Apache Derby .9'

Derby Tools and Utilities Guide

Version
Derby Document build:
December 11, 2006, 7:10:42 AM (PST)

Copyright

Contents

10707 o)V A 4 [0 1| ST PRPTPPPP 4
ADOUL TNIS QUIAE...eeiiiiieiii ettt et e e s sabnee s 5
Purpose of thiS dOCUMENT.........ooii i 5

F N T 1T=T o [=T PO P PP PP PP PPPRURTRR 5

HOW this guide IS OrganiZed.........coooiiiiiiiiiii e 5

What are the Derby tools and UtIlITIES? ... 6
OV BIVIBW ...ttt ettt e e e e ke e e e e sttt e e e ettt e e e e aa bt e e e e e et bb e e e e e anbbeeeeesanbbeeeeennnees 6
Environment setup and the Derby tOOIS..........cevvvveeeiiiiiiicieeecce e 6

ADbOUt Derby databases.......cooiiiiiiiiiiiiie e 7
JDBC CONNECHION DASICS ..ottt e e 7

JDBC AIVEIS OVEIVIEW.eeeetieieeeieeee e e e e ettt ee e e e e e e s e e sttt e e e e e aaeeesesannnnsbeneeees 7

Database coNNECiON URLS.........ooi ittt a e 7

TOOIS @Nd 10CAIIZALIONcoiii i 8

ADOUL IOCAIES.eiiieiiiiie e e e e ebee e e e e e 8

Dz (= Lo L= R (=] 1] (0] Y7 SRR 9

Specifying an alternate COUESEL........coiiiiiiiiieee e 9
Formatting display of locale-sensitive data.............ccovvieeeeiiiiiiiee e 9

LU 1 o To [N TP PT R PPPPRP O 10
18 L] o Lo T PP PP PSP PP PPPRPPPP 10
Starting ij USING PrOPEITIES ..ccoi ittt e e e e e e 10
Getting Started WIth §f........ee e 11
Connecting to a Derby database............ccooviiiiiiiiiiiiiicec e 11

USING] COMMIANGS....eutiiiiiieieeeeisisiiiite e e e e e e e e e s s e e e e e e e eeee e s s s s s ssnntenreneeeeaaaeaeas 13

] T To TR e] 0] £ R 13

1 PrOPErtiES FEIEIENCE. .. ittt et e e e st eee e aes 15
ij.ONNECtioN.CONNECTIONNAMIE.iiiiiiiiiiie it 15

. OALADASE. .. 15

T E= 1= BT o U] o] =TT TP PR 16
1o 1§ V2= S TP UUT TP TR OPPPP 16
1j.MaximumMDISPlayWIidth ... 16

01U 1 UESEPRPR 17

T o= 3531 1 o USSR 17

T oL 0] (e Xod o] F PP PP PPPTOPUPRPN 17
i].ProtoCOl.ProtOCOINAIME.uiiiiiiiiiii e 18

1 SNOWETITOICOUR. ..ttt et e e e e e e 18
T8 I =T o PR 18

J O ET = TP TP TP PRI 19

(o 1T 4 o)A U T oo Lo 1= 1Y = SRR 20

ij commands and errors refEreNCEe.. ... 22
o011 01 47> Vg o £ OPP 22
Conventions for ij @XamMPIES.........cooiiiiiiiii e 22

ij SQL command DENAVIONuuiiiiiiiii e 22

7N 0110] LU = PR URP RO 23

YN 1 0=] g - T PR RP TR 23
AASYINIC et e e e e e e e e e e et e te et e e e e aerenrnran s 24
AUTOCOMMIT.ceei ittt e et e e e s sttt e e et ae e e e e ntbe e e e e ennbeeeeeennrees 24
[27C) (o] L=] PSPPI 25

101 [0 1] PRSPPI 25
L0 2 01 1211 PP 25
LO70] 011 1= o3 F TR 26
(DTS o] o L= PRI 26
(DY odo] 01 1<) S TP PUUPTRTTR 27

(B 4 AT TP PUUPPPPTRP 27
ElaPSEALIME. . i e e e e aaaes 28
EXBCULE. ..ttt e et et e ann 28

e PSP PRPOTP SRR 29

Copyright

T] ST 29
LT R OA U] o] S TSP PRUPPPRPPP 29
Get SCroll INSENSITIVE CUISON ...ttt e e e e e e e e e 30
[1= 1 EPEPUPRR 31
= L SO TP P PP PPPPPPPPPPP 32
(o Yot 1 [14=To | DT o] = Y2 32
MaximumDISPlayWidth ... 32
A1 TP 33
PrEPAIE. .. e 33
PrEVIOUS ...ttt ettt et e e e e e et e e e e e e e e e e e e e e nnn b b e aeeeeaaaaens 34
PrOTOCON. .ttt e e e e e e e e 34
L= T= (o [0 | Y28 SRR PP 34
REIBEIVE. ..t ettt e e et e e e e sttt e e e st be e e e e s s bb e e e e e s nnraeeeeeans 35
REIMOV . ..t e e e e e s r e e e e e e s e 35
0] o = 1o PP 36
U oottt eeeeeeeeaneae 36
Y= A OFo] oV =] A o] o HO RO R TSP PPPRPRPRR 37
IS 2 Vo PRSPPSO 37
LAY = 1L S o] PP TR TOTOPRTPP 40
L070T 0010 0 1= o | PP PP P PP PRPR 40
To L= a1 1T PRSPPI 40
51 1 o PP 41
T=] 8 e £ TR PP PRPOPUPRPPN 41
ERROR SOQLSTAE.ctviiiieiiiiiie e sttt e st e e s e e s e e e s ssrae e e s snnnaeeees 41
WARNING SQLSEALE....ueeiieiiiiiiie it e e s sttt e e e st e e e et e e e s stae e e e e sssbaeeaessntreeeaeaas 41

8 o (O] PRSP 42

[T WARNING . ..ottt ettt e e st e e e e et ae e e e s st e e e e entaeeeeesnsnes 42
JAVA ERROR.....oiiiiitiiii ettt et e e et e e e e s e e e e e nees 42
Using the bulk import and eXport ProCEAUIES.......ccceiiii i a e 43
BUIK IMPOIt/EXPOIt OVEIVIEW....cceeiiiiiieieeeee e e e s et e e e e e e e s s s ne e e e e e e e e e e ennnnes 43
Options for running the import and export procedures..........ccccovevreeeeeesieieccnnnns 43
Bulk import/export requirements and considerations..........ccccccceeevieiicviiiieeenennnn. 43
BUIK IMPOTIt @nd @XPOTT....ceie it 44
BUIK-IMPOIT. ..t e e e e e e e e e e et eeeeeaaaaeeas 44
BUIK-EXPIOIT. ...ttt ettt et e e e e e e s et e e e e e e e e e e e e e annnes 45
Examples of bulk import and eXPOrt.........ccceeeiiiiiiiiiiiiieee e 46
Importing into tables with identity cOluUMNS..............ooo e, 47
Executing import/export procedures from JDBC..........ccccevveeeeiiiiiciiiiiiieeeeeeee e 48
File format for input and OULPUL...........eeeiiiiiiiiiie e 48
Treatment Of NULLS........ou e e e e e e e e 49
CODESET values for import/@XPOrt.........c.cuuueeeeeiiiiiieee i e e 49
Storing jar files in @ databaseuueeiiiiiiiii 51
AdAING 8 JAr File. et 51
REMOVING @ A& fil€..ciiiii e e 51
RePIACING @ JAr fil€...uuiiiiiiiiiiiee e 51
INStalling @ jar @XaMPIE... . 52
3T T 4 o T PO PPP PP PRTP 53
SYSINTO EXAMPIE. .. s 53
Using sysinfo to check the classpath.........ccceiiiiiiiiiii e 53
(0] o] (o T 1 <GPS PPPPPRTTTRN 55
USING ABI00OK. ... e e 55
(o] oY [oTo] Q0] 1 (1o] K= PR 55
Generating the DDL for a database..........cccccviiiiiiee e 56
(o] oY FoT] Q=0 1 g o1 1= S 56
LI =T 1= 1 = U SRR 59

Copyright
Apache Software FoundationDerby Tools and Utilities GuideApache Derby

Copyright

Copyright

Apache Derby

Copyright 2004, 2006 The Apache Software Foundation or its licensors, as applicable.

Licensed to the Apache Software Foundation (ASF) under one or more contributor
license agreements. See the NOTICE file distributed with this work for additional
information regarding copyright ownership. The ASF licenses this file to you under the
Apache License, Version 2.0 (the "License"); you may not use this file except in
compliance with the License. You may obtain a copy of the License at

http://ww. apache. org/licenses/ LI CENSE- 2. 0

Unless required by applicable law or agreed to in writing, software distributed under the
License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS
OF ANY KIND, either express or implied. See the License for the specific language
governing permissions and limitations under the License.

Copyright

About this guide

For general information about the Derby documentation, such as a complete list of books,
conventions, and further reading, see Getting Started with Derby.

Purpose of this document

This book describes how to use the Derby tools and utilities. The tools and utilities
covered in this book include:

[] |J

« the import and export utilities

« the database class loading utilities

« sysinfo

« dblook

Audience
This book is for:
 developers, who might use the tools when developing applications
« system administrators, who might use the tools to run backup scripts or to import
large amounts of data
< end-users, who might use one of the tools to run ad-hoc queries against a database

How this guide is organized
This guide includes the following sections:
« What are the Derby tools and utilities?

Overview of the tools and utilities, and Derby and JDBC basics for new or infrequent
users.

* Using ij

How to get started with ij, a JDBC and SQL scripting tool.
* ij properties reference

Reference for ij properties.
« ij commands and errors reference

Reference for ij commands and errors.
 Using the bulk import and export procedures

Reference and how-to instructions for using bulk import and export.
* ij commands and errors reference

Syntax for executing the built-in procedures for storing jar files in the database.
 sysinfo

Reference information on the utility that provides information about your Derby
environment.

« dblook

dblook is Derby's Data Definition Language (DDL) Generation Utility, which is more
informally called a schema dump tool. It is a simple utility that dumps the DDL of a
user-specified database to either a console or to a file. The generated DDL can then
be used to recreate all or parts of a database, view a subset of a database's objects
(for example, those which pertain to specific tables or schemas), or document a
database's schema.

Copyright

What are the Derby tools and utilities?

Overview

The Derby tools and utilities are a set of routines supplied with Derby that are typically
used to setup and update a Derby database.

For more complete information on developing a system using Derby, see the Derby
Developer's Guide.

Derby is a database management system (DBMS), accessed by applications through the
JDBC API.

Included with the product are some standalone Java tools and utilities that make it easier
to use and develop applications for Derby.

These tools and utilities include:
o i
i j is Derby's interactive JDBC scripting tool. It is a simple utility for running scripts

against a Derby database. You can also use it interactively to run ad hoc queries.
i j provides several commands for ease in accessing a variety of JDBC features.

i j can be used in an embedded or a client/server environment.

e The import and export utilities

These server-side utilities allow you to import data directly from files into tables and
to export data from tables into files. Server-side utilities can be in a client/server
environment but require that all files referenced be on the Server machine.

« Database class loading utilities

These utilities allow you to store application logic in a database.
* sysinfo

sysi nf o provides information about your version of Derby and your environment.
* dblook

dbl ook is Derby's Data Definition Language (DDL) Generation Utility, also called a
schema dump tool. It is a simple utility for the dumping the DDL of a user-specified
database to either a console or to a file. The generated DDL can then be used for
such things as recreating all or parts of a database, viewing a subset of a
database's objects (for example, those which pertain to specific tables and
schemas), or documenting a database's schema.

Environment setup and the Derby tools

i j,sysinfo, and dbl ook are tools that can be used in an embedded or a client/server
environment. The import and export utilities and database class loading utilities are
database-side utilities, which means that they run in the same JVM as Derby (e.g. on the
Server). This means when used in a client/server environment all files imported,
exported, or loaded must be local to the Server machine.

Java 2 Platform, Standard Edition, Version 1.3
All Derby tools require the Java 2 Platform, Standard Edition, Version 1.3 or later.

Classpath

Copyright

To simplify the process of setting up the CLASSPATH environment variable to run Derby
and the tools a new jarfile,derbyrun.jar, has been added to the Derby distribution. This is
the only jarfile that needs to be in your classpath. The following information is provided
for people using Derby distributions that do not contain derbyrun.jar or who prefer to
setup the classpath manually.

The following lists the files that need to be in the Derby classpath for each tool and
configuration:

* Touseij, you must have derbytools.jar in your classpath. If you are using the
embedded driver, you must also include derby.jar.

» To use the import and export utilities and the database class loading utilities, you
must have derby.jar in your classpath.

» To use sysinfo, either derby.jar or derbytools.jar must be in your classpath.

» To use Derby tools from a client with the Derby Network Server, you must have
derbyclient.jar and derbytools.jar in your classpath. See the Derby Server and
Administration Guide for more information.

About Derby databases

A Derby database consists of platform-independent files stored in a directory that has the
same name as the database.

JDBC connection basics

Most of the Derby tools are JDBC applications. A JDBC application is one that uses the
classes in the java.sqgl package to interact with a DBMS.

When you work with JDBC applications, you need to know about several concepts. The
most basic is the connection. A JDBC connection is the object through which commands
are sent to the Derby engine and responses are returned to the program. Establishing a
connection to a specific database is done by specifying a appropriate database URL. The
following sections provide background information to help in understanding the Derby
database connection URL.

JDBC drivers overview

Before a JDBC application connects to a database, it must cause the proper JDBC driver
to be loaded in the Java session. Derby provides the following JDBC drivers for use with
the Derby database engine:

» org.apache.derby.jdbc.EmbeddedDriver

For embedded environments, when Derby runs in the same JVM as the application.
This is commonly referred to as the embedded drvier.

 org.apache.derby.jdbc.ClientDriver

For client/server environments that use the Derby Network Server. This is
commonly referred to as the Network Client driver.

You can use i j to connect to any database that supplies a JDBC driver. For those
databases, you would need to load the supplied JDBC driver.

Database connection URLS

A JDBC URL provides a way of identifying a database so that the appropriate driver
recognizes it and connects to it. In the Derby documents, a JDBC URL is referred to as a

Copyright
database connection URL.

After the driver is loaded, an application must specify the correct database connection
URL to connect to a specific database. The Derby database connection URL allows you
to accomplish tasks other than simply connecting. For more information about the Derby
database connection URLSs, see the Derby Developer's Guide.

A JDBC URL always starts with jdbc:. After that, the format for the database connection
URL depends on the JDBC driver.

Here is the format for the database connection URL for connecting to an existing Derby
database using the embedded driver:
* jdbc:derby:databaseName;URLAttributes

The format for the database connection URL for connecting to an existing Derby
database using the Network Client is:
« jdbc:derby://host:port/databaseName;URLAttributes

The italicized items stand for something the user fills in:
» databaseName

The name of the database you want to connect to. This might also include the file
system path to the database.

« URLAttributes

One or more of the supported attributes of the database connection URL, such as
;upgrade=true, create=true or territory=Il_CC. For more information, see the Derby
Developer's Guide.

¢ host

The name of the machine where the server is running. It can be the name of the
machine or the address.

. port

The port number used by the server framework

About Protocols

Officially, the portion of the database connection URL called the protocol is jdbc:, just as
http:// is a protocol in Web URLs. However, the second portion of the database
connection URL (everything between jdbc: and databaseName), which is called the
subprotocol, is informally considered part of the protocol. Later in this book you might see
references to protocol. Consider protocol to be everything that comes before
databaseName.

For complete information about the database connection URL, see the Derby Developer's
Guide.

Tools and localization

The Derby tools provide support for common localization features such as localized
message files and GUI, locale-appropriate formatting of data, codesets, unicode
identifiers and data, and database territories.

For general information about international Derby systems, see the Derby Developer's
Guide.

About locales
In the Derby documentation, we refer to three locales:

8

Copyright
» Java System locale

This is the locale of your machine, which is automatically detected by your JVM. For
Derby and Derby tools, the Java system locale determines the default locale.

« Database territory

This is the territory associated with your database when it is created. By default, this
is the same as the java system locale. The database territory determines the
language of database errors.

* i j ordbl ook Session locale

This locale is associated with your i j or dbl ook session. This locale determines
the localized display format for numbers, dates, times, and timestamps.

Database territory

To specify a database territory, use the territory attribute on the URL connection when
creating the database.
Note: You cannot modify a database's territory after the database has been created.

For information about database territories, see the Internationalization appendix in the
Derby Developer's Guide.

Specifying an alternate codeset

You can specify an alternate codeset for your tool session.

Use the derby.ui.codeset property when starting i j or dbl ook. This property can be
useful when working with scripts created on a different system.

Formatting display of locale-sensitive data
To display dates, timestamps, numbers, and times in the format of the i j Session locale,
use the LocalizedDisplay command.
Note: These options do not change how Derbystores locale-sensitive data, simply how
the tool displays the data.

The following example demonstrates using localizedDisplay in an en_US locale:

i > VALUES CURRENT_DATE;

2001- 09- 06

1 row sel ected

ij> localizeddi SRIlI'aB on;
|1] > VALUES CURRENT_DATE;

Sept enber 6, 2001
1 row sel ected

Copyright

Using ij

Starting ij

ij is Derby's interactive JDBC scripting tool. It is a simple utility for running scripts or
interactive queries against a Derby database.

ij is a Java application, which you start from a command window such as an MS-DOS
Command Window or the UNIX shell. ij provides several non-SQL commands for ease in
accessing a variety of JDBC features for testing.

Derby provides batch and shell scripts for users in Windows and UNIX environments that
can be used to start IJ. By calling the appropriate script you will start ij and be able to
connect with a simple command. These scripts set the ij.protocol property, which
simplifies the process of connecting to a database by eliminating the need to specify the
protocol portion of the connection URL. The scripts are found in the
%DERBY_HOME%/frameworks/ directory tree. You can also customize the ij scripts to
suit your environment.

If you are starting ij from a command line, be sure that derbyrun.jar is in your classpath
(for pre-10.2 distributions derbytools.jar and usually derby.jar were required in the
classpath). If you are using Derby as a client/server environment, start the server before
connecting to the Derby database. You can start ij by running the ij scripts for your
environment in the %DERBY_HOME%/frameworks/embedded/bin/ directory or in the
%DERBY_HOME%/frameworks/NetworkServer/bin/ directory.

To start ij, run the script provided or use this command:

java [<options>] org.apache.derby.tools.ij
. [[p Bpr operlyFi Pe>f [<i nput F?/I e>] :

The command line items are:
* java

Start the JVM.
* options
The options that the JVM uses. You can use the -D command to set ij properties
(see Starting ij using properties) or system properties, such as Derby properties.
 propertyFile

A file you can use to set ij properties (instead of the -D command). The property file
should be in the format created by the java.tools.Properties.save methods, which is
the same format as the derby.properties file.

* inputFile

A file from which to read commands. The ij tool exits at the end of the file or an exit
command. Using an input file causes ij to print out the commands as it runs them. If
you reroute standard input, ij does not print out the commands. If you do not supply
an input file, ij reads from the standard input.

For detailed information about ij commands, see ij commands and errors reference.

Starting ij using properties

You set ij properties in any of the following ways:

10

Copyright

1. by using the -D command on the command line
2. by specifying a properties file using the - p pr opertyfil e option on the
command line
Remember: ij property names are case-sensitive, while commands are case-insensitive.

The following examples illustrate how to use ij properties:

To start ij by using a properties file called i j . properti es, use the following command:

java org. apache.derby.tools.ij -p ij.properties

To start ij with a maximumDisplayWidth of 1000:

java -Dij.maxi nunDi spl ayW dt h=1000 or g. apache. derby.tool s.ij

To start ij with an ij.protocol of jdbc:derby: and an ij.database of sample, use the
following command:

java -Dij.protocol =j dbc: derby: -Dij.database=sanpl e
org.apache. derby.tool s.i]

To start ij with two named connections, using the ij.connection.connectionName property,
use the following command:

java -Dij.connection.sanpl e=j dbc: derby: sanpl e
-Di j.connection. Hi story=| dbc: derb%/: Hi story

- Dder by. syst em honme=c: \ der by\ deno\ dat abases
or g. apache. derby. tool s.ij

To see a list of connection names and the URL's used to connect to them, use the
following command: (If there is a connection that is currently active, it will show up with
an * after its name.)

ij version 10.2)
H ng STORY) > show connecti ons;

TORY* - _jdbc: derby: Hi story
SAMPLE - j dbc: der by: sanmpl e
* = current connection
ij (H STORY) >

Getting started with ij

This section discusses the use of the ij tool.

Connecting to a Derby database

To connect to a Derby database, you need to perform the following steps:

1. Startthe JVM
2. Load the appropriate driver.
3. Create a connection by providing a valid database connection URL.

When using ij interactively to connect to a Derby database connection information is
generally supplied on the full database connection URL. ij automatically loads the
appropriate driver based on the syntax of the URL. The following example shows how to
connect in this manner by using the Connect command and the embedded driver:

D: >j ava org. apache. derby.tool s.ij
ij version 10,2

i]> connect 'jdbc:derby:sanple';

1] >

If the URL entered contains Network Client information the Connect command loads the
Network Client driver:

11

Copyright

I
i]>

D: >j ava org. apache. derby. tool s.ij
version 10, 2
i]> connect 'jdbc:derby://Iocal host: 1527/ sanpl e';

Note: In these and subsequent examples the databases were created in the
derby.system.home directory. For more information on the System Directory see the
Derby Developer's Guide.

ij provides alternate methods of specifying part or all of a connection URL (e.g. the
ij.protocol, ij.database, or ij.connection.connectionName properties). These properties are
often used when a script is being used and the path to the database or the driver name is
not known until runtime. The properties can also to used to shorten the amount of
information that must be provided with the connection URL. The following are some
examples of different ways to supply the connection information:

» Supplying full connection information on the command line

Specifying one of the following properties along with a valid connection URL on the
ij command line starts ij with the connection already active. This is often used when
running a SQL script so the database name or path can be specified at runtime.
« ij.database - opens a connection using the URL provided
* ij.connection.connectionName - Used to open one or more connections. The
property can appear multiple times on the command line with different
connectionNames and the same or different URLSs.
This example shows how to create the database myTours and run the script
ToursDB_schema.sql by specifying the database URL using the ij.database

property.

C.\>java -Dij.database=j dbc: derby: nyTours; creat e=true
org. apache. derby.tool s.ij

~ YDERBY_HOVE% denp\ pr ogr ans\ t our sdb\ Tour sDB_schena. sql
ij version 10.2

INECTI ONO* - j dbc: der by: nyTour s
* = current connection)
ij>-- Licensed to the Apache Software Foundati on (ASF) under one or
nor e
-;tﬁontri butor |icense agreenments. See the NOTICE file distributed
Wi
o ...output renoved. ..
ij> CISESEE Rl GGER TRI @ AFTER DELETE ON FLI GHTS FOR EACH STATEMENT

I NSERT | Ngo FLI GHTS_H STORY (STATUS) VALUES (' | NSERTED FROM TRI &') ;
0 rows inserted/ updated/del et ed
ij>

Defining a Protocol and using a "short form" URL

A default URL protocol and subprotocol can be specified by setting the property
ij.protocol or using the ij Protocol command. This allows a connection to be made by
specifying only the database name. This "short form" of the database connection
URL defaults the protocol (For more information, see About Protocols).

This example uses the ij Protocol command and a "short form" connection URL:

D: >j ava org. apache. derby.tool s.ij
ij version 10.2

i]> protocol 'jdbc:derby:";

i]> connect 'sanple';
1] >

Specifying an alternate Driver

If you are using the drivers supplied by Derby, you can specify the driver names
listed in JDBC drivers overview. However, the Derby drivers are implicitly loaded
when a supported protocol is used so specifying them is probably redundant.
Specifying a driver is required when ij is used with other JDBC drivers to connect to
non-Derby databases. To use drivers supplied by other vendors explicitly specify
the driver one of three ways

12

Copyright
 with an ij property ij.Driver
* using the JVM system property j dbc. dri vers
« using the ij Driver command
This example specifies the driver using the ij Driver command

D: >j ava org. apache derby.tool s.ij

ij version 10.

i]> driver sun j dbc. odbc. JdbcCdbeDri ver'
i]> connect 'jdbc:odbc: myOQdbcDat aSour ce'
1] >

The ij Driver name and connection URL

Specifying the Driver Name and database connection URL, summarizes the different
ways to specify the driver name and database connection URL.
Table 1. Specifying the Driver Name and database connection URL

Action System Property i j Property i] Command

loading the driver implicitly ij.connection.connectionNam¢g ProtocolConnect
(plus full URL) ij.database (plus full URL)
(plus full URL)
ij.protocolij.protocol.protocolN
(plus protocol clause in

Connect command)

loading the driver explicitly jdbc.drivers -Dij.Driver Driver

specifying the database
connection URL

ij.connection.connectionNamg Connect

Using ij commands

The primary purpose of ij is to allow the execution of Derby SQL statements interactively
or via scripts. Since SQL statements can be quite long ij uses the semicolon to mark the
end of statement or command. All statements must be terminated with a semicolon. ij
uses properties, listed later in this guide, to simplify its use. ij also recognizes specialized
commands that extends its functionality such as the ability to create and test cursors and
prepared statements, transaction control and more. For complete information about ij
commands, see ij commands and errors reference later in the Tools Guide.

Other uses for ij

ij is a JDBC-neutral scripting tool with a small command set. It can be used to access any
JDBC driver and database accessible through that driver.

The main benefit of a tool such as ij is that it is easy to run scripts for creating a database
schema and automating other repetitive database tasks.

In addition, ij accepts and processes SQL commands interactively for ad hoc database
access.

Running ij scripts

You can run scripts in ij in any of the following ways:
* Name an input file as a command-line argument.

For example:

java org. apache. derby.tools.ij <nyscript.sql>

« Redirect standard input to come from a file.

13

Copyright
For example:

java org. apache. derby.tools.ij < <nyscript.sql>

« Use the Run command from the ij command line.

For example:

ij>run 'nyscript.sql';

Note: If you name an input file as a command-line argument or if you use the Run
command, ij echoes input from a file. If you redirect standard input to come from a file, ij
does not echo commands.

You can save output in any of the following ways:

« By redirecting output to a file:

java org. apache. derby.tool s.ij <nyscript.sql> > <nyout put.txt>
e By settingtheij.outfil e property:

java -Dij.outfil e=<myout put.txt> org.apache. derby.tools.ij

<myscri pt.sqgl >

ij exits when you enter the Exit command or, if executing a script, when the end of the
command file is reached. When you use the Exit command, ij automatically shuts down
an embedded Derby system by issuing a connect j dbc: der by: ; shut down=true
request. It does not shut down Derby if it is running in a server framework.

14

Copyright

I properties reference

When starting upi j , you can specify properties on the command line or in a properties
file, as described in Starting ij using properties.

ij.connection.connectionName
Function

Creates a named connection to the given database connection URL when i j starts up; it
is equivalent to the Connect AS Ildentifier command. The database connection URL can
be of the short form if an ij.protocol is specified. This property can be specified more than
once per session, creating multiple connections. When i | starts, it displays the names of
all the connections created in this way. It also displays the name of the current
connection, if there is more than one, in the i j prompt.

Syntax

i j.connection. connecti onNanme=dat abaseConnecti onURL

When specified on the command line the databaseConnectionURL should not be
enclosed in single quotations, however, if the database path contains special characters
(e.g. a space) it must be enclosed in double quotes.

Example
This example connects to the existing database sample and creates then connects to the
database anohterDB.

D.> java -Dij.connection. sanpl el=j dbc: der b%/: sanpl e
-Di j. connectl1 on. anot her Conn=| dbc: der by: anot her DB; cr eat e=t r ue
rg. apache. derby.tool s.i]

0
ij version 10.2
ANOTHERCONN* - j dbc: der b%: anot her DB; cr eat e=t r ue
SAMPLEL - j dbc: der by: sanpl e

* = current connection
i j (ANOTHERCONN) >

See also
e Connect
Ij.database
Function

Creates a connection to the database name listed indicated by the property wheni j
starts up. You can specify the complete connection URL (including protocol) with this
property or just the database name if you also specify ij.protocol on the command line.
After it boots, i j displays the generated name of the connection made with this property.

Syntax

i j . dat abase=dat abaseConnect i onURL

When specified on the command line the databaseConnectionURL should not be
enclosed in single quotations, however, if the database path contains special characters
(e.g. a space) it must be enclosed in double quotes.

Example

java -Dij.protocol =j dbc: der by: o
-Di j . dat abase=wonbat ; cr eat e=t rue org. apache. derby.tool s.ij

15

Copyright

version 10.
ONO* - jdbc: der by: wonbat
* o= current connectlon
Ij>

ij.dataSource
Function

Thei j . dat aSour ce property specifies the datasource to be used to access the
database. When specifying a datasource, Derby does not use the DriverManager
mechanism to establish connections.

Syntax

To establish a connection using i j . dat aSour ce, you need to set the

i j . dat aSour ce. dat abaseNane property. If you want to create the database, specify
theij . dat aSour ce. cr eat eDat abase property as well.

at aSour ce=dat aSour cenane
at aSour ce. dat abaseNane=dat abasenane
dat aSour ce. cr eat eDat abase=cr eat €]

ij.d
i].d
[1).

Example

In the following example, i j connects to a database named sanpl e using an
EnbeddedDat aSour ce. The sanpl e database is created if it does not already exist.

aﬁpllc ation runs on JDK 1.6 or higher, then you should
the J C4 variant of this DataSource:
by. j dbc. EnbeddedDat aSour ce40.

- Di j . dat aSour ce=or g. apache. de by dbc. EnbeddedDat aSour ce
. dat aSour ce. dat abaseNanme=sanpl e -Di j. dat aSour ce. cr eat eDat abase=cr eat e
o g apache. derby.tool s.ij

|Cjo\| ersion 10.2

CONNECTI ONO*

rrent connection

< oOWw—
=5 —+

Qo
o<

o¥
Z<=—o

CrH R
o))

|
om
c

For more information about DataSources, refer to the JDBC documentation and "Using
Derby as a J2EE Resource Manager" in the Derby Developer's Guide.

ij.driver
Function
Loads the JDBC driver that the class specifies.
Syntax
ij.driver=JDBCDriverd assNane
Notes
Example

D: >java -Dij.driver=sun, jdbc. odbc. JdbcCdbcDri ver
or g. apache. derby tools.i]

| “version 10.

i]> Connect jdbC odbc: MyODBCDat aSour ce'

| >

See also
e Driver

16

Copyright

ij.maximumDisplayWidth

Function

Specifies the maximum number of characters used to display any column. The default
value is 128. Values with display widths longer than the maximum are truncated and
terminated with an & character.

Syntax
i j.maxi munDi spl ayW dt h=nunber O Char act ers
Example

java -Dij.nmaxi munDi spl ayW dt h=1000 or g. apache. derby.tool s.i]j

See also
* MaximumDisplayWidth

ij.outfile
Function
Specifies a file to which the system should direct output for a session. Specify the file
name relative to the current directory, or specify the absolute path.
Syntax
ij.outfile=fil eName
Example
java -Dij.outfile=out.txt org.apache.derby.tools.ij nyscript.sql
ij.password
Function
Specifies the password used to make connections. This property is used in conjunction
with the ij.user property to authenticate a connection. If authentication is not active then
these properties are ignored.
Syntax
ij.password=password
Example
java -Dij.user=me -Dij.password=ni ne org. apache. derby.tool s.ij
See the Derby Developer's Guide for more information on Derby authentication and
security.
Ij.protocol

Function
Specifies the default protocol and subprotocol portions of the database connection URL
for connections. The Derby protocol is:

* jdbc:derby:

17

Copyright

ij.protocol

Allows you to use a short form of a database name in a connection URL.

Syntax

i j.protocol =protocol For Envi r onnment

Example

D: >java -Dij. protocol =j dbc: der by:
org. apache derby.tool s.ij

ij version 10.2

i]> Connect 'newDB; create=true';

i]>

See also
* Protocol

.protocolName

Function

This property is similar to the ij.protocol property. The only difference is that it associates
a name with the value, thus allowing you to define and use more than one protocol. (See
Connect.)

Syntax

ij.protocol . protocol Name=pr ot ocol For Envi r onnent

Example

D. > ava -Dij. protocol . der by=j dbc: der by:

-Dj pr ot 0col . errp—] dbc: der y: org.apache. derby.tool s.ij
i] version 10.

i]> Connect 'newDB protocol derby as new,

i]>

See also
* Protocol

ij.showErrorCode

Function

Set this property to true to have ij display the SQLException ErrorCode value with error
messages. The default is false.

Error codes denote the severity of the error. For more information, see the Derby
Reference Manual.

Syntax

i j . showError Code=t rueOr Fal se

Example

java -Dij.showErrorCode=true -Dij.protocol =jdbc: derby:
org. apache derby.tools.ij
ij version 10.
i]> Oonnect sarrpl e';
i]> VLUES 1
ROR 42X01 Syntax error: Encountered ' VLUES"
at line 1, colum 1. (errorCode = 00)
ij>

18

Copyright

i].URLCheck

Function

This property determines whether i j checks for invalid or non-Derby URL attributes. Set
this property to false to preventi j from validating URL attributes. The default value is
true.

When the ij.URLCheck property is set to true, you are notified whenever a connection
URL contains an incorrectly specified attribute. For example if the attribute name is
misspelled or cased incorrectly i j prints a message.

Note: i j checks attribute values if the attribute has pre-defined values. For example, the
attribute unicode has the pre-defined values of true or false. If you try to set the attribute
unicode to a value other than true or false, i j displays an error. For example:

yDB; creat e=tr ue; uni code=f al

i > Connect 'jdbc:de an .
ROR lb%n e unl code' has an invalid val ue 'falj"',
al

rb
OR XJO5B: JDBC attr
valid values are '{tru
ij>

Y
I
e

Syntax

ij.URLCheck={ false | true }

Example
By default, i j displays messages about invalid attributes:

]ava org. apache. derby.tool s.ij
version 10. 2
| > connect ' nydb; uSer =naonmi ' ;
L Attribute [uSer=naom | o
Case of the Derby attribute is incorrect.

The following command line specifies to turn off URL attribute checking ini j .

ava -Dij. URLC]"leck fal se org. apache derby.tool s.ij
version 10.

i
I
|} connect rTydb uSer =naom '
>

Typically, you would only explicitly turn off the URL checker if you were using i j with a
non-Derby JDBC driver or database.

Notes

URLCheck does not check the validity of properties, only database connection URL
attributes.

i j recognizes the following attributes:
* bootPassword
 create
» databaseName

dataEncryption

encryptionAlgorithm
encryptionProvider
territory

« logDevice

e password

» shutdown

* unicode

e upgrade

e user

19

Copyright

ij.user

Function

Specifies the logon name used to establish the connection. This property is used in
conjunction with the ij.password property to authenticate a connection. If authentication is
not active then these properties are ignored.

When a username is supplied you need to be aware of the database schema. When you
connect using i j . user, the default database schema applied to all SQL statements is
the same as the user id provided even if the schema does not exist. Use the SET
SCHEMA statement to change the default when the schema does not match the
username. Alternately you can fully qualify the database objects referred to in the SQL
statements . If no user is specified, no SET SCHEMA statement has been issued, or SQL
statements do not include the schema name, all database objects are assumed to be
under the APP schema.

Syntax

i j.user=usernanme

Example
ava -Dij.user=nme -Dij.password=nine org. apache. derby.tools.ij
version 10. 2

> connect 'jdbc: derby: sanpl eDB' ;
> set schenma finance;
> select * from accounts;

See the Derby Developer's Guide for more information on Derby and security.

derby.ui.codeset

Function
Set this property to a supported character encoding value when using one of the Derby
tools with a language not supported by your default system.

Syntax

der by. ui . codeset =der byval

where derbyval is a supported character encoding value, for example, UTF8 (see Sample
Character Encodings).

Example

The following command line specifies to run i j using the Japanese territory
(territory=ja_JP) using Japanese Latin Kanji mixed encoding (codeset=Cp939):

java - Dderby. u terrltory—{)a JP - Dder by. ui . codeset =Cp939
-Dij.prot ocol -{)dbc der
org apache derby. tool s. |1

The following table contains a sampling of character encodings supported by the IBM
Application Developer Kit. To see the full list, go to
http://java.sun.com/j2se/1.3/docs/guide/intl/encoding.doc.html.

Table 2. Sample Character Encodings

Character Encoding Explanation

8859 1

ISO Latin-1

20

http://java.sun.com/j2se/1.3/docs/guide/intl/encoding.doc.html

Copyright

Character Encoding

Explanation

8859 2

ISO Latin-2

8859_7 ISO Latin/Greek

Cpl257 Windows Baltic

Cpl1258 Windows Vietnamese
Cp437 PC Original

EUCJIS Japanese EUC

GB2312 GB2312-80 Simplified Chinese
JIS JIS

KSC5601 KSC5601 Korean
MacCroatian Macintosh Croatian
MacCiyrillic Macintosh Cyrillic

SJIS PC and Windows Japanese
UTF8 Standard UTF-8

21

Copyright

i commands and errors reference

This section describes the commands and errors within the ij tool.

ij commands

i j accepts several commands to control its use of JDBC. It recognizes a semicolon as
the end of ani j or SQL command; it treats semicolons within SQL comments, strings,
and delimited identifiers as part of those constructs, not as the end of the command.
Semicolons are required at the end of ani j or SQL statement.

Alli j commands, identifiers, and keywords are case-insensitive.

Commands can span multiple lines without any special escaping for the ends of lines.
This means that if a string spans a line, the new lines will show up in the value in the
string.

i j treats any command that it does not recognize as an SQL command to be passed to
the underlying connection, so syntactic errors in i j commands will cause them to be
handed to the SQL engine and will probably result in SQL parsing errors.

Conventions for ij examples

Examples in this document show input from the keyboard or a file in bold text and
console output from the DOS prompt or the i j application in regular text.

> REM This exanple is
> java -Dij. pro ocol =j
ver si on 10.

c

roma DOS pronpt
bc: derby: org. apache derby.tool s.ij
t

onnect menuDB cre

\

\

> at rue'
> CREATE TABLE manu(c?g

.

j >

>

\

S

f
d
e=
r
el

CHAR(10), item CHAR(20), price |NTEGER);

e
ows inserted/ updated eted

di sconnect ;
exit;

ij SQL command behavior

Any command other than those documented in the i j command reference are handed to
the current connection to execute directly. The statement's closing semicolon, used by i j
to determine that it has ended, is not passed to the underlying connection. Only one
statement at a time is passed to the connection. If the underlying connection itself
accepts semicolon-separated statements (which Derby does not), they can be passed to
the connection using i j 's Execute command to pass in a command string containing
semicolon-separated commands.

i j uses the result of the JDBC execute request to determine whether it should print a
number-of-rows message or display a result set.

If a JDBC execute request causes an exception, it displays the SQLState, if any, and
error message.

Setting the i j property ij.showErrorCode to true displays the SQLException's error code
(see ij properties reference).

The number-of-rows message for inserts, updates, and deletes conforms to the JDBC
specification for any SQL statement that does not have a result set. DDL (data definition
language) commands typically report "0 rows inserted/updated/deleted” when they
successfully complete.

22

Copyright

Absolute

After Last

To display a result set, i j formats a banner based on the JDBC ResultSetMetaData
information returned from getColumnLabel and getColumnWidth. Long columns wrap the
screen width, using multiple lines. An & character denotes truncation (i j limits displayed
width of a column to 128 characters by default; see MaximumDisplayWidth).

i j displays rows as it fetches them. If the underlying DBMS materializes rows only as
they are requested, ij displays a partial result followed by an error message if there is a
error in fetching a row partway through the result set.

i j verifies that a connection exists before issuing statements against it and does not
execute SQL when no connection has yet been made.

There is no supportinij for the JDBC feature multiple result sets.
ij command example
ij> NSERT I NTO menu VALUES (' appetlzer bab% greens
g en "lanb chops ', 6), (' dessert','crene brul ee'

=5
>

Ws | nserted/ u dat ed/ del et ed
qu SE ECT * F menu;

| I TEM | PRI CE
entree | anb chop 14
dessert crene brul ee 6
appeti zer | baby greens 7
3. rows sel ected
1] >
Syntax

ABSOLUTE int ldentifier

Description

Moves the cursor to the row specified by the int, then fetches the row. The cursor must
have been created with the Get Scroll Insensitive Cursor command. It displays a banner
and the values of the row.

Note: This command works only in a Java 2 Platform, Standard Edition, v 1.2 (J2SE) or
higher environment.

Example

ij> autocommit off;

|JS Eet scrol | insensitive cursor scrol | Cur sor as
EL FROM menu FOR UPDATE OF pri ce'
> absolute 3 scroll Cursor;

RSE | I TEM | PRI CE
entree | 'anb chop | 14
Syntax

AFTER LAST ldentifier

Description

Moves the cursor to after the last row, then fetches the row. (Since there is no current
row, it returns the message: No current row. "

The cursor must have been created with the Get Scroll Insensitive Cursor command.
Note: This command works only in a Java 2 Platform, Standard Edition, v 1.2 (J2SE) or

23

Copyright

Async

higher environment.

Example

ijs> Eet scrol | insensitive cursor scroll Cursor as
' SELECT * FROM nmenu FOR UPDATE OF price';
ij> after last scrollcursor;

current row

Syntax

ASYNC | dentifierString

Description

The ASYNC command lets you execute an SQL statement in a separate thread. It is
used in conjunction with the Wait For command to get the results.

You supply the SQL statement, which is any valid SQL statement, as a String. The
Identifier you must supply for the async SQL statement is used in the Wait For command
and is a case-insensitive i j identifier; it must not be the same as any other identifier for
an async statement on the current connection. You cannot reference a statement
previously prepared and named by the i j Prepare command in this command.

i j creates a new thread in the current connection to issue the SQL statement. The
separate thread is closed once the statement completes.

Example

i j>async alnsert 'INSERT into nenu vaI ues (''entree! ' chicken'', 11)'
i]>I NSERT | NTO menu VALUES (' dessert','ice cream,

1 rows inserted/ updated/ del et ed.

ij>wait for alnsert;

1 rows inserted/ updated/deleted.

-- the result of the asynchronous insert

Autocommit

Syntax

AUTOCOM T { ON | OFF }

Description

Turns the connection's auto-commit mode on or off. JDBC specifies that the default
auto-commit mode is ON. Certain types of processing require that auto-commit mode be
COFF. For information about auto-commit, see the Derby Developer's Guide.

If auto-commit mode is changed from off to on when there is a transaction outstanding,
that work is committed when the current transaction commits, not at the time auto-commit
is turned on. Use Commit or Rollback before turning on auto-commit when there is a
transaction outstanding, so that all prior work is completed before the return to
auto-commit mode.

Example

j > autocommit of f;

> DROD TABLE men

ro nserted/ updat ed/ del et ed))

> CREATE TABLE nmenu (course CHAR(10), item CHAR(20), price |INT);
rows nsert ed/ updat ed/ del et ed

> INSE NTO menu VALUES ('entree', 'lanmb chop', 14),

i
I
0
I
OJ
i

24

Copyright

dessert', 'crenme brul ee' 6)7
appeti zer', 'baby greens’

rows i nsert ed/ upda ed/ del et ed
>

>

>

.i

} ut oconm t on;
J

Before First

Close

Commit

Syntax

BEFORE FIRST int ldentifier

Description

Moves the cursor to before the first row, then fetches the row. (Since there is no current
row, it returns the message No current row.)

The cursor must have been created with the Get Scroll Insensitive Cursor command.
Note: This command works only in a Java 2 Platform, Standard Edition, v 1.2 (J2SE) or
higher environment.

Example

|JS Eet scroll insensitive cursor scroll Cursor as
EL * FROM nenu FOR UPDATE CF price';
ij> before first scrollcursor;

current row

Syntax
CLCSE I dentifier

Description

Closes the named cursor. The cursor must have previously been successfully created
with the i j Get Cursor or Get Scroll Insensitive Cursor commands.

Example

ij> get cursor menuCursor as 'SELECT * FROM nmenu';
i]> next menuCursor;

RSE | | TEM | PRI CE
entree | anb chop | 14
i | > next menuCursor;

RSE | I TEM | PRI CE

dessert | crene brul ee | 6
ij> close nmenuCursor;
i]>
Syntax
COW T
Description

Issues a java.sgl.Connection.commit request. Use this command only if auto-commit is
off. A java.sgl.Connection.commit request commits the currently active transaction and
initiates a new transaction.

25

Copyright

Connect

Describe

Example

ij>commt;
i]>

Syntax

CONNECT Oonnectl onURLStrl nE [PROTOCOL Identifier]
[AS denti fier USER String
PASSWORD Stri ng

Description

Connects to the database indicated by the ConnectionURLString. Specifically, takes the
value of the string database connection URL and issues a

j ava. sql . Dri ver Manager . get Connect i on request to set the current connection to
that database connection URL.

You have the option of specifying a name for your connection. Use the Set Connection
command to switch between connections. If you do not name a connection, the system
generates a name automatically.

You also have the option of specifying a named protocol previously created with the
Protocol command or the ij.protocol.protocolName property.

If the connection requires a user name and password, supply those with the optional user
and password parameters.

If the connect succeeds, the connection becomes the current one and ij displays a new
prompt for the next command to be entered. If you have more than one open connection,
the name of the connection appears in the prompt.

All further commands are processed against the new, current connection.

Example

I] > connect 'jdbc: derby: menuDB; creat e=true';
> we create a new table in menuDB:)
TE TABLE rrenu(course CHAR(10), item CHAR(20), price I NTEGER);
> protocol 'jdbc:derby:
> connect 'sanple' as sanpl el;
SAMPLEL) > connect ' newDB; create=true' as newDB;
i] (NEWDB) > show connect i ons;
C NECTIO\IO - j dbc: der by; menuDB
NEVDB* bc: der bg anot her DB
SAI\/PLEl - jdbC der by: newDB

> connect 'jdbc:derby:sanple' user 'sa' password 'cloud3x9';
>

Syntax

DESCRI BE { tabl e-Narme | view Nanme }

Description

Provides a decription of the specified table or view. For a list of tables in the current
schema, use the Show Tables command. For a list of views in the current schema, use
the Show Views command. For a list of available schemas, use the Show Schemas
command.

26

Copyright
Example
ij> describe airlines;
C]O_UNN NAVE
| TYPE_NAME| DEC&| NUM&| COLUME| COLUMN_DEF| CHAR OCTE&| | S_NULL&

Al RLI NE CHAR NULL| NULL| 2 NULL 4 NO
Al RLINE FULL VARCHAR | NULL| NULL| 24 NULL 48 YES
BASI C RATE DOUBLE NULL 52 NULL NULL YES
DI STANCE DI SCOUNT DOUBLE NULL| 2 52 NULL NUL L YES
BUSI NESS_LEVEL FACT&| DOUBLE NULL| 2 52 NULL NULL YES
FI RSTCLASS LEVEL_FA&| DOUBLE NULL| 2 52 NULL NULL YES
ECONOWY SEATS INTEGER |0 10 |10 NULL NULL YES
BUSI NESS_SEATS I NTEGER |0 10 |10 NULL NUL L YES
FI RSTCLASS_SEATS I NTEGER | O 10 |10 NULL NULL YES
Disconnect
Syntax

DI SCONNECT [ALL | CURRENT | Connectionldentifier]

Description

Disconnects from the database. Specifically issues a j ava. sql . Connecti on. cl ose
request against the connection indicated on the command line. There must be a current
connection at the time the request is made.

If ALL is specified, all known connections are closed and there will be no current
connection.

Disconnect CURRENT is the same as Disconnect without indicating a connection, the
default connection is closed.

If a connection name is specified with an identifier, the command disconnects the named
connection. The name must be the name of a connection in the current session provided
with the ij.connection.connectionName property or with the Connect command.

If the ij.database property or the Connect command without the AS clause was used, you
can supply the name the system generated for the connection. If the current connection
is the named connection, when the command completes, there will be no current
connection and you must issue a Set Connection or Connect command.

A Disconnect command issued against a Derby connection does not shut down the
database or Derby (but the Exit command does).

Example

ij> connect 'jdbc:derby: nenuDB;create=true';
ICJR -- Wwe create a new table in nenuDB:)
EATE TABLE nmenu(course CHAR(10), |TEM char(20), PRICE integer);
0 rows inserted/ updated/del et ed
ij> disconnect;

ij> protocol 'jdbc:derby:";
i]> connect 'sanple' as sanplel;
i

> connect 'ne s create=true' as newDB;
SAMPLEL - _j dbc: der by: sanpl e
NEWDB* - dbc: der by: ne ; Create=true

= current connection
(NEWDB) > set connection sanpl el;
> di sconnect sanpl el;
> di
>

*
i
| I
i sconnect all;
i

Driver
Syntax

27

Copyright

DRI VER Dri ver NaneStri ng

Description

Takes the value of the DriverNameString and issues a Class.forName request to load the
named class. The class is expected to be a JDBC driver that registers itself with
java.sgl.DriverManager.

If the Driver command succeeds, a new i j prompt appears for the next command.

Example

j> -- load the Derby driver so that a connection
_can be made:

river . apache. der by. j dbc. EnbeddedDr i ver'

> connec J dbc: der by: nenuDB; cr eat e=t rue' ;
>

Elapsedtime

Execute

Syntax

ELAPSEDTI ME { ON | OFF }

Description

When el apsedti ne is turned on, i j displays the total time elapsed during statement
execution. The default value is OFF.

Example

ij> el apsedti ne on;
|1]> VALUES current _date;

1998-07- 15

ELAPSED TI ME = 2134 nilliseconds
ij>

Syntax

EXECUTE SQ_St | g | PreParedStatemantldentlfler }
[USI NG rin Identifier

Description
Has several uses:

» To execute an SQL command entered as SQLString, using the ExecuteString style.
The String is passed to the connection without further examination or processing by
i j . Normally, you execute SQL commands directly, not with the Execute command.

* To execute a named command identified by PreparedStatementidentifier. This must
be previously prepared with the i j Prepare command.

« To execute either flavor of command when that command contains dynamic
parameters, specify the values in the Using portion of the command. In this style,
the SQLString or previously prepared PreparedStatementldentifier is executed
using the values supplied as String or Identifier. The Identifier in the USING clause
must have a result set as its result. Each row of the result set is applied to the input
parameters of the command to be executed, so the number of columns in the
Using's result set must match the number of input parameters in the Execute's
statement. The results of each execution of the Execute statement are displayed as
they are made. If the Using's result set contains no rows, the Execute's statement is

28

Copyright

Exit

First

not executed.

When auto-commit mode is on, the Using's result set is closed upon the first
execution of the Execute statement. To ensure multiple-row execution of the
Execute command, use the Autocommit command to turn auto-commit off.

Example

ij> autocommit off;

i]> prepare menulnsert as '|INSERT | NTO menu VALUES (?, ?, ?)';

I] > execute nmenul nsert usi ng ' VALUES
"'"entree' "'lanmb chop'', 14
"dessert", "‘creme brul ee'' 6r,

1 row i nserted/ updat ed/ del et ed

1 row i nserted/ updat ed/ del et ed

ij>commt;

Syntax

EXIT

Description

Causes the i j application to complete and processing to halt. Issuing this command
from within a file started with the Run command or on the command line causes the
outermost input loop to halt.

i j automatically shuts down a Derby database running in an embedded environment
(issues a Connect 'jdbc:derby:;shutdown=true’ request) on exit.

i j exits when the Exit command is entered or if given a command file on the Java
invocation line, when the end of the command file is reached.

Example

ij> disconnect;
i e

>
> exit;
>

Syntax

FI RST Identifier

Description

Moves the cursor to the first row in the ResultSet, then fetches the row. The cursor must
have been created with the Get Scroll Insensitive Cursor command. It displays a banner
and the values of the row.

Note: This command works only in a Java 2 Platform, Standard Edition, v 1.2 (J2SE) or
higher environment.

Example

IjS Eet scroll insensitive cursor scrol I Cursor as
EL * FROM nenu FOR UPDATE CF pri ce'

> first scrollcursor;

RSE | I TEM | PRI CE

entree | 'amb chop | 14

29

Copyright

Get Cursor
Syntax

GET [WTH {HOLD| NOHOLD}] CURSOR Il dentifier AS String

WITH HOLD is the default attribute of the cursor. For a non-holdable cursor, use the

WITH NOHOLD option.

Note: WITH NOHOLD is only available in Java 2 Platform, Standard Edition, v 1.4 (J2SE)

or higher.
Description

Creates a cursor with the name of the Identifier by issuing a
java.sqgl.Statement.executeQuery request on the value of the String.

If the String is a statement that does not generate a result set, the behavior of the
underlying database determines whether an empty result set or an error is issued. If there

is an error in executing the statement, no cursor is created.

i j sets the cursor name using a java.sgl.Statement.setCursorName request. Behavior
with respect to duplicate cursor names is controlled by the underlying database. Derby

does not allow multiple open cursors with the same name.

Once a cursor has been created, the i j Next and Close commands can be used to step
through its rows, and if the connection supports positioned update and delete commands,

they can be issued to alter the rows.

> get cursor menuCursor as .
' SELECT * FROM nenu FOR UPDATE OF price';

Example

ij>-- autoconmt needs to be off so that the positioned update
i]> -- can see the cursor it operates against.

i]> autoconmit off;

)

ij> next nmenuCursor;

RSE | ' TEM | PRI CE
entree | I anb chop | 14
ij> next nmenuCursor;

C‘]QJRSE | ' TEM | PRI CE
dessert | creme brul ee

6
i j > UPDATE menu SET price=pri e|+1 WHERE CURRENT OF nenuCursor;

c
1 row i nserted/ updat ed/ del et ed
ij> next nmenuCursor;
RSE | T TEM | PRI CE
appeti zer | bab\t/mgr eens sal ad | 7
i]> close menuCursor;
i]> commit;
i]>

Get Scroll Insensitive Cursor
Syntax

GET SCROLL | NSENSI T VE [W TH { HOLD| NOHOLD}]

S
CURSCR | dentifier A
String

WITH HOLD is the default attribute of the cursor. For a non-holdable cursor, use the

WITH NOHOLD option.

Note: WITH NOHOLD is only available in Java 2 Platform, Standard Edition, v 1.4 (J2SE)

or higher.

30

Copyright

Help

Description

Creates a scrollable insensitive cursor with the name of the Identifier. (It does this by
issuing a createStatement(ResultSet. TYPE_SCROLL_INSENSITIVE,

ResultSet. CONCUR_READ_ONLY) call and then executing the statement with
java.sqgl.StatementExecuteQuery request on the value of the String.)

Note: This command only works in a Java 2 Platform, Standard Edition, v 1.2 (J2SE) or
higher environment.

If the String is a statement that does not generate a result set, the behavior of the
underlying database determines whether an empty result set or an error is issued. If there
is an error in executing the statement, no cursor is created.

ij sets the cursor name using a java.sgl.Statement.setCursorName request. Behavior with
respect to duplicate cursor names is controlled by the underlying database. Derby does
not allow multiple open cursors with the same name.

Once a scrollable cursor has been created, you can use the follow commands to work
with the result set:
« Absolute
» After Last
» Before First

¢ Close

e First

e Last

¢ Next

e Previous
« Relative

Example

ij> autocommit off;
i]> get scr ol | i nsen5| tive cursor scroll Cursor as
SELECT * FROM nenu'
ij> absolute 5 scroIiChrsor

RSE | I TEM | PRI CE
entree | amb cho | 14
ij> after last scrollcursor;
No current row
ij> before first scrollcursor;

current row

> first scrollcursor;

RSE [I TEM | PRI CE
entree | I'anb chop | 14
| ast scrollcursor;
C]QJRSE |1 TEM | PRI CE
dessert = |crene brul ee | 6
gr evi ous sc roll cursor;
c'ou | PRI CE
entree] | | anb choP | 14
ij>relative 1 scrollcursor;
dURSE | I TEM | PRI CE
dessert | creme brul ee | 6
>previ ous scrol | cursor;
C'ou TEM | PRI CE
dessert | crenme brul ee | 6
ij> next scrollcursor;
RSE |1 TEM | PRI CE
dessert | creme brul ee | 6
Syntax

31

Copyright

Last

HELP

Description

Prints out a brief list of the i] commands.

Syntax

LAST ldentifier

Description

Moves the cursor to the last row in the ResultSet, then fetches the row. The cursor must
have been created with the Get Scroll Insensitive Cursor command. It displays a banner
and the values of the row.

Note: This command works only in a Java 2 Platform, Standard Edition, v 1.2 (J2SE) or
higher environment.

Example
ijS> Eet scroll insensitive cursor scroll Cursor as
' SELECT * FROM nmenu FOR UPDATE OF price';
ij> absolute 5 scroll Cursor;
RSE | I TEM | PRI CE
entree | 'anb chop | 14
ij> last scrollcursor;
RSE | I TEM | PRI CE
dessert | creme brul ee | 6

LocalizedDisplay

Syntax

LOCALI ZEDDI SPLAY { on | off }

Description

Specifies to display locale-sensitive data (such as dates) in the native format for the i j
locale. The i j locale is the same as the Java system locale.

Note: NUMERIC and DECIMAL values are not localized when using the
J2ME/CDC/Foundation Profile because of platform limitations.

Example

The following demonstrates LocalizedDisplay in an English locale:

ilj > VALUES CURRENT_DATE;

2000- 05- 01

1 row sel ected.

ij> localizeddi SRllTa on;
|1] > VALUES CURRENT_DATE;

May 1, 2000
1 row sel ected

MaximumDisplayWidth

Syntax

32

Copyright

Next

Prepare

MAXI MUMDI SPLAYW DTH i nt eger _val ue

Description

Sets the largest display width for columns to the specified value. This is generally used to
increase the default value in order to display large blocks of text.

Example

ij> maxi nundi spl aywi dt h_3;

Ilj > VALUES * IS THE TI MVE!";
i > maxi mundi spl aywi dt h 30;

|1] > VALUES ' IS THE TI ME!";

NOW IS THE TI ME!

Syntax
NEXT ldentifier

Description

Fetches the next row from the named cursor created with the Get Cursor command or
Get Scroll Insensitive Cursor. It displays a banner and the values of the row.

Example

ij> get cursor menuCursor as 'SELECT * FROM nenu';
i]> next menuCursor;

RSE | T TEM | PRI CE
entree | 'anb chop | 14
ij>
Syntax

PREPARE | dentifier AS String

Description

Creates a java.sgl.PreparedStatement using the value of the String, accessible ini j by
the Identifier given to it. If a prepared statement with that name already exists ini j , an
error will be returned and the previous prepared statement will remain. Use the Remove
command to remove the previous statement first. If there are any errors in preparing the
statement, no prepared statement is created.

Any SQL statements allowed in the underlying connection's prepared statement can be
prepared with this command.

Example
ij> prepare seeMenu as ' SELECT * FROM nenu' ;
i]> execute seeMenu;

E | I TEM | PRI CE
entree | amb chop 14
dessert creme brul ee 6

33

Copyright

Previous

Protocol

Readonly

2 rows sel ected
ij>

Syntax

PREVI QUS | dentifier

Description

Moves the cursor to the row previous to the current one, then fetches the row. The cursor
must have been created with the Get Scroll Insensitive Cursor command. It displays a
banner and the values of the row.

Note: This command works only in a Java 2 Platform, Standard Edition, v 1.2 (J2SE) or
higher environment.

Example
IjS Eet scrol | insensitive cursor scroll Cursor as
EL FROM menu FOR UPDATE CF pri ce'
> | ast scrollcursor;
RSE | I TEM | PRI CE
dessert | creme brul ee | 6
greV|0us scrollcursor
dQJ | PRI CE
entree | 'anb chop | 14

Syntax

PROTOCOL String [AS Identifier]

Description

Specifies the protocol, as a String, for establishing connections and automatically loads
the appropriate driver. Protocol is the part of the database connection URL syntax
appropriate for your environment, including the JDBC protocol and the protocol specific to
Derby. For further information about the Derby database connection URL, see the Derby
Developer's Guide. Only Derby protocols are supported. Those protocols are listed in
ij.protocol.

Providing a protocol allows you to use a shortened database connection URL for
connections. You can provide only the database name instead of the full protocol. In
addition, you do not need to use the Driver command or specify a driver at start-up, since
the driver is loaded automatically.

If you nhame the protocol, you can refer to the protocol name in the Connect command.

Example

ij> protocol jdbC derby
i]> connect 'sanple'

Syntax

READONLY { ON | OFF }
Description

34

Copyright

Relative

Remove

Sets the current connection to a "read-only" connection, as if the current user were
defined as a readOnlyAccess user. (For more information about database authorization,
see the Derby Developer's Guide.)

Example

ij> connect 'jdbc:derby: nenuDB' ;
i]> readonly on;
i] > SELECT FROM nenu;

RSE | I TEM | PRI CE
entree | anb chop 14
dessert crenme brul ee 6
appeti zer bag¥ greens 7
entree | a chop 14
entree | anb chop 14
dessert crene brul ee 6

6 rows sel ected .
i]> UPDATE nmenu set price = 3; . i
ROR 25502: An SQ. data change is not permtted for a read-only

connection, user or database.

Syntax

RELATIVE int Identifier

Description

Moves the cursor to the row that is int number of rows relative to the current row, then
fetches the row. The cursor must have been created with the Get Scroll Insensitive
Cursor command. It displays a banner and the values of the row.

Note: This command works only in a Java 2 Platform, Standard Edition, v 1.2 (J2SE) or
higher environment.

Example

ij>-- autocommt needs to be off so that the positioned update
i]> -- can see the cursor it operates against.

i]> autoconmit off;

i

|
|
| (-
JS> et scroll insensitive cursor scroll Cursor as
' SELECT * FROM nenu FOR UPDATE OF price';

ij> last scrollcursor;

RSE | I TEM | PRI CE
dessert = |crenme brul ee | 6
ij> gr evi ous scrol |l cursor;
CJOJR E | ' TEM | PRI CE
entree | lamb cholo | 14
ij>relative 1 scrollcursor;
dQJRSE | ' TEM | PRI CE
dessert | creme brul ee | 6
Syntax

REMOVE | dentifier

Description

Removes a previously prepared statement from ij. The identifier is the name by which the
statement was prepared. The statement is closed to release its database resources.

Example

ij> prepare seeMenu as ' SELECT * FROM nenu' ;

35

Copyright
ij> execute seeMenu;

RSE |1 TEM | PRI CE
entree | anb chop 14
dessert crenme brul ee 6

2 rows sel ected
i]> renove seeMenu;
i] > execute seeMenu; .

1'J ERROR Unable to establish prepared statenent SEEMENU
ij>

Rollback
Syntax
ROLLBACK
Description
Issues a java.sgl.Connection.rollback request. Use only if auto-commit is off. A
java.sgl.Connection.rollback request undoes the currently active transaction and initiates
a new transaction.
Example
ij> autocommit off;]
i]> I NSERT | NTO nenu VALUES (' dessert', 'rhubarb pie', 4);
1 row_ i nserted/ updat ed/ del et ed
i j> SELECT *_from nenu;
RSE | I TEM | PRI CE
entree | amb chop 14
dessert crenme brul ee 7
appeti zer bab% greens 7
dessert rhubarb pie 4
4 rows sel ected
ij> rollback;
i]> SELECT * FROM nenu;
RSE | I TEM | PRI CE
entree | anb chop 14
dessert crenme brul ee 7
appeti zer | baby greens 7
3. rows sel ected
ij>
Run
Syntax
RUN String
Description

Assumes that the value of the string is a valid file name, and redirects i j processing to
read from that file until it ends or an Exit command is executed. If the end of the file is
reached without i j exiting, reading will continue from the previous input source once the
end of the file is reached. Files can contain Run commands.

i j prints out the statements in the file as it executes them.

Any changes made to the i j environment by the file are visible in the environment when
processing resumes.

Example

ij>run 'setupMenuConn.ij"';

36

Copyright

ij>-- this is setupMenuConn.ij
-- ij displays its contents as it processes file

ij> connect _{dbc der by: menuDB' ;

i]> autoconmit off;

i]>-- this is the end of setupMenuConn. i j

-- there is now a connection to nenuDB and no autoconmit.
-- input will now resurme fromthe previous source.

ij>

Set Connection

Show

Syntax

SET CONNECTI ON | dentifier

Description

Allows you to specify which connection to make current when you have more than one
connection open. Use the Show Connections command to display open connections.

If there is no such connection, an error results and the current connection is unchanged.

Example

> protocol 'jdbc:derby:’

> connect 'sanple' as sarrple
i]> connect 'ne ;Create=true' as newDB;
i I\/&’ EVDB) > show connectr ons
SA E1- jdbc: derby: sa
NEWDB* - j dbc: der by: ne create true
* o= current connecti on

> set connection sanpl el;
SAI\/PL 1)> di sconnect all;
>

Syntax

SHOW

t CONNECTI ONS |
| NDEXES [I N schemaNane | FROM t abl e-Nane]| |
PROCEDURES [| N schemaNane | |
SCHEVAS
SYNONYMS [I N schenaNane |
TABLES [I'N schenaNane_]
VI EVS [I N schemaNane] |

}

Description

The SHOW command can be used to display information about active connections and
database objects.

SHOW CONNECTIONS

If there are no connections, the SHOW CONNECTIONS command returns "No
connections available".

Otherwise, the command displays a list of connection names and the URLs used to
connect to them. The currently active connection, if there is one, is marked with an * after
its name.

Example

37

Copyright

j> connect 'sanple' as sanplel;
|

i
i]> connect 'ne ;create=true' as newDB;
i] NEV\DB)> show connecti ons;
SA j dbc: der by: sanmpl e

j dbc: der by: ne ; Create=true
?‘_ = current connection
i j (NEWDB) >

SHOW INDEXES
SHOW INDEXES displays all the indexes in the database.

If I N schemaNane is specified, then only the indexes in the specified schema are

displayed.

If FROM t abl e- Nane is specified, then only the indexes on the specified table are
displayed.

Example

TJ > show i ndexes in a%%_

ABLE_NAME UWN_NANE | NON_U&| TYPE| ASC&| CARDI NA&| PAGES
Al RLI NES Al RLI NE false |3 A NUL L NUL L
COUNTRI ES COUNTRY_| SO_CODE false |3 A NUL L NUL L
COUNTRI ES COUNTRY ™ false |3 A NUL L NUL L
Cl Tl ES CITY ID false |3 A NUL L NUL L
FLI GHTS FLIGAT | D false |3 A NUL L NUL L
FLI GHTS SEGVENT NUMBER false |3 A NUL L NUL L
FLI GHTAVAI LABI LI TY | FLIGHT TD false |3 A NULL NULL
FLI GHTAVAI LABI LI TY SEGVENT _NUMBER false |3 A NUL L NUL L
FLI GHTAVAI LABI LI TY FLI GHT DATE false |3 A NUL L NUL L
MAPS MAP | D™ false |3 A NUL L NUL L
MAPS MAP—NAVE false |3 A NUL L NUL L
FLI GHTS DEST Al RPORT true 3 A NUL L NUL L
FLI GATS ORI G_Al RPORT true 3 A NUL L NUL L
CI TI ES COUNTRY_| SO_CODE true 3 A NUL L NUL L
FLI GHTAVAI LABI LI TY GHT TD true 3 A NUL L NUL L
FLI GHTAVAI LABI LI TY SEGVENT _NUMBER true 3 A NULL NULL

16 rows sel ected
ij> show i ndexes fromfllﬁ/Nts
= NAME | COL

heLE | NON_U&| TYPE| ASC&| CARDI NA&| PAGES
FLI GHTS FLI GHT | D false |3 |A |NULL NULL
FLI GHTS SEGVENT NUMBER false |3 |A |NULL NULL
FLI GHTS DEST_Al RPORT true” |3 |A | NULL NULL
FLI GHTS ORI G_Al RPORT tr 3 |A | NULC NULL

4 rows sel ected
SHOW PROCEDURES

SHOW PROCEDURES displays all the procedures in the database that have been
created with the CREATE PROCEDURE statement, as well as system procedures.

If I N schemaNane is specified, only procedures in the specified schema are displayed.

Example

show procedures in syscs util;
PJRCIE

DURE_SCHEM | PI DURE_NAVE | REMARKS
SYSCS UTI L SYSCS BACKUP_DATABASE or g. apache. der by. ca&
SYSCS_UTI L SYSCS_BACKUP_DATABASE AND ENA&| or g. apache. der by. ca&
SYSCS _UTI L SYSCS BACKUP_DATABASE _AND ENA&| or g. apache. der by. ca&
SYSCS_UTI L SYSCS_BACKUP_DATABASE_NOMAI T | or g. apache. der by. ca&
SYSCS_UTI L SYSCS_BULK | NSERT or g. apache. der by. ca&
SYSCS_UTI L SYSCS_CHECKPO NT DATABASE or g. apache. der by. ca&
SYSCS_UTI L SYSCS_COVPRESS TABL or g. apache. der by. ca&
SYSCS_UTI L SYSCS_DI SABLE EOG ARCHI VE_MODE| or g. apache. der by. ca&
SYSCS_UTI L SYSCS_EXPORT_QUERY or g. apache. der by. ca&

38

Copyright

SYSCS_UTI L

18 rows sel ected

SHOW SCHEMAS

SYSCS_EXPORT TABLE

SYSCS FREEZE DATABASE
SYSCS™| MPORT _DATA

SYSCS™I MPORT _TABLE

SYSCS™I NPLACE_COVPRESS TABLE
SYSCS™SET _DATABASE_PROPERTY
SYSCS™SET_RUNTI MESTATI STI CS
SYSCS_SET_STATI STI CS_TI M NG
SYSCS_UNFREEZE_DATABASE

org.
org.
org.
org.
org.
org.
org.
org.
org.

apache.
apache.
apache.
apache.
apache.
apache.
apache.
apache.
apache.

SHOW SCHEMAS displays all of the schemas in the current connection.

Example

ij> show schenms;
ABLE_SCHEM

SYSCAT
SYSCS DI AG
SYSCS_UTI L
SYSFUN

SYS| BM
SYSPROC
SYSSTAT

11 rows sel ected

SHOW SYNONYMS

der by.
der by.
der by.
der by.
der by.
der by.
der by.
der by.
der by.

ca&
ca&
ca&
ca&
ca&
ca&
ca&
ca&
ca&

SHOW SYNONYMS displays all the synonyms in the database that have been created
with the CREATE SYNONYMS statement.

If I N schemaNane is specified, only synonyms in the specified schema are displayed.

Example

ij> show synonyns;

ABLE_SCHE

| TABLE_NAVE

SHOW TABLES

| MYAl RLI NES

SHOW TABLES displays all of the tables in the current schema.

If I N schemaNane is specified, the tables in the given schema are displayed.

Example

ij> show t abl es;
ABLE_SCHEM

| TABLE_NANME

| REMARKS

7 rows sel ected

Al RLI NES

CITIES

COUNTRI ES

FLI GH éVAILABILITY

FLI GHT
FLI GATS_HI STCORY
MAPS

39

Copyright

Wait For

Comment

Identifier

SHOW VIEWS
SHOW VIEWS displays all of the views in the current schema.
If I N schemaNane is specified, the views in the given schema are displayed.

Example

ij> show vi ews;
ABLE SCHEM | TABLE_NAME | REMARKS

APP | TOTALSEATS |

1 row sel ected

Syntax

WAIT FOR ldentifier

Description

Displays the results of a previously started asynchronous command.

The identifier for the asynchronous command must have been used in a previous Async
command on this connection. The Wait For command waits for the SQL statement to
complete execution, if it has not already, and then displays the results. If the statement
returns a result set, the Wait For command steps through the rows, not the Async
command. This might result in further execution time passing during the result display.
Example

See Async.

Syntax
-- Text

Description

You can use a double dash to create a comment anywhere within ani j command line
and as permitted by the underlying connection within SQL commands. The comment is
ended at the first new line encountered in the text.

Comments are ignored on input and have no effect on the output displayed.

Example

ij>-- this is a coment;
-~ the semcolons in the comment are not taken as the end
-- of the command; for that, we put it outside the --:

ij>

Syntax

40

Copyright

String

ij errors

Identifier

Description

Some i j commands require identifiers. These i j identifiers are case-insensitive. They
must begin with a letter in the range A-Z, and can consist of any number of letters in the
range A-Z, digits in the range 0-9, and underscore (_) characters.

These identifiers exist within the scope of i j only and are distinct from any identifiers
used in SQL commands, except in the case of the Get Cursor command. The Get Cursor
command specifies a cursor name to use in creating a result set.

i j does not recognize or permit delimited identifiers ini j commands. They can be used
in SQL commands.

Example

These are valid ij identifiers:
fool o

exanpl el denti fier12345

anot her _one

Syntax

' Text'

Description

Some i j commands require strings. i j strings are represented by the same literal
format as SQL strings and are delimited by single quotation marks. To include a single
guotation mark in a string, you must use two single quotation marks, as shown in the
examples below. i j places no limitation on the lengths of strings, and will treat
embedded new lines in the string as characters in the string.

Some i j commands execute SQL commands specified as strings. Therefore, you must
double any single quotation marks within such strings, as shown in the second example
below.

The cases of letters within a string are preserved.

Example

ThisisastrinPinij And this is its val ue
"Mary''s unbrella’' I\/Br?/'s unbrel | a

"hello world' helTo world

(&N
o

'S

--returns e
UES ''Joe'"'"'"'s""'

execute 'V,

>
P

ij might issue messages to inform the user of errors during processing of statements.

ERROR SQLState

When the underlying JDBC driver returns an SQLEXxception, i j displays the
SQLException message with the prefix "ERROR SQLState". If the SQLException has no
SQLState associated with it, the prefix "ERROR (no SQLState)" is used.

41

Copyright

WARNING SQLState

Upon completion of execution of any JDBC request, i j will issue a getWarnings request
and display the SQLWarnings that are returned. Each SQLWarning message is displayed
with the prefix "WARNING SQLState". If an SQLWarning has no SQLState associated
with it, the prefix "WARNING (no SQLState)" is used.

IJ ERROR
When i j runs into errors processing user commands, such as being unable to open the
file named in a Run command or not having a connection to disconnect from, it prints out
a message with the prefix "I[J ERROR".

1J WARNING
i j displays warning messages to let the user know if behavior might be unexpected. i j
warnings are prefixed with "1J WARNING".

JAVA ERROR
When an unexpected Java exception occurs, i j prints a message with the prefix "JAVA
ERROR".

42

Copyright

Using the bulk import and export procedures

You might want to import or export a large amount of data between files and the
database. Instead of having to use INSERT and SELECT statements, you can use Derby
procedures to import data directly from files into tables and to export data from tables into
files.

Bulk Import/Export overview
Derby provides import and export system procedures that you can use to import and
export data in delimited data file format.

« Use export procedures to write data from a database to one or more files that are
stored outside of the database. You can use a procedure to export data from a table
into a file or export data from a SELECT statement result into a file.

« Use import procedures to import data from a file into a table. If the target table
already contains data, you can replace or append to the existing data.

You can perform an Import or Export operation from i j or from within an SQL statement.

Options for running the import and export procedures

You can run the import/export procedures from within an SQL statement using i j or any
Java application.

Import/Export reads and writes only text files. Import does not support read-once streams
(live data feeds), because it reads the first line of the file to determine the number of
columns, then reads it again to import the data.

Note: These server-side utilities exhibit different behavior in client/server mode. Typically,
you use them to import data into and export data from a locally running Derby. However,
you can use the import/export procedures when Derby is running in a server framework if
you specify import and export files that are accessible to the server.

Bulk import/export requirements and considerations

The table must exist
For you to import data into a table, the table must already exist in Derby. The table
does not have to be empty. If the table is not empty, bulk import performs single
inserts which results in slower performance.

Create indexes and primary key, foreign key, and unique constraints first
To avoid a separate create index step, create indexes and primary keys on tables
before you import data. However, if your memory and disk spaces resources are
limited, you can build the indexes and primary keys after importing data.

Data types
You can import and export only data of the non-binary, built-in data types. Derby
implicitly converts the strings to the data type of the receiving column. If any of the
implicit conversions fail, the whole import is aborted. For example, "3+7" cannot be
converted into an integer. An export that encounters a runtime error stops.
Note: You cannot import or export the binary data types: BLOB, CLOB, CHAR FOR
BIT DATA, VARCHAR FOR BIT DATA, or LONG VARCHAR FOR BIT DATA.
Additionally, you cannot import or export the XML data type.

Locking during import
Import procedures use the same isolation level as the connection in which they are
executed to insert data into tables. During import, the entire table is exclusively locked
irrespective of the isolation level.

Locking during export
Export procedures use the same isolation level as the connection in which they are
executed to fetch data from tables.

Import behavior on tables with triggers
The import procedure fires INSERT triggers when data is appended to the table. The

43

Copyright

REPLACE option is not allowed when triggers are enabled on the table.
Restrictions on the REPLACE option
If a table that receives imported data already contains data, you can either replace or
append to the existing data. You can use the REPLACE option on tables that have
dependent tables, but the replaced data must maintain referential integrity, otherwise
the import operation will be rolled back. You cannot use the REPLACE option if the
table has enabled triggers.
Restrictions on tables
You cannot use import procedures to import data into a system table or a declared
temporary table.

Bulk import and export

Bulk-Import

You can use import and export procedures which are executable from ij or any Java
program. You must have derbytools.jar in your classpath to use the import or export
procedures from ij.

To invoke an import or export procedure, you must be connected to the database into
which data is imported or from which data is exported. Because the procedures will issue
a COMMIT or a ROLLBACK statement, you should perform either a COMMIT or
ROLLBACK to complete all transactions and release all table-level locks prior to invoking
the import or export procedure. Other user applications that access the table with a
separate connection do not need to disconnect.

Note: Imports are transactional. If an error occurs during bulk import, all changes are
rolled back.

Derby provides two import procedures you can use to perform bulk-import operations:
1. Toimport data from a file to a table, use the
SYSCS_UTIL.SYSCS_IMPORT_TABLE procedure. The procedure definition is:

SYSCS_UTI L. SYSCS | MPORT TABLE ¥| N schemaNane VARCHAR(128),
I'N tabl eNane VARCHAR(128). IN fileName VARCHAR(32672),
Cg-IAR(l?, I'N characterDelimter C?—IAR(l),
N repl ace SMALLI NT)

IN col umDel i m ter
I N codeset VARCHAR(128),

No Result is returned from the procedure.

2. To import data from a file to a subset of columns in a table, use the
SYSCS _UTIL.SYSCS IMPORT_DATA procedure. To import data to subset of
columns in a table, you specify insertColumns on the table into which data will be
imported and/or specify columnindexes to import data fields from a file to columns
in a table. The procedure definition is:

SYSCS _UTI L. SYSCS | MPORT DATA (I N schemaNane VARCHAR 128)7,
I N t abl eNane VARtHARs 128), INinsertCol ums VARCHAR(326 2%
&32672 , INfileName V. 32672),
?, IN characterDel i mter R(1),
N repl ace SMALLI NT)

I N col uml ndexes V,
I'N col umbDel i mter CHAR(
I N codeset VARCHAR(128),

No result is returned from the procedure.
Arguments to the import procedure
* schemaName

Specifies the schema of the table. You can pass a NULL value to use the default
schema name.

* tableName

Specifies the table name of the table into which the data is to be imported. This
table cannot be a system table or a declared temporary table. The string must
exactly match case of the table name. Passing a null will result in an error.

44

Copyright

insertColumns

Specifies the comma separated column names of the table into which the data will
be imported. You can pass a NULL value to import into all columns of the table.

columnindexes

Specifies the comma separated column indexes (numbered from one) of the input
data fields that will be imported. You can pass a NULL value to use all input data
fields in the file.

fileName

Specifies the file that contains the data to be imported. If the path is omitted, the
current working directory is used. The specified location of the file should refer to
the server side location if using the Network Server. Passing a null will result in an
error.

columnDelimiter

Specifies a column delimiter. The specified character is used in place of a comma to
signify the end of a column. You can pass a NULL value to use the default value of
a comma.

characterDelimiter

Specifies a character delimiter. The specified character is used in place of double
guotation marks to enclose a character string. You can pass a NULL value to use
the default value of a double quotation mark.

codeset

Specifies the code set of the data in the input file. The code set name should be one
of the Java-supported character encoding sets. Data is converted from the specified
code set to the database code set (UTF- 8). You can pass a NULL value to interpret
the data file in the same code set as the JVM in which it is being executed.

replace

A non-zero value for the r epl ace parameter will import in REPLACE mode, while a
zero value will import in INSERT mode. REPLACE mode deletes all existing data
from the table by truncating the table and inserts the imported data. The table
definition and the index definitions are not changed. You can only import with
REPLACE mode if the table already exists. INSERT mode adds the imported data
to the table without changing the existing table data. Passing a null value will result
in an error.

If you create a schema, table, or column name as a non-delimited identifier, you must
pass the name to the import procedure using all upper-case characters. If you created a
schema, table, or column name as a delimited identifier, you must pass the name to the
import procedure using the same case that was used when it was created.

Bulk-Export

Derby provides two export procedures you can use to perform bulk-export operations:

1.

2.

To export all the data from a table to a file, use the
SYSCS _UTIL.SYSCS EXPORT_TABLE procedure. The procedure definition is:

SYSCS _UTI L. SYSCS EXPORT TABLE §-' N schemaNane VARCHAR(128),
I N tabl eName, VARCHAR(128), IN fil eNane VARCHAR (326%
I'N col umbDel inmter R(1), IN characterDeliniter (1
I N codeset VARCHAR(128))

No Result is returned from the procedure.
To export the result of a SELECT statement to a file, use the
SYSCS_UTIL.SYSCS_ EXPORT_QUERY procedure. The procedure definition is:

SYSCS_UTI L. SYSCS_EXPORT_QUERY(I N sel ect St at ement VARCHAR(32672) ,

45

Copyright

I N tabl eNanme, VARCHAR = 28) IN fileNane VARCHAR(32672 2
IN col umbDel i mi ter R(l IN characterDeliniter (1
I N codeset VARCHAR(1

No result is returned from the procedure.

Arguments to the export procedure

schemaName

Specifies the schema of the table. You can pass a NULL value to use the default
schema name.

selectStatement

Specifies the SELECT statement query that returns the data to be exported.
Passing a NULL value will result in an error.

tableName

Specifies the table name of the table or view from which the data is to be exported.
This table cannot be a system table or a declared temporary table. The string must
exactly match the case of the table name. Passing a null will result in an error.

fileName

Specifies the file to which the data is to be exported. If the path is omitted, the
current working directory is used. If the name of a file that already exists is
specified, the export utility overwrites the contents of the file; it does not append the
information. The specified location of the file should refer to the server-side location
if using the Network Server. Passing a null will result in an error.

columnDelimiter

Specifies a column delimiter. The specified character is used in place of a comma to
signify the end of a column. You can pass a NULL value to use the default value of
a comma.

characterDelimiter

Specifies a character delimiter. The specified character is used in place of double
guotation marks to enclose a character string. You can pass a NULL value to use
the default value of a double quotation mark.

codeset

Specifies the code set of the data in the export file. The code set name should be
one of the Java-supported character encoding sets. Data is converted from the
database code page to the specified code page before writing to the file. You can
pass a NULL value to write the data in the same code page as the JVM in which it is
being executed.

If you create a schema, table, or column name as a non-delimited identifier, you must
pass the name to the export procedure using all upper-case characters. If you created a
schema or table name as a delimited identifier, you must pass the nhame to the export
procedure using the same case that was used when it was created.

Examples of bulk import and export

All examples in this section are run using the i j utility.

The following example shows how to import data into the staff table in a sample database
from the nyfil e. del file.

CALL SYSCS UTI L. SYSCS | MPORT_TABLE (null,"'staff', ' nmyfile.del',null,null,

nul |,

0);

46

Copyright

The following example shows how to import data into the staff table in a sample database
from a delimited data file nyfil e. del . This example defines the percentage character
(%) as the string delimiter, and a semicolon as the column delimiter.

CALL SYSCS UTI L. SYSCS_| MPORT_TABLE
(nlull,o') taff'," ' c:\output\nyfrle.del',";","%,
nul I, 0);

The following example shows how to export data from the staff table in a sample
database to the file myfi |l e. del .

CALL SYSCS_UTI L. SYSCS_EXPORT_TABLE
(nul'l,"staff',"'nmyfile del',null,null,null);

The following example shows how to export employee data in department 20 from the
staff table in a sample database to the file awar ds. del .

CALL SYSCS _UTI L. SYSCS_EXPORT_QUERY ('select * fromstaff where dept=20",
‘c:\out putVawards. del =, nul | ,nul |, nul'l);

The following example shows how to export data from the staff table to a delimited data
file myfil e. del with the percentage character (%) as the character delimiter, and a
semicolon as the column delimiter from the staff table.

CALL SYSCS_UTI L. SYSCS_EXPORT_TABLE
(nHI),'sta’r‘f' ,"c:\output\nyfile.del',";"," %,
null);

Importing into tables with identity columns

You can use the SYSCS_UTIL.SYSCS IMPORT_DATA procedure to import data into a
table that contains an identity column. If the identity column is defined as GENERATED
ALWAYS, an identity value is generated for a table row whenever the corresponding row
field in the input file does not contain a value for the identity column. When a
corresponding row field in the input file already contains a value for the identity column,
the row cannot be inserted into the table and the import operation will fail. To prevent
such scenarios, the following examples show how to specify arguments in the

SYSCS _UTIL.SYSCS IMPORT_DATA procedure to ignore data for the identity column
from the file, and/or omit the column name from the insert column list.

If the REPLACE option is used during import, Derby resets its internal counter of the last
identity value for a column to the initial value defined for the identity column.

Consider the following table that contains an identity column, c2:

CREATE TABLE tabl (cl CHAR(30), c2 | NT GENERATED ALWAYS AS | DENTITY, c3
c4 CHAR(1))
* Suppose you want to import data into tabl from a file myfi | e. del that does not

have identity column information and myf i | e. del contains three fields with the
following data:

Robert, 45.2,J
M ke, 76. 9, K
Leo, 23. 4, |

47

Copyright

To import data from nmyf i | e. del into the tabl table, explicitly list the column
names for tab1 without the identity column c2 and execute the
SYSCS_UTIL.SYSCS_IMPORT_DATA procedure as follows:

CALL SYSCS _UTI L. SYSCS_| MPORT_DATA (NULL, 'TABl', 'CL,C3,C4" , null,
"myfile.del” ,null, null,null70)

« Suppose you want import data into tabl from a file enpfi | e. del that also has
identity column information and the file contains three fields with the following data:

Robert 1,45.2,J
M ke, 2 23. 4.1
Leo, 3, b3, 4,1

To import data from enpf i | e. del into the tabl table, explicitly specify an insert
column list without the identity column c2 and specify the column indexes without
identity column data and execute the SYSCS_UTIL.SYSCS_IMPORT_DATA
procedure as follows:

ofLL SYSCS_UTI L. SYSCS_| MPORT_DATA (NULL, 'TABl', 'C1,C3,C4' |,
enphle del',null, null,null,0)

Executing import/export procedures from JDBC

You can execute import and export procedures from a JDBC program. The following
code fragment shows how you might call the SYSCS_UTIL.SYSCS_EXPORT_TABLE
procedure from Java. In this example, the procedure exports the staff table data in the
default schema to the st af f. dat file, using a percentage (%) character to specify a
column delimiter.

Pr epar edSt at ement ps=conn. Brepar eSt at enent (" CALL
SYSCS_UTI L. SYSCS_EXPORT_T

(?,2,72,2,2,?2)")
s.setString(1 nuII ;
ps.setString 2." F)
ps.setString(3," staff dat")
ps.setString(4," %?

ps. set String(5, nul

ps. setString(6, null

ps execute(?;

File format for input and output

The default file format is a delimited text file with the following characteristics:
* Rows are separated by a new line.
 Fields are separated by a comma (,)
« Character-based fields are delimited with double quotes (")

Before performing import or export operations, you must ensure that the chosen delimiter
character is not contained in the data to be imported or exported. If you chose a delimiter
character that is part of the data to be imported/exported unexpected errors might occur.
The following restrictions apply to column and character delimiters:

» Delimiters are mutually exclusive

« A delimiter cannot be a line-feed character, a carriage return, or a blank space.

« The default decimal point (.) cannot be a character delimiter.
The record delimiter is assumed to be a new-line character. The record delimiter should
not be used as any other delimiter.

Character delimiters are permitted with the character-based fields (CHAR, VARCHAR,
and LONG VARCHAR) of a file during import, any pair of character delimiters found
between the enclosing character delimiters is imported into the database. For example,
suppose you have the following character string:

"what a ""great"" day!"

The preceding character string gets imported into the database as:

48

Copyright

What a "great" day!

During export, the rule applies in reverse. For example, suppose you have the following
character string:

"The boot has a 3" heel."
The preceding character string gets exported to a file as:

"The boot has a 3""heel."

The following example file shows four rows and four columns in default file format:

1, abc, 22, def .]

v, @ ls a zero-length string, b is null"”
13; "hel | 0", 454, "wor | d
4,b and ¢ are both null,,

The export procedure outputs the following values:

" abC", 22, n def n) .
,.,alis a zero-length string, b is null"
‘"hell 0", 454, "wor | d

,"b and ¢ are both null",,

Treatment of NULLS

In a delimited file, a NULL value is exported as an empty field. The following example
shows the export of a four-column row in which the third column is NULL:

7,95, , Happy Birthday

Import works the same way; an empty field is imported as a NULL value.

CODESET values for import/export

Import and export procedures accept arguments to specify codeset values. You can
specify the codeset (character encoding) for import and export procedures to override the
system default. The following table contains a sample of character encoding supported
by JDK 1.x. To review the complete list of character encodings, refer to your Java
documentation.

Table 3. Sample character encodings
This table contains sample character encodings supported by JDK1.x.

Character Encoding Explanation

8859 1 ISO Latin-1

8859 2 ISO Latin-2

8859_7 ISO Latin/Greek
Cpl257 Windows Baltic
Cpl1258 Windows Vietnamese
Cp437 PC Original

EUCJIS Japanese EUC
GB2312 GB2312-80 Simplified Chinese
JIS JIS

KSC5601 KSC5601 Korean

49

Copyright

Character Encoding Explanation

MacCroatian Macintosh Croatian
MacCyrillic Macintosh Cyrillic

SJIS PC and Windows Japanese
UTF-8 Standard UTF-8

The following example shows how to specify UTF-8 encoding to export from the staff
table:

CALL SYSCS _UTI L. SYSCS_EXPORT TABLE
(NULL, " STAFF' , ' staff.dat', NUCL, NULL, ' UTF-8")

The following example shows how to specify UTF-8 encoding to import from the staff
table:

CALL SYSCS UTI L. SYSCS_ | MPORT TABLE
(NULL, " STAFF' , ' staff.dat', NUCL, NULL, ' UTF-8', 0)

50

Copyright

Storing jar files in a database

SQLJ.install _jar,SQ.J.renove_jar,and SQLJ. repl ace_j ar, are a set of
procedures in the SQL schema that allow you to store jar files in the database.

Your jar file has a physical name (the name you gave it when you created it) and a Derby
name (the Derby identifier you give it when you load it into a particular schema). Its Derby

name is an SQL92ldentifier; it can be delimited and must be unique within a schema. A
single schema can store more than one jar file.

Adding a Jar File
To add a jar file using SQL syntax:

CALL SQJ.install _jar('jarFilePath', qualifiedJarName, 0)
* jarFilePath

The path and physical name of the jar file to add or use as a replacement. For
example:

d:/todays_build/tours.jar

 qualifiedJarName

The Derby name of the jar file, qualified by the schema name. Two examples:

MYSCHEMA. Sanpl el

-- adelimted identifier.
MYSCHEMA. " Sanpl e2"

Removing a jar file
To remove a jar file using SQL syntax:

CALL SQ.J.renove_jar (qualifiedJarName, 0)

Replacing a jar file
To replace a jar file using SQL syntax:

CALL SQ.J.replace_jar('jarFilePath', qualifiedJarName)
* jarFilePath

The path and physical name of the jar file to add or use as a replacement. For
example:

d:/todays_build/tours.jar

 qualifiedJarName

The Derby name of the jar file, qualified by the schema name. Two examples:

51

Copyright

MYSCHEMA. Sanpl el -- a delimted identifier.

MYSCHEMA. " Sanpl e2"

Installing a jar example
» Complete SQL example for installing a jar:

CALL SQLJ.install j arg' d:\todays _build\tours.jar',
" APP. "ToursLogic!™ , 0);

For more information about storing classes in a database, see the Derby Developer's
Guide.

52

Copyright

sysinfo

Use the sysinfo utility to display information about your Java environment and Derby
(including version information). To use sysinfo, either derby.jar or derbytools.jar must be
in your classpath.

java org. apache. derby. t ool s. sysi nfo

sysinfo example

When you have derby.jar and derbytools.jar listed in your classpath, the output from
running the sysinfo command is shown below:

$ java org. apache. derby. t ool s. sysi nfo

S L T T Java Information ------------------
Java Version: 1.4.2 07

Java Vendor: Sun M cCrosystens |nc

Java hore: c:\pdnmain\jd 142\ire

Java cl asspath: c:\Derby_10\ ib&derby.kgr'c:\Derb% 10\l i b\ der byt ool s.j ar;
c:\Derby 10\l b\derbyLocal e cs.jar;c:\Derby 10\|ibVderbyLocal e de DE.] ar
c:\Derby_10\li b\ derbyLocal e_es.|ar;c:\Derby_10\1i b\ derbyLocal e_fr~jar;
c:\EErby_lO\I!b\derbyLocaIe_hu.Jar;c:\EErby_lo\Ilb\derbyLocaIe_lt.Lar'
c:\Derby_lO\I!b\derbyLocaIe_Ja_JP.jar'c:\Derbg 10\ I i b\ der byLocal e_ko
c:\Derby~10\[i b\ der byLocal epl —jar’ c:\ Der by 10Vii b\ der byLocal e_pt _BRjar
c:\Derby_10\Ii b\ derbyLocal e_ru.]ar;c:\Derby_10\li b\ derbyLocal e_zh”CN.] ar;
c:\EErby_lO\I|b\derb%LocaIe_zh_] ar

GS nane: W ndows 200

CS architecture: x86

CS version: 5.0

Java user nane: userl)

Java user honme: C:\Docunments and Settings\myhone
Java user dir: C \Derby_ 10\t est

java. speci fication. nane; Java Pl atform AP
J ava. specification.version: 1.4

Derby Information --------

Speci fication

JRE - JDBC. J2SE 1.4.2 - JDBC 3.0
c:\Derby_10\|ib\derby.jar] 10.2.2.0 - (483632%
c:\Derby_ 10\l i b\derbytools.jar] 10.2.2.0 - (483632)

----------------- Locale Information -----------------

Current Locale : [English/United States [en_US]]

Found support for |ocale: [cs

version: 10.2.2.0 - (483632)

Found support for |ocale: [de

version: 10.2.2.0 - (483632)
Found support for |ocale: [es

version: 10.2.2.0 - (483632)
Found support for |locale: [fr

version: 10.2.2.0 - (483632)

Found support for locale: [hu

version: 10.2.2.0 - (483632)
Found support for locale: [it

version: 10.2.2.0 - (483632)
Found support for |ocale:

[ja JP%
10.2. 2.0 - (483632)

versi on:
Found support for |ocale: [ko KRE
version: 10.2.2.0 - (483632)
Found support for |ocale: [pl
version: 10.2.2.0 - (483632)
Found support for |ocale: [pt_BR
version: 10.2.2.0 - (483632)
Found support for locale: [ru
version: 10.2.2.0 - (483632)
Found support for |ocale: [zh
version: 10.2.2.0 - (483632)
Found support for locale: [zh_TW

When requesting help from Derby technical support or posting on the forum, include a
copy of the information provided by the sysi nf o utility.

Using sysinfo to check the classpath

sysinfo provides an argument (-cp) which can be used to test the classpath.

53

Copyright

{ava or g. apache. der by. t ool s. sysi nfo
[edded][s I

_Cp
dded] erver][client ol

tools] [anydass.class |]

If your environment is set up correctly, the utility shows output indicating success.

You can provide optional arguments with -cp to test different environments. Optional
arguments to -cp are:

* embedded
 server
« client
* tools
* classname.class
If something is missing from your classpath, the utility indicates what is missing. For
example, if you neglected to include the directory containing the class named SimpleApp
to your classpath, the utility would indicate this when the following command line was
issued (type all on one line):

$ java org. apache. derby.tool s.sysinfo -cp enbedded Sinpl e .cl ass
FdJND I'N gLAES PATH: v o P mpl eApp

Der by enbedded engine library (derby.jar)
NOT FOUND | N CLASS PATH:

user-specified class (Sinple
(Si npl gApp not found.§ Pl eApp)

54

Copyright

dblook

Use the dbl ook utility to view all or parts of the Data Definition Language (DDL) for a
given database. You must place the Derbyder byt ool s. j ar file in the classpath
directory to use the dbl ook utility.

Using dblook

The syntax for the command to launch the dbl ook utility is:

java org. apache. derby. t ool s. dbl ook -d <dat abaseURL> [OPTI ONS]

The value for databaseUrl is the complete URL for the database. Where appropriate, the
URL includes any connection attributes or properties that might be required to access the
database.

For example, to connect to the database 'myDB', the URL would simply be
"j dbc: derby: nyDB' ; to connect using the Network Server to a database
'C:\private\tmp\myDB' on a remote server (port 1527), the URL would be:

"jdbc:derby://1ocal host: 1527/ " C:\ pri vat e\ t np\ nyDB"
; user =someusr ; passwor d=sonepwd’

As with other Derby utilities, you must ensure that no other JVMs are started against the
database when you call the dbl ook utility, or an exception will occur and will print to the
dbl ook. I og. If this exception is thrown, the dbl ook utility will quit. To recover, you
must ensure that no other Derby applications running in a separate JVM are connected to
the source database. These connections need to be shutdown. Once all existing JVMs
running against the database have been shutdown, the dbl ook utility will execute
successfully. You can also start the Derby Network server and run the dbl ook utility as a
client application while other clients are connected to the server.

dblook options

The dbl ook utility options include:

-z <schemaName>

specifies the schema to which the DDL should be restricted. Only objects with the
specified schema are included in the DDL file.

-t <tableOne> <tableTwo> ...
specifies the tables to which the DDL should be restricted. All tables with a name from
this list will be included in the DDL file subject to - z limitations, as will the DDL for any
keys, checks, or indexes on which the table definitions depend.

Additionally, if the statement text of any triggers or views includes a reference to any
of the listed table names, the DDL for that trigger/view will also be generated, subject
to - z limitations. If a table is not included in this list, then neither the table nor any of
its keys, checks, or indexes will be included in the final DDL. If this parameter is not
provided, all database objects will be generated, subject to - z limitations. Table
names are separated by whitespace.

-td
specifies a statement delimiter for SQL statements generated by dblook. If a
statement delimiter option is not specified, the default is the semicolon (';'). At the end
of each DDL statement, the delimiter is printed, followed by a new line.

55

Copyright

-o <filename>
specifies the file where the generated DDL is written. If this file is not specified, it
defaults to the console (i.e. standard System.out).

-append
prevents overwriting the DDL output (*-0' parameter, if specified) and "dblook.log"
files. If this parameter is specified, and execution of the dbl ook command leads to
the creation of files with names identical to existing files in the current directory,
dbl ook will append to the existing files. If this parameter is not set, the existing files
will be overridden.

-verbose
specifies that all errors and warnings (both SQL and internal to dbl ook) should be
echoed to the console (via System.err), in addition to being printed to the "dblook.log"
file. If this parameter is not set, the errors and warnings only go to the "dblook.log"
file.

-noview
specifies that CREATE VIEW statements should not be generated.

Generating the DDL for a database

The dbl ook utility generates all of the following objects when generating the DDL for a
database:

» Checks
» Functions
* Indexes
 Jar files
» Keys (primary, foreign, and unique)
* Schemas
 Stored procedures
« Triggers
» Tables

e Views
Note: When dblook runs against a database that has jar files installed, it will create a new
directory, called DERBYJARS, within the current directory, and that is where it will keep
copies of all of the jars it encounters. In order to run the generated DDL as a script, this
DERBYJARS directory must either 1) exist within the directory in which it was created, or
2) be moved manually to another directory, in which case the path in the generated DDL
file must be manually changed to reflect to the new location.

The dbl ook utility ignores any objects that have system schemas (for example, SYS,
SYSIBM), since DDL is not able to directly create nor modify system objects.

dblook examples

The following examples demonstrate how the various dbl ook utility options can be
specified from a command line. These examples use the sanpl e database.

Note: The quotations marks shown in these examples are part of the command
argument and must be passed to dbl ook. The way in which quotation marks are passed
depends on the operating system and command line that you are using. With some
systems it might be necessary to escape the quotation marks by using a forward slash
before the quotation mark, for example: "\ "My Tabl e"\"

Status messages are written to the output (either a -o filename, if specified, or the
console) as SQL script comments. These status messages serve as headers to show
which types of database objects are being, or have been, processed by the dbl ook
utility.

Writing the DDL to the console

56

Copyright

You can write the DDL to the console for everything that is in the sanpl e database. In
this example, the database is in the current directory. For example:

java org. apache. derby. t ool s. dbl ook -d j dbc: derby: sanpl e

Including error and warning messages in the dblook command
You can write error and warning messages when you write the DDL to the console. The
messages are written using Syst em er r. For example:

java org. apache. derby. t ool s. dbl ook -d j dbc: derby: sanpl e -verbose

Writing the DDL to a file

You can write the DDL to a file called nyDB_DDL. sql for everything that is in the

sanpl e database. In this example, the database and file are in the current directory. For
example:

java org. apache. derby. t ool s. dbl ook -d jdbc: derby: sanple -o nmyDB_DDL. sql

Specifying directory paths in the dblook command
If the database or file are not in the current directory, you must specify the directory
paths. For example:

rg.ap
derb
\%/

ache. der b%/ tool s. dbl ook -d
c: \ pr a e
o'C \'n e

C: \stuff\sarrple
enp

Specifying a schema in the dblook command

You can specify the schema for the database. To write the DDL to the console, for all of
the objects in the sanpl e database where the database is in the SAMP schema, use the
following command:

java org. apache. derby. t ool s. dbl ook -d jdbc: derby: sanple -z sanp

Specifying a remote database and host

If the sanpl e database is in the SAMP schema on localhost:1527, you must specify your
user ID and password. For example, use the following command to write the DDL to the
console:

java org. apache. der bY tool s. dbl oo
-d 'jdbc:derby://Tocal host: 1527/ C \tenp\sanple
user =soneuser nane; passwor d=sonepassword -z sanp

Specifying a schema and a table within the database in the dblook command
You can specify that only the objects in the sanpl e database that are associated with
the SAMP and the My Tabl e table are written to the console. For example:

1|_a\6|a org. apache. derby. t ool s. dbl ook -d jdbc:derby:sanple -z sanp -t "My
abl e

Specifying multiple tables in the dblook command

You can specify more than one table in the dblook command by separating the names of
the tables with a space. For example, for objects in the sanpl e database that are
associated with either the My Tabl e table or the STAFF table, use the following
command:

j ?v]gf or g. apache. der by. t ool s. dbl ook -d jdbc: derby: sample -t "My Tabl e"
sta

Writing DDL to a file without a statement delimiter

57

Copyright

To write the DDL for all of the objects insanpl e database to the nyDB_DDL. sql file
without a statement delimiter, you must omit the default semi-colon. You can append the
DDL to the output files if the files are already there. For example:

java org. apache. derby. t ool s. dbl ook -d jdbc: derby: sanpl e
| -0 ngDBEDDL.sqI -Yd "' -append : Y =

Excluding views from the DDL
To write the DDL to the console for all of the objects in the sanpl e database except for
views, use the following command:

java org. apache. derby. t ool s. dbl ook -d jdbc: derby: sanpl e - novi ew

58

Copyright

Trademarks

The following terms are trademarks or registered trademarks of other companies and
have been used in at least one of the documents in the Apache Derby documentation
library:

Cloudscape, DB2, DB2 Universal Database, DRDA, and IBM are trademarks of
International Business Machines Corporation in the United States, other countries, or
both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

59

	Copyright
	About this guide
	Purpose of this document
	Audience
	How this guide is organized

	What are the Derby tools and utilities?
	Overview
	Environment setup and the Derby tools
	Java 2 Platform, Standard Edition, Version 1.3
	Classpath

	About Derby databases
	JDBC connection basics
	JDBC drivers overview
	Database connection URLs

	Tools and localization
	About locales
	Database territory
	Specifying an alternate codeset
	Formatting display of locale-sensitive data

	Using ij
	Starting ij
	Starting ij using properties
	Getting started with ij
	Connecting to a Derby database
	The ij Driver name and connection URL

	Using ij commands
	Other uses for ij

	Running ij scripts

	ij properties reference
	ij.connection.connectionName
	ij.database
	ij.dataSource
	ij.driver
	ij.maximumDisplayWidth
	ij.outfile
	ij.password
	ij.protocol
	ij.protocol.protocolName
	ij.showErrorCode
	ij.URLCheck
	ij.user
	derby.ui.codeset

	ij commands and errors reference
	ij commands
	Conventions for ij examples
	ij SQL command behavior
	ij command example

	Absolute
	After Last
	Async
	Autocommit
	Before First
	Close
	Commit
	Connect
	Describe
	Disconnect
	Driver
	Elapsedtime
	Execute
	Exit
	First
	Get Cursor
	Get Scroll Insensitive Cursor
	Help
	Last
	LocalizedDisplay
	MaximumDisplayWidth
	Next
	Prepare
	Previous
	Protocol
	Readonly
	Relative
	Remove
	Rollback
	Run
	Set Connection
	Show
	Wait For
	Comment
	Identifier
	String
	ij errors
	ERROR SQLState
	WARNING SQLState
	IJ ERROR
	IJ WARNING
	JAVA ERROR

	Using the bulk import and export procedures
	Bulk Import/Export overview
	Options for running the import and export procedures
	Bulk import/export requirements and considerations

	Bulk import and export
	Bulk-Import
	Arguments to the import procedure

	Bulk-Export
	Arguments to the export procedure

	Examples of bulk import and export
	Importing into tables with identity columns
	Executing import/export procedures from JDBC
	File format for input and output
	Treatment of NULLS
	CODESET values for import/export

	Storing jar files in a database
	Adding a Jar File
	Removing a jar file
	Replacing a jar file
	Installing a jar example

	sysinfo
	sysinfo example
	Using sysinfo to check the classpath

	dblook
	Using dblook
	dblook options
	Generating the DDL for a database
	dblook examples

	Trademarks

