derby). In an embedded environment,
connections are much cheaper and connection pooling is not necessary.

• javax.sql.XAConnection

An XAConnection produces an XAResource, and, over its lifetime, many
Connections. This type of connection allows for distributed transactions.

• javax.sql.XADataSource

An XADataSource is simply a ConnectionPoolDataSource that produces
XAConnections.

In addition, Derby provides three methods for XADataSource, DataSource, and
ConnectionPoolDataSource. Derby supports a number of additional data source
properties:

• setCreateDatabase(String create)

Sets a property to create a database at the next connection. The string argument
must be "create".

• setShutdownDatabase(String shutdown)

Sets a property to shut down a database. Shuts down the database at the next
connection. The string argument must be "shutdown".

Note: Set these properties before getting the connection.

http://docs.oracle.com/javase/

Derby Reference Manual

443

Derby API

Derby provides documentation of API classes and interfaces in the javadoc subdirectory.

This section provides a brief overview of the API. Derby does not provide the API
documentation for the java.sql packages, the main API for working with Derby, because
it is included in the JDBC API. For information about Derby's implementation of the JDBC
API, see JDBC reference.

This section divides the API classes and interfaces into several categories. The
stand-alone tools and utilities are Java classes that stand on their own and are invoked
on the command line. The JDBC implementation classes are standard JDBC APIs and
are not invoked on the command line. Instead, you invoke these only within a specified
context within another application.

Stand-alone tools and utilities
These classes are in the package org.apache.derby.tools.

For information about these classes, see the Derby Tools and Utilities Guide.

• org.apache.derby.tools.ij

An SQL scripting tool that can run as an embedded or a remote client/server
application.

• org.apache.derby.tools.sysinfo

A command-line, server-side utility that displays information about your Java Virtual
Machine (JVM) and Derby product.

• org.apache.derby.tools.dblook

A utility to view all or parts of the Data Definition Language (DDL) for a given
database.

• org.apache.derby.tools.SignatureChecker

A utility that identifies any SQL functions and procedures in a database that do not
follow the SQL Standard argument matching rules described in Argument matching.

Derby also supports some optional tools that are described in the "Optional tools" section
of the Derby Tools and Utilities Guide.

JDBC implementation classes

JDBC drivers

Derby has two JDBC drivers.

• org.apache.derby.jdbc.EmbeddedDriver

Used to boot the embedded built-in JDBC driver and the Derby system. See the
Derby Developer's Guide for more information.

• org.apache.derby.jdbc.ClientDriver

Used to connect to the Derby Network Server in client-server mode. See the Derby
Server and Administration Guide for more information.

DataSource classes

Derby Reference Manual

444

These classes are all related to Derby's implementation of javax.sql.DataSource and
related APIs.

For more information, see JDBC reference, JDBC support for Java SE 8 Compact
Profiles, "Classes that pertain to resource managers" in the Derby Developer's Guide,
and "Accessing the Network Server by using a DataSource object" in the Derby Server
and Administration Guide.

Embedded environment, for applications using Java SE 8 Compact Profile 2:

• org.apache.derby.jdbc.BasicEmbeddedDataSource40
• org.apache.derby.jdbc.BasicEmbeddedConnectionPoolDataSource40
• org.apache.derby.jdbc.BasicEmbeddedXADataSource40

Embedded environment, for applications using all other Java SE versions:

• org.apache.derby.jdbc.EmbeddedDataSource
• org.apache.derby.jdbc.EmbeddedConnectionPoolDataSource
• org.apache.derby.jdbc.EmbeddedXADataSource

Client-server environment, for applications using Java SE 8 Compact Profile 2:

• org.apache.derby.jdbc.BasicClientDataSource40
• org.apache.derby.jdbc.BasicClientConnectionPoolDataSource40
• org.apache.derby.jdbc.BasicClientXADataSource40

Client-server environment, for applications using all other Java SE versions:

• org.apache.derby.jdbc.ClientDataSource
• org.apache.derby.jdbc.ClientConnectionPoolDataSource
• org.apache.derby.jdbc.ClientXADataSource

Applications using Java SE 8 Compact Profile 2 must use the DataSource classes whose
names begin with "Basic". Applications using Java SE 8 Compact Profile 3 can use the
classes whose names begin with "Basic" if the application does not use the JNDI API, but
should normally use the ordinary DataSource classes.

Miscellaneous utilities and interfaces
org.apache.derby.authentication.UserAuthenticator

An interface provided by Derby. Classes that provide an alternate user authentication
scheme must implement this interface. For more information, see "Specifying
authentication with a user-defined class" in the Derby Security Guide.

Derby Reference Manual

445

Supported locales

The following table lists the locales supported by Derby.

Use the territory=ll_CC URL attribute to set the Derby locale.

Table 154. Supported locales

Locale territory=ll_CC Setting

Chinese (Simplified) zh_CN

Chinese (Traditional) zh_TW

Czech cs

French fr

German de_DE

Hungarian hu

Italian it

Japanese ja_JP

Korean ko_KR

Polish pl

Portuguese (Brazilian) pt_BR

Russian ru

Spanish es

Derby Reference Manual

446

Derby limitations

This section lists the limitations associated with Derby.

Limitations for database values
The following table lists limitations on various database values in Derby.

Table 155. Database limitations

Value Limit

Maximum columns in a table 1,012

Maximum columns in a view 5,000

Maximum indexes on a table 32,767 or storage capacity

Maximum tables referenced in an SQL
statement or a view

Storage capacity

Maximum elements in a select list 1,012

Maximum predicates in a WHERE or
HAVING clause

Storage capacity

Maximum number of columns in a GROUP
BY clause

32,677

Maximum number of columns in an
ORDER BY clause

1,012

Maximum number of prepared statements Storage capacity

Maximum declared cursors in a program Storage capacity

Maximum number of cursors opened at
one time

Storage capacity

Maximum number of constraints on a table Storage capacity

Maximum level of subquery nesting Storage capacity

Maximum number of subqueries in a
single statement

Storage capacity

Maximum number of rows changed in a
unit of work

Storage capacity

Maximum constants in a statement Storage capacity

Maximum depth of cascaded triggers 16

DATE, TIME, and TIMESTAMP limitations
The following table lists limitations on date, time, and timestamp values in Derby.

Table 156. DATE, TIME, and TIMESTAMP limitations

Derby Reference Manual

447

Value Limit

Smallest DATE value 0001-01-01

Largest DATE value 9999-12-31

Smallest TIME value 00:00:00

Largest TIME value 24:00:00

Smallest TIMESTAMP value 0001-01-01-00.00.00.000000

Largest TIMESTAMP value 9999-12-31-23.59.59.999999

Limitations on identifier length
The following table lists limitations on identifier lengths in Derby.

Table 157. Identifier length limitations

Identifier
Maximum Number of
Characters Allowed

Constraint name 128

Correlation name 128

Cursor name 128

Data source column name 128

Data source index name 128

Data source name 128

Savepoint name 128

Schema name 128

Unqualified column name 128

Unqualified function name 128

Unqualified index name 128

Unqualified procedure name 128

Parameter name 128

Unqualified trigger name 128

Unqualified table name, view name, stored
procedure name

128

Numeric limitations
The following table lists limitations on the numeric values in Derby.

Table 158. Numeric limitations

Value Limit

Largest negative INTEGER -2,147,483,648

Largest positive INTEGER 2,147,483,647

Derby Reference Manual

448

Value Limit

Largest negative BIGINT -9,223,372,036,854,775,808

Largest positive BIGINT 9,223,372,036,854,775,807

Largest negative SMALLINT -32,768

Largest positive SMALLINT 32,767

Largest decimal precision 31

Largest negative DOUBLE -1.7976931348623157E+308

Largest positive DOUBLE 1.7976931348623157E+308

Smallest negative normalized DOUBLE -2.2250738585072014E-308

Smallest positive normalized DOUBLE 2.2250738585072014E-308

Smallest negative denormalized DOUBLE -4.9E-324

Smallest positive denormalized DOUBLE 4.9E-324

Largest negative REAL -3.4028235E+38

Largest positive REAL 3.4028235E+38

Smallest negative normalized REAL -1.17549435E-38

Smallest positive normalized REAL 1.17549435E-38

Smallest negative denormalized REAL -1.4E-45

Smallest positive denormalized REAL 1.4E-45

String limitations
The following table lists limitations on string values in Derby.

Table 159. String limitations

Value Maximum Limit

Length of CHAR 254 characters

Length of VARCHAR 32,672 characters

Length of LONG VARCHAR 32,700 characters

Length of CLOB 2,147,483,647 characters

Length of BLOB 2,147,483,647 characters

Length of character constant 32,672

Length of concatenated character string 2,147,483,647

Length of concatenated binary string 2,147,483,647

Number of hex constant digits 16,336

Length of DOUBLE value constant 30 characters

XML limitations
The following table shows the limitation on XML data types in Derby.

Derby Reference Manual

449

Table 160. XML limitations

Issue Limitation

Length of XML 2,147,483,647 characters

Derby Reference Manual

450

Trademarks

The following terms are trademarks or registered trademarks of other companies and
have been used in at least one of the documents in the Apache Derby documentation
library:

Cloudscape, DB2, DB2 Universal Database, DRDA, and IBM are trademarks of
International Business Machines Corporation in the United States, other countries, or
both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

	Cover
	Contents
	Copyright
	License
	About this guide
	Purpose of this document
	Audience
	How this guide is organized
	SQL syntax used in this manual

	SQL language reference
	Capitalization and special characters
	SQL identifiers
	Rules for SQL identifiers
	SQLIdentifier
	Qualifying dictionary objects

	aggregateName
	authorizationIdentifier
	columnName
	constraintName
	correlationName
	cursorName
	functionName
	indexName
	newTableName
	procedureName
	roleName
	schemaName
	sequenceName
	simpleColumnName
	synonymName
	tableName
	triggerName
	typeName
	viewName

	Statements
	Interaction with the dependency system
	ALTER TABLE statement
	CALL (PROCEDURE) statement
	CREATE statements
	CREATE DERBY AGGREGATE statement
	CREATE FUNCTION statement
	CREATE INDEX statement
	CREATE PROCEDURE statement
	CREATE ROLE statement
	CREATE SCHEMA statement
	CREATE SEQUENCE statement
	CREATE SYNONYM statement
	CREATE TABLE statement
	columnDefinition
	generatedColumnSpec
	generationClause

	CREATE TRIGGER statement
	referencingClause
	WHEN clause

	CREATE TYPE statement
	CREATE VIEW statement

	DECLARE GLOBAL TEMPORARY TABLE statement
	DELETE statement
	DROP statements
	DROP DERBY AGGREGATE statement
	DROP FUNCTION statement
	DROP INDEX statement
	DROP PROCEDURE statement
	DROP ROLE statement
	DROP SCHEMA statement
	DROP SEQUENCE statement
	DROP SYNONYM statement
	DROP TABLE statement
	DROP TRIGGER statement
	DROP TYPE statement
	DROP VIEW statement

	GRANT statement
	INSERT statement
	LOCK TABLE statement
	MERGE statement
	RENAME statements
	RENAME COLUMN statement
	RENAME INDEX statement
	RENAME TABLE statement

	REVOKE statement
	SELECT statement
	SET statements
	SET CONSTRAINTS statement
	SET ISOLATION statement
	SET ROLE statement
	SET SCHEMA statement

	TRUNCATE TABLE statement
	UPDATE statement

	SQL clauses
	CONSTRAINT clause
	columnLevelConstraint
	tableLevelConstraint
	REFERENCES clause
	constraintCharacteristics

	EXTERNAL NAME clause
	FOR UPDATE clause
	FROM clause
	GROUP BY clause
	HAVING clause
	WINDOW clause
	ORDER BY clause
	The result offset and fetch first clauses
	USING clause
	WHERE clause
	WHERE CURRENT OF clause

	SQL expressions
	selectExpression
	tableExpression
	tableViewOrFunctionExpression
	tableFunctionInvocation

	NEXT VALUE FOR expression
	VALUES expression
	Expression precedence
	Boolean expressions
	CASE expression
	Dynamic parameters
	Dynamic parameters example
	Where dynamic parameters are allowed

	JOIN operations
	INNER JOIN operation
	LEFT OUTER JOIN operation
	RIGHT OUTER JOIN operation
	CROSS JOIN operation
	NATURAL JOIN operation

	SQL queries
	query
	scalarSubquery
	tableSubquery

	Built-in functions
	Standard built-in functions
	Aggregates (set functions)
	ABS or ABSVAL function
	ACOS function
	ASIN function
	ATAN function
	ATAN2 function
	AVG function
	BIGINT function
	CAST function
	CEIL or CEILING function
	CHAR function
	COALESCE function
	Concatenation operator
	COS function
	COSH function
	COT function
	COUNT function
	COUNT(*) function
	CURRENT DATE function
	CURRENT_DATE function
	CURRENT ISOLATION function
	CURRENT_ROLE function
	CURRENT SCHEMA function
	CURRENT TIME function
	CURRENT_TIME function
	CURRENT TIMESTAMP function
	CURRENT_TIMESTAMP function
	CURRENT_USER function
	DATE function
	DAY function
	DEGREES function
	DOUBLE function
	EXP function
	FLOOR function
	HOUR function
	IDENTITY_VAL_LOCAL function
	INTEGER function
	LCASE or LOWER function
	LENGTH function
	LN or LOG function
	LOG10 function
	LOCATE function
	LTRIM function
	MAX function
	MIN function
	MINUTE function
	MOD function
	MONTH function
	NULLIF function
	PI function
	RADIANS function
	RANDOM function
	RAND function
	ROW_NUMBER function
	RTRIM function
	SECOND function
	SESSION_USER function
	SIGN function
	SIN function
	SINH function
	SMALLINT function
	SQRT function
	SUBSTR function
	SUM function
	TAN function
	TANH function
	TIME function
	TIMESTAMP function
	TRIM function
	UCASE or UPPER function
	USER function
	VARCHAR function
	XMLEXISTS operator
	XMLPARSE operator
	XMLQUERY operator
	XMLSERIALIZE operator
	YEAR function

	Built-in system functions
	SYSCS_UTIL.SYSCS_CHECK_TABLE system function
	SYSCS_UTIL.SYSCS_GET_DATABASE_PROPERTY system function
	SYSCS_UTIL.SYSCS_GET_RUNTIMESTATISTICS system function
	SYSCS_UTIL.SYSCS_GET_USER_ACCESS system function
	SYSCS_UTIL.SYSCS_GET_XPLAIN_MODE system function
	SYSCS_UTIL.SYSCS_GET_XPLAIN_SCHEMA system function
	SYSCS_UTIL.SYSCS_PEEK_AT_IDENTITY system function
	SYSCS_UTIL.SYSCS_PEEK_AT_SEQUENCE system function

	Built-in system procedures
	SYSCS_UTIL.SYSCS_BACKUP_DATABASE system procedure
	SYSCS_UTIL.SYSCS_BACKUP_DATABASE_AND_ENABLE_LOG_ARCHIVE_MODE system
procedure
	SYSCS_UTIL.SYSCS_BACKUP_DATABASE_AND_ENABLE_LOG_ARCHIVE_MODE_NOWAIT
system procedure
	SYSCS_UTIL.SYSCS_BACKUP_DATABASE_NOWAIT system procedure
	SYSCS_UTIL.SYSCS_CHECKPOINT_DATABASE system procedure
	SYSCS_UTIL.SYSCS_COMPRESS_TABLE system procedure
	SYSCS_UTIL.SYSCS_CREATE_USER system procedure
	SYSCS_UTIL.SYSCS_DISABLE_LOG_ARCHIVE_MODE system procedure
	SYSCS_UTIL.SYSCS_DROP_STATISTICS system procedure
	SYSCS_UTIL.SYSCS_DROP_USER system procedure
	SYSCS_UTIL.SYSCS_EMPTY_STATEMENT_CACHE system procedure
	SYSCS_UTIL.SYSCS_EXPORT_QUERY system procedure
	SYSCS_UTIL.SYSCS_EXPORT_QUERY_LOBS_TO_EXTFILE system procedure
	SYSCS_UTIL.SYSCS_EXPORT_TABLE system procedure
	SYSCS_UTIL.SYSCS_EXPORT_TABLE_LOBS_TO_EXTFILE system procedure
	SYSCS_UTIL.SYSCS_FREEZE_DATABASE system procedure
	SYSCS_UTIL.SYSCS_IMPORT_DATA system procedure
	SYSCS_UTIL.SYSCS_IMPORT_DATA_LOBS_FROM_EXTFILE system procedure
	SYSCS_UTIL.SYSCS_IMPORT_TABLE system procedure
	SYSCS_UTIL.SYSCS_IMPORT_TABLE_LOBS_FROM_EXTFILE system procedure
	SYSCS_UTIL.SYSCS_INPLACE_COMPRESS_TABLE system procedure
	SYSCS_UTIL.SYSCS_INVALIDATE_STORED_STATEMENTS system procedure
	SYSCS_UTIL.SYSCS_MODIFY_PASSWORD system procedure
	SYSCS_UTIL.SYSCS_REGISTER_TOOL system procedure
	SYSCS_UTIL.SYSCS_RELOAD_SECURITY_POLICY system procedure
	SYSCS_UTIL.SYSCS_RESET_PASSWORD system procedure
	SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY system procedure
	SYSCS_UTIL.SYSCS_SET_RUNTIMESTATISTICS system procedure
	SYSCS_UTIL.SYSCS_SET_STATISTICS_TIMING system procedure
	SYSCS_UTIL.SYSCS_SET_USER_ACCESS system procedure
	SYSCS_UTIL.SYSCS_SET_XPLAIN_MODE system procedure
	SYSCS_UTIL.SYSCS_SET_XPLAIN_SCHEMA system procedure
	SYSCS_UTIL.SYSCS_UNFREEZE_DATABASE system procedure
	SYSCS_UTIL.SYSCS_UPDATE_STATISTICS system procedure
	System procedures for storing jar files in a database
	SQLJ.INSTALL_JAR system procedure
	SQLJ.REMOVE_JAR system procedure
	SQLJ.REPLACE_JAR system procedure

	SYSCS_DIAG diagnostic tables and functions
	SYSCS_DIAG.CONTAINED_ROLES diagnostic table function
	SYSCS_DIAG.ERROR_LOG_READER diagnostic table function
	SYSCS_DIAG.ERROR_MESSAGES diagnostic table
	SYSCS_DIAG.LOCK_TABLE diagnostic table
	SYSCS_DIAG.SPACE_TABLE diagnostic table function
	SYSCS_DIAG.STATEMENT_CACHE diagnostic table
	SYSCS_DIAG.STATEMENT_DURATION diagnostic table function
	SYSCS_DIAG.TRANSACTION_TABLE diagnostic table

	Data types
	Built-in type overview
	Numeric types
	Numeric type overview
	Numeric type promotion in expressions
	Storing values of one numeric data type in columns of another numeric
data type
	Scale for decimal arithmetic

	Data type assignments and comparison, sorting, and ordering
	BIGINT data type
	BLOB data type
	BOOLEAN data type
	CHAR data type
	CHAR FOR BIT DATA data type
	CLOB data type
	DATE data type
	DECIMAL data type
	DOUBLE data type
	DOUBLE PRECISION data type
	FLOAT data type
	INTEGER data type
	LONG VARCHAR data type
	LONG VARCHAR FOR BIT DATA data type
	NUMERIC data type
	REAL data type
	SMALLINT data type
	TIME data type
	TIMESTAMP data type
	User-defined types
	VARCHAR data type
	VARCHAR FOR BIT DATA data type
	XML data type

	Argument matching
	SQL reserved words
	Derby support for
SQL:2011 features
	SQL:2011 features not supported by
Derby

	Derby system tables
	SYSALIASES system table
	SYSCHECKS system table
	SYSCOLPERMS system table
	SYSCOLUMNS system table
	SYSCONGLOMERATES system table
	SYSCONSTRAINTS system table
	SYSDEPENDS system table
	SYSFILES system table
	SYSFOREIGNKEYS system table
	SYSKEYS system table
	SYSPERMS system table
	SYSROLES system table
	SYSROUTINEPERMS system table
	SYSSCHEMAS system table
	SYSSEQUENCES system table
	SYSSTATEMENTS system table
	SYSSTATISTICS system table
	SYSTABLEPERMS system table
	SYSTABLES system table
	SYSTRIGGERS system table
	SYSUSERS system table
	SYSVIEWS system table

	XPLAIN style tables
	SYSXPLAIN_STATEMENTS system table
	SYSXPLAIN_STATEMENT_TIMINGS system table
	SYSXPLAIN_RESULTSETS system table
	SYSXPLAIN_RESULTSET_TIMINGS system table
	SYSXPLAIN_SCAN_PROPS system table
	SYSXPLAIN_SORT_PROPS system table

	Derby exception messages and SQL states
	SQL error messages and exceptions

	JDBC reference
	java.sql.Driver interface
	java.sql.Driver.getPropertyInfo method

	java.sql.DriverManager.getConnection method
	Derby database
connection URL syntax
	Syntax of database connection URLs for applications with embedded
databases
	Additional SQL syntax
	Attributes of the Derby database connection URL

	java.sql.Connection interface
	java.sql.Connection.setTransactionIsolation method
	java.sql.Connection.setReadOnly method
	java.sql.Connection.isReadOnly method
	Connection functionality not supported

	java.sql.DatabaseMetaData interface
	DatabaseMetaData result sets
	Columns in the ResultSets returned by getFunctionColumns and getProcedureColumns
	java.sql.DatabaseMetaData.getBestRowIdentifier method

	java.sql.Statement interface
	ResultSet objects
	Autogenerated keys

	java.sql.CallableStatement interface
	CallableStatements and OUT Parameters
	CallableStatements and INOUT parameters

	java.sql.PreparedStatement interface
	Prepared statements and streaming columns

	java.sql.ResultSet interface
	ResultSets and streaming columns

	java.sql.ResultSetMetaData interface
	java.sql.SQLException class
	java.sql.SQLWarning class
	java.sql.SQLXML interface
	java.sql.Savepoint interface
	Mapping of java.sql.Types to SQL types
	Mapping of java.sql.Blob and java.sql.Clob interfaces
	Notes on mapping of java.sql.Blob and java.sql.Clob interfaces

	Features supported on JDBC 4.1 and above
	java.sql.Connection interface: JDBC 4.1 features

	JDBC 4.2-only features
	JDBC support for Java SE 8 Compact Profiles
	java.sql.DatabaseMetaData interface: JDBC 4.2 features
	java.sql.SQLType interface

	JDBC escape syntax
	JDBC escape keyword for call statements
	JDBC escape syntax for LIKE clauses
	JDBC escape syntax for limit/offset clauses
	JDBC escape syntax for fn keyword
	JDBC escape syntax for outer joins
	JDBC escape syntax for time formats
	JDBC escape syntax for date formats
	JDBC escape syntax for timestamp formats

	Setting attributes for the database connection URL
	bootPassword=key attribute
	collation=collation attribute
	create=true attribute
	createFrom=path attribute
	databaseName=nameOfDatabase attribute
	dataEncryption=true attribute
	decryptDatabase=true attribute
	deregister=false attribute
	drop=true attribute
	encryptionKey=key attribute
	encryptionKeyLength=length attribute
	encryptionProvider=providerName attribute
	encryptionAlgorithm=algorithm attribute
	failover=true attribute
	logDevice=logDirectoryPath attribute
	newBootPassword=newPassword attribute
	newEncryptionKey=key attribute
	password=userPassword attribute
	restoreFrom=path attribute
	retrieveMessageText=false attribute
	rollForwardRecoveryFrom=path attribute
	securityMechanism=value attribute
	shutdown=true attribute
	slaveHost=hostname attribute
	slavePort=portValue attribute
	ssl=sslMode attribute
	startMaster=true attribute
	startSlave=true attribute
	stopMaster=true attribute
	stopSlave=true attribute
	territory=ll_CC attribute
	traceDirectory=path attribute
	traceFile=path attribute
	traceFileAppend=true attribute
	traceLevel=value attribute
	upgrade=true attribute
	user=userName attribute
	Creating a connection without specifying attributes

	Derby property reference
	Scope of Derby properties
	Dynamic and static properties
	Derby properties
	derby.authentication.builtin.algorithm
	derby.authentication.builtin.iterations
	derby.authentication.builtin.saltLength
	derby.authentication.ldap.searchAuthDN
	derby.authentication.ldap.searchAuthPW
	derby.authentication.ldap.searchBase
	derby.authentication.ldap.searchFilter
	derby.authentication.native.passwordLifetimeMillis
	derby.authentication.native.passwordLifetimeThreshold
	derby.authentication.provider
	derby.authentication.server
	derby.connection.requireAuthentication
	derby.database.classpath
	derby.database.defaultConnectionMode
	derby.database.forceDatabaseLock
	derby.database.fullAccessUsers
	derby.database.noAutoBoot
	derby.database.propertiesOnly
	derby.database.readOnlyAccessUsers
	derby.database.sqlAuthorization
	derby.infolog.append
	derby.jdbc.xaTransactionTimeout
	derby.language.logQueryPlan
	derby.language.logStatementText
	derby.language.sequence.preallocator
	derby.language.statementCacheSize
	derby.locks.deadlockTimeout
	derby.locks.deadlockTrace
	derby.locks.escalationThreshold
	derby.locks.monitor
	derby.locks.waitTimeout
	derby.replication.logBufferSize
	derby.replication.maxLogShippingInterval
	derby.replication.minLogShippingInterval
	derby.replication.verbose
	derby.storage.indexStats.auto
	derby.storage.indexStats.log
	derby.storage.indexStats.trace
	derby.storage.initialPages
	derby.storage.minimumRecordSize
	derby.storage.pageCacheSize
	derby.storage.pageReservedSpace
	derby.storage.pageSize
	derby.storage.rowLocking
	derby.storage.tempDirectory
	derby.storage.useDefaultFilePermissions
	derby.stream.error.extendedDiagSeverityLevel
	derby.stream.error.field
	derby.stream.error.file
	derby.stream.error.logBootTrace
	derby.stream.error.logSeverityLevel
	derby.stream.error.method
	derby.stream.error.rollingFile.count
	derby.stream.error.rollingFile.limit
	derby.stream.error.rollingFile.pattern
	derby.stream.error.style
	derby.system.bootAll
	derby.system.durability
	derby.system.home
	derby.user.UserName
	DataDictionaryVersion

	Java EE compliance: Java Transaction API and javax.sql interfaces
	The JTA API
	Recovered global transactions
	XAConnections, user names and passwords
	XA transactions and deferred constraints

	javax.sql: JDBC interfaces

	Derby API
	Stand-alone tools and utilities
	JDBC implementation classes
	JDBC drivers
	DataSource classes

	Miscellaneous utilities and interfaces

	Supported locales
	Derby limitations
	Limitations for database values
	DATE, TIME, and TIMESTAMP limitations
	Limitations on identifier length
	Numeric limitations
	String limitations
	XML limitations

	Trademarks

